Index

AATCC test method
   CMC formula as 65
ACIELAB 50
adapted white
   defined 80
adapting field
   components 80
Adobe RGB 125–6
Adobe systems 123, 125–6
adopted white
   defined 80
Agfa StudioCam camera 147, 192
algebra
   linear 13–18. see also linear algebra
ANLAB colour space 50
ANNs. see artificial neural networks (ANNs)
ANSI IT8 144
ANSI IT8.7/1 standard 144
ANSI IT8.7/2 standard 144
artificial neural networks (ANNs) 128
   in printer characterisation 159, 161–2
automatic white balance
   types 143

BASIC code 3
bipartite colorimeter 6
brightness
   defined 76

calibration
   device 127–9
   purpose 143
camera characterisation 143–57, 201
   channel sensitivity 145–6
ciede2000 color difference 157
CIELAB color differences 147
correction for lack of spatial uniformity 146
correction for nonlocality 144–6
data-driven methods 144–9
described 146–9
digital camera 149–57
   introduction 143–4
   model-driven methods 149
   polynomial transforms 147
   RIB values 144
   camera_demo function 150–157
CAMs. see colour-appearance models (CAMs)
   Cartesian coordinates 62, 90
cart2pol function 72–3
CATs. see chromatic-adaptation transforms (CATs)
cband function 38–9
CCFL (cold cathode fluorescent lamp)
   backlight 132
channel sensitivity 145–6
characterisation
   approaches to 128–9
   camera 143–57. see also camera characterisation
device 127–9
display 131–41. see also display characterisation
   half-tone printer 162–9
characterisation (continued)

CIE94 equation 50
CIEDE2000 11, 68–74
CIEDE2000 colour difference 141
in camera characterisation demo 157
CIEDE2000 equation 50
colour difference values for 73–4
CIELAB 10, 200
as CAM 86
colour difference. see CIELAB colour
difference
as model of colour appearance 75
use with surface colors 56
using MATLAB 56–60
CIELAB colour difference 49–74
in camera characterisation 147
colors 60–61
in continuous-tone printer
characterisation 174–8
described 60–64
introduction 49–50
optimised colour-difference formulae
64–74. see also colour-difference
formulae
CIELAB equation
colour difference values for 73–4
cielabde function 62–4
cielabplot function 56–60
CIELUV 10, 49, 88
use with self-luminous colours 56
CIELUV colour space 50–60
CIELUV coordinates
computing 55
cieplot function 45–7
Index 215

