CONTENTS

Preface ix

1 Role of Statistics and Data Analysis 1
 1.1 Introduction 1
 1.2 Case Studies 1
 1.3 Data 2
 1.4 Samples Versus the Population: Some Notation 3
 1.5 Vector and Matrix Notation 4
 1.6 Frequency Distributions and Histograms 5
 1.7 Distribution as a Model 6
 1.8 Sample Moments 9
 1.9 Normal (Gaussian) Distribution 12
 1.10 Exploratory Data Analysis 13
 1.11 Estimation 17
 1.12 Bias 18
 1.13 Causes of Variance 21
 1.14 About Data 21
 1.15 Reasons to Conduct Statistically Based Studies 24
 1.16 Data Mining 25
 1.17 Modeling 25
 1.18 Transformations 27
 1.19 Statistical Concepts 28
 1.20 Statistics Paradigms 30
 1.21 Summary 33
 Exercises 34

2 Modeling Concepts 37
 2.1 Introduction 37
 2.2 Why Construct a Model? 37
 2.3 What Does a Statistical Model Do? 38
 2.4 Steps in Modeling 39
 2.5 Is a Model a Unique Solution to a Problem? 44
 2.6 Model Assumptions 45
CONTENTS

2.7 Designed Experiments

2.8 Replication

2.9 Summary

Exercises

3 Estimation and Hypothesis Testing on Means and Other Statistics

3.1 Introduction

3.2 Independence of Observations

3.3 Central Limit Theorem

3.4 Sampling Distributions

3.5 Confidence Interval Estimate on a Mean

3.6 Confidence Interval on the Difference Between Means

3.7 Hypothesis Testing on Means

3.8 Bayesian Hypothesis Testing

3.9 Nonparametric Hypothesis Testing

3.10 Bootstrap Hypothesis Testing on Means

3.11 Testing Multiple Means via Analysis of Variance

3.12 Multiple Comparisons of Means

3.13 Nonparametric ANOVA

3.14 Paired Data

3.15 Kolmogorov–Smirnov Goodness-of-Fit Test

3.16 Comments on Hypothesis Testing

3.17 Summary

Exercises

4 Regression

4.1 Introduction

4.2 Pittsburgh Coal Quality Case Study

4.3 Correlation and Covariance

4.4 Simple Linear Regression

4.5 Multiple Regression

4.6 Other Regression Procedures

4.7 Nonlinear Models

4.8 Summary

Exercises

5 Time Series

5.1 Introduction

5.2 Time Domain

5.3 Frequency Domain

5.4 Wavelets
6 Spatial Statistics 193
6.1 Introduction 193
6.2 Data 193
6.3 Three-Dimensional Data Visualization 196
6.4 Spatial Association 199
6.5 Effect of Trend 208
6.6 Semivariogram Models 210
6.7 Kriging 218
6.8 Space–Time Models 237
6.9 Summary 239
Exercises 240

7 Multivariate Analysis 243
7.1 Introduction 243
7.2 Multivariate Graphics 244
7.3 Principal Components Analysis 246
7.4 Factor Analysis 257
7.5 Cluster Analysis 263
7.6 Multidimensional Scaling 276
7.7 Discriminant Analysis 276
7.8 Tree-Based Modeling 286
7.9 Summary 289
Exercises 290

8 Discrete Data Analysis and Point Processes 293
8.1 Introduction 293
8.2 Discrete Process and Distributions 293
8.3 Point Processes 301
8.4 Lattice Data and Models 308
8.5 Proportions 309
8.6 Contingency Tables 312
8.7 Generalized Linear Models 318
8.8 Summary 329
Exercises 330

9 Design of Experiments 335
9.1 Introduction 335
9.2 Sampling Designs 335
9.3 Design of Experiments 347
9.4 Comments on Field Studies and Design 364
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 Missing Data</td>
<td>366</td>
</tr>
<tr>
<td>9.6 Summary</td>
<td>367</td>
</tr>
<tr>
<td>Exercises</td>
<td>368</td>
</tr>
<tr>
<td>10 Directional Data</td>
<td>371</td>
</tr>
<tr>
<td>10.1 Introduction</td>
<td>371</td>
</tr>
<tr>
<td>10.2 Circular Data</td>
<td>371</td>
</tr>
<tr>
<td>10.3 Spherical Data</td>
<td>379</td>
</tr>
<tr>
<td>10.4 Summary</td>
<td>386</td>
</tr>
<tr>
<td>Exercises</td>
<td>387</td>
</tr>
<tr>
<td>References</td>
<td>389</td>
</tr>
<tr>
<td>Index</td>
<td>399</td>
</tr>
</tbody>
</table>