CMC equation
colour difference values for 73–4
CMC formula 49–50, 64–7
CMCCAT97 80–83
CMCCAT2000 83–7
history 80
cmccat00 function 84–6
cmccat00r function 86
cmccat97 function 81–2
cmcde function 65–9
CMFs. see colour-matching functions (CMFs)
coefficient law 78
cognitive chromatic-adaptation mechanisms 77
colon operator in MATLAB 21–2
colour(s). see also specific types
corresponding 76–7
related 56
self-luminous 56
surface 56
colour appearance 200
CATs and 75–91
CIELAB as model of 75
introduction 75–6
models 75–91
colour-appearance models (CAMs)
CAT in 76
CIECAM02 87–91
CIECAM97s 87–8
CIELAB as 86
defined 76
described 86–8
descriptors 75
colour constancy 180–182
colour difference 10–11, 49–74, 200
CIEDE2000 141
in camera characterisation demo 157
CIELAB 60–64, 147
components 61
computing 61
descriptors 61–2
values for CIELAB, CMC, CIE94, and CIEDE2000 73–4
colour-difference formulae
CIE94 67–8
cie94de 67–8
CIEDI2000 68–74
CMC 64–7
optimised 64–74
colour gamut 119–23. see also gamut
colour management 119–29, 200
calibration 127–9
characterisation 127–9
gamuts in 119–23
ICC 126–7
need for 119–22
RGB colour spaces 122–6
colour-matching functions (CMFs) 6–9, 93
appearance 10
in computing tristimulus values 28–9
cone sensitivities 94
cone spectral sensitivities and 96
Colour Measurement Committee of Society of Dyers and Colourists 64, 80, 83
colour science
defined 2
described 4
colour space 49
ACIELAB 50
ANLAB 50
CIELUV 50–60
colour vision 94–6
coneexcitation space 96–101
DKL 106–18. see also DKL colour space
HunterLab 50
introduction 93–4
MacLeod and Boynton chromaticity diagram 101–106
physiological 93–118, 200
RGB 122–6
types 50
colour stimuli
specification 6
colour toolbox 199–201
colour vision 94–6
colourfulness  defined 76
Commission Internationale de
l’Eclairage (CIE) 6. see also CIE
system
computing inner product 15
cond command 25
cone(s)  
classes 5
cone fundamentals 93–4
cone spectral sensitivities 95–6
as CMFs 94, 96
measurement techniques 95
questions related to 95
Stockman and Sharpe 2-degree 96
types 95
cone-excitation space 96–101
continuous-tone printer characterisation
169–78
eample 173–8
general linear and nonlinear
transforms 173
interpolation of 3D LUTs 172–3
Kubelka-Munk model 169–72
corresponding colours
concept of 76–7
cortex 5
CRT display 131–41
beyond 140–141
characterisation of 134–40
CRT neutral samples
colorimetric measurements for 134
CRT primaries
colorimetric measurements for 134
CRT test samples
colorimetric measurements for 135
crtdemo function 136–9
custom white balance 143
CVA. see Characteristic Vector Analysis
(CVA)
DAC values 132, 133, 135, 136, 140
Demiichel’s equation 165
device calibration 127–9
device characterisation 127–9
device-independent transformation 133
diagonal transform 78
dichromacy 96
dichromats 103
DigiEye system 149, 157
digital camera characterisation
149–57
dipolarity function 64
display characterisation 131–41, 200
beyond CRT displays 140–141
of CRT display 134–40
device-independent transformation
133
gamma 131–2
GOG model 127–8, 132–3, 135–6
introduction 131
distance-weighted interpolation 172
DKL colour space 106–18
advantages 107
basis 106–107
computing 107–18
defined 108
described 107
development 106
disadvantages 107
uses 106
dkl_cart2sph function 114–7
dkl2lms function 112–4
dot pattern
in printer characterisation 160
dye-sublimination printers 159
EBU. see European Broadcast Union
(EBU)
eigenvectors 183–7
European Broadcast Union (EBU) 122
extrapolation methods
in computing tristimulus values 38
fminsearch function 139
Fournier amplitude spectrum 182
Fournier analysis
of reflectance spectra 193–6
function approximation 16–18
fundamentals
matrix 98–9
fundamentals_ss 98
gain-offset gamma (GOG) model 127–8, 132–3, 135–6, 140
gamma correction 128, 131–2
gamut 119–23
do Adobe RGB 125, 126
MATLAB in creating representations of 121–2
do Rec. 601, 122
do Rec. 709, 122
RGB display 120
of SMPTE-C 122
of sRGB 125, 126
Gaussian elimination 23
generalisation
defined 162
GOG model 127–8, 132–3, 135–6, 140
GOGO model 140
Grassman’s law 9
grey-world assumption 191
grey.mat function 150–151
Guild’s system 7

half-tone printers 159–60
correction for nonlinearity 162–3
equation 165–9
Neugebauer model 163–5
half-tone process 159–60
Hewlett-Packard
colour space by 123–5
HP Color LaserJet 5500n printer 173
hue
in colour stimulus description 75
defined 76
hue difference
cart2pol function 72–3
computing 61
descriptors 61–2
HunterLab colour space 50
hyperspectral colour space 50
vs. multispectral imaging 179

ICA. see Independent Component Analysis (ICA)
ICC
described 126–7
ICC process 127
ICC v4 127
IDE. see Integrated Development Environment (IDE)
identity matrix 14
ill-conditioned equations 23, 24
illuminant(s)
standard 8
Imai-Berns method 192
In-CAM(CIELUV) 88
inconsistent equations 23, 24
Independent Component Analysis (ICA) 183
index 53
Integrated Development Environment (IDE) 25
integrated reflectance 180
International Color Consortium (ICC) 126–7. see also ICC
interpolation methods
in computing tristimulus values 29–37
distance-weighted 172
IT8.7–3CMYK characterisation 173
ITU-R BT.601 primaries 122

JPC79 formula 64
Keele Natural Spectra 181–2, 184, 189
keele.mat function 181–2
Kodak Color Proofer 9000A
dye-sublimination printer 173
König’s hypothesis 96
Kubelka-Munk model 127, 169–72
Kubelka-Munk theory 159, 160, 170–171

L cones 5, 94–6, 102–106, 109–17
lab2xyz function 54–5
Lagrange polynomial 30, 33
laser printers 159
LCD (liquid crystal display) devices 132, 140–141
least-squares solution 25
LED (light emitting diode) backlight technology 132
light
  described 4
lightness 180
  in colour stimulus description 75
  defined 76
linear algebra 13–18
  diagonal transform 78
  function approximation 16–18
  linear transforms 16–17, 78–9, 98,
    128–9, 160, 173
  matrices 13–15
  matrix transform 98
  over-determined system 16
  simultaneous equations 14–16
  terminology 13–14
linear systems
  solving 23–5
linear transforms 16–17, 78–9, 98,
  128–9
  in continuous-tone printer
    characterisation 173
  in printer characterisation 160
linearisation process 128
lms2dkl function 110–112, 114, 118
lms2rgb function 100–101
lms2rgbMB function 103
look-up tables (LUTs)
  3D 172–3
Luther diagram 101–106. see also
  MacLeod and Boynton chromaticity
  diagram
LUTs. see look-up tables (LUTs)
  1D 141

M cones 5, 94–6, 102–106, 109–17
M-files 3, 25–6
Macbeth ColorChecker chart 144, 192
Macbeth ColorChecker DC chart 144,
  147, 149–50, 155, 192
MacLeod and Boynton chromaticity
  diagram 101–106
  origin 103
  quantities proposed in 101–102
Maloney-Wandell method 191–21
MATLAB
  advantages 2–4
  BASIC code 3
  calculating physiological responses of
    stimuli presented on visual
    displays using 94–118
camera_demo 150–157
CIELAB using 56–60
cond command 25
crtdemo function 136–9
  defined 19
  execution 19
  features 2–4
gamut representation by 121–2
grey.mat 150–151
IDE 25
introduction 19–26
lms2dkl function 110–112, 114
M-files 3, 25–6
matrices 19–23
  matrix operations 21–3
  multispectral imaging 181–2, 193
  patch command 44, 121–2
  pinv command 187–9
  polyfit command 31–4, 167–9
  polynomial fit 31–4
  polyval command 31–4, 167–9
  rgb2lms command 98–100
  solving linear systems 23–5
  spectra command 187–9
  strengths 2–4
  svd 184–91
  svds 184–91
  using functions in 25–6
xyz_cc.mat 152
MATLAB code 121
matrix(ces) 13–15
  defined 13
  entries in 13
  identity 14
  in MATLAB 19–23
  row 13
  Vandermonde 30
matrix fundamentals 98–9
matrix multiplication 15
matrix notation 15
matrix operations
  in MATLAB 21–3
matrix transform 98
mechanical dot gain 160
Microsoft 123–5
MLP. see multilayer perceptron (MLP)
multilayer perceptron (MLP) 161
multispectral imaging 179–96
colour constancy 180–182
defined 179
device characterisation 193
example using MATLAB 181–2
Fournier analysis of reflectance
spectra 193–6
introduction 179–80
linear models 180–182
maximum smoothness 193
recovery using low-dimensional linear
models in MATLAB 193
reflectance recovery 189–91
reflectance spectra properties
182–9
techniques 191–3
vs. hyperspectral imaging 179
Munsell ColorChecker 146
Munsell reflectance spectra 184
Murray-Davies equation 164
Murray-Davies model 160

National Television System Committee
(NTSC)
primaries specified by 122
Neugebauer model 160, 163–5
neural networks. see also artificial
neural networks (ANNs)
in printer characterisation 161–2
neutral point 50
Nickerson-Munsell set 184
night vision 5–6
Nikon D70 SLR 149
nonlinear transforms 128–9
in continuous-tone printer
characterisation 173
in printer characterisation 160
nonlinearity
correction for 144–6
in half-tone printer characterisation
162–3

NTSC primaries 122
Nyquist limit 194–5
1D LUTs 141
optical dot gain 160
over-determined system 16
packing
defined 172
patch command 44, 121–2
PCA. see Principal Component Analysis
(PCA)
PCS. see profile connection space (PCS)
phosphors 98
photon absorption 94–5
physiological colour spaces 93–118, 200
Piecewise Linear assuming Variation in
Chromaticity (PLVC) 141
pinv command 187–9
PLVC (Piecewise Linear assuming
Variation in Chromaticity) 141
polyfit command 31–4, 167–9
polynomial(s)
Lagrange 30, 33
polyval command 31–4, 167–9
preset white balance 143
primaries 7–9. see also specific types
imaginary 8
NTSC 122
in printers 159
RGB 119
Principal Component Analysis (PCA)
183–5
printer(s)
continuous-tone 169–78
dye-sublimination 159
half-tone 159–60
laser 159
primaries used in 159
printer characterisation 159–78, 201
aim 160
printer characterisation (continued)
  continuous-tone printer 169–78
  dot pattern 160
  half-tone printer 162–9
  introduction 159–60
  linear transforms 160
  MLP 161
  neural networks 161–2
  nonlinear transforms 160
  physical models 160
printer models
  types 160
printer_demo1 function 174–8
profile connection space (PCS) 127
protanopes 103
pseudoinverse 23

raw file format 143
Rec. 601 primaries 122
Rec. 709 primaries 122
red (R), green (G), and blue (B)
  primaries 119. see also RGB
reflectance
  integrated 180
  Neugebauer model in predicting
    163–5
reflectance recovery
  SVD in 189–91
reflectance spectra
  constraints 182
  dimensionality 183
  Fournier analysis of 193–6
  Munsell 184
  properties 182–9
  types 182
reflectance spectrophotometers 5
Retinex theory 180
RGB colour spaces 122–6
RGB Maxwell triangle 44
RGB primaries
  defined 119
RGB values 140
  in camera characterisation 144
rgb2lms function 98–100, 117–8
rgb2xyz function 125
rgbMB2lms function 104–106
rod(s) 5
row matrix 13
r2xyz function 40–43
  white points of illuminants used in
    197
S cones 5, 94–6, 102–106, 109–17
saturation
  defined 76
scalar 13
scaling law 78
scotopic vision 5–6
sensory chromatic-adaptation
  mechanisms 77
sharp transform 78–9
Shi-Healey method 192–3
simultaneous equations 14–16
Singular Value Decomposition (SVD)
  183–5, 189–91
SMPTE-C primaries 122
Society of Dyers and Colourists
  Colour Measurement Committee of
    64, 80, 83
spatial uniformity
  correction for lack of 146
spectra command 187–9
spectral bandpass correction
  in computing tristimulus values
    38–9
spectrophotometers 179
  reflectance 5
split-field colorimeter 6
sprague function 36–7
Sprague interpolation 33–7
sRGB 123–5
srgb2xyz function 125
standard illuminants 8
Stearns-Stearns bypass correction 38–9
Stockman and Sharpe 2-degree cone
  spectral sensitivities 96
surface(s) 4–5
  reflectance properties 5
surface reflectance factor 5
SVD 183–5
  in reflectance recovery 189–91
svd function 184–91
svd_demo function 187–9
svds function 184–91

3D look-up tables (LUTs)
  interpolation of 172–3

toolbox files
  where to find 199–201

toolbox functions
  camera_demo 150–157
  cart2pol 72–3
  cband 38–9
  cie00de 70–72
  cielabde 62–4
  cielabplot 56–60
  cieplot 45–7
  cmccat00 84–6
  cmccat00r 86
  cmccat97 81–2
  cmcde 65–7
  crtdemo 136–9
  dipolarity 64
  dkl_cart2sph 114–7
  dkl2lms 112–4
  fminsearch 139
  grey.mat 150–151
  keele.mat 181–2
  lab2xyz function 54–5
  lms2dkl 110–112, 114, 118
  lms2rgb 100–101
  lms2rgbMB 103
  printer_demo1 174–8
  r2xyz 40–43, 197
  rgb2lms 98–100, 117–8
  rgb2xyz 125
  rgbMB2lms 104–106
  sprague 36–7
  srgb2xyz 125
  summary 199–201
  svd_demo 187–9
  xyz2lab 51–3
  xyz2luv 55–6
  xyz2srgb 124–5

Toolboxes, 19
transform(s). see specific types
treble 26
trichromacy 95, 96

tristimulus values
  in ACIELAB and CIELUV colour space 50
  in camera characterisation 144
  in CAT 79
  in CIECAM97s 87–8
  in CIELAB colour difference 51–3
  in CMCCAT97 81–2
  in CMCCAT2000 84–6
  in colour difference formulae 73
  computing 27–47, 199
    chromaticity diagrams 43–7
    colour-matching functions 28–9
    described 39–43
    extrapolation methods 38
    factors in 27
    interpolation methods 29–37
    introduction 27
    spectral bandpass correction 38–9
    defined 6, 28
  tritanopes 103

UCS. see uniform chromaticity space (UCS)
uniform chromaticity space (UCS) 55

Vandermonde matrix 30
vision
  colour 94–6
  mediation 5
  night 5–6
  scotopic 5–6
von Kries law 78
von Kries model of adaptation 77–8
von Kries transformation 78

wavelength
  functions 6
weights
  tables of 40, 44
weights.mat file 40
white
  adapted 80
  adopted 80
white balance
  automatic 143
white balance (continued)
custom 143
preset 143
white points 53
of illuminants used in r2xyz and other
functions 197

Wright’s system 7

xyz_cc.mat function 152
xyz2lab function 51–3
xyz2luv function 55–6
xyz2srgb function 124–5