Contents

Preface xiii
Acknowledgements xv
Abbreviations xvii

1 Introduction 1
Noman Muhammad, Davide Chiavelli, David Soldani and Man Li
1.1 QoE value chain 1
1.2 QoS and QoE 3
1.3 QoE and QoS management 5
 1.3.1 Network planning 5
 1.3.2 QoS provisioning 6
 1.3.3 QoE and QoS monitoring 6
 1.3.4 Optimisation 7
1.4 Organisation of the book 7

2 Mobile Service Applications and Performance in UMTS 9
Renaud Cuny, Man Li and Martin Kristensson
2.1 CS service applications 10
 2.1.1 CS telephony 10
 2.1.2 CS multimedia telephony 11
2.2 Packet-switched service applications 12
 2.2.1 Browsing 12
 2.2.2 Multimedia Messaging Service (MMS) 13
 2.2.3 Content download 15
 2.2.4 Streaming 16
 2.2.5 Gaming 17
 2.2.6 Business connectivity 18
 2.2.7 Push to talk over Cellular (PoC) 20
 2.2.8 Video sharing (VS) 22
 2.2.9 Voice over IP (VoIP) 24
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.10</td>
<td>Presence</td>
<td>25</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Instant messaging (IM)</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>PS service performance in UMTS</td>
<td>26</td>
</tr>
<tr>
<td>2.3.1</td>
<td>General application performance</td>
<td>27</td>
</tr>
<tr>
<td>2.3.2</td>
<td>WCDMA and service application performance</td>
<td>30</td>
</tr>
<tr>
<td>2.3.3</td>
<td>EDGE and service application performance</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Multiradio environments and application performance</td>
<td>37</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Transport Protocol performance in wireless</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>QoS in 3GPP Releases 97/98, 99, 5, 6 and 7</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Anna Sillanpää and David Soldani</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Where does QoS come from?</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Application and bearer service categorisation</td>
<td>42</td>
</tr>
<tr>
<td>3.1.2</td>
<td>GPRS network architecture</td>
<td>43</td>
</tr>
<tr>
<td>3.1.3</td>
<td>A/Gb and Iu mode</td>
<td>45</td>
</tr>
<tr>
<td>3.1.4</td>
<td>QoS in transport network</td>
<td>46</td>
</tr>
<tr>
<td>3.1.5</td>
<td>ETSI and 3GPP</td>
<td>47</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Internet Engineering Task Force (IETF)</td>
<td>50</td>
</tr>
<tr>
<td>3.1.7</td>
<td>GSM Association (GSMA)</td>
<td>52</td>
</tr>
<tr>
<td>3.1.8</td>
<td>ITU-WARC and spectrum allocation</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>QoS concept and architecture</td>
<td>54</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Releases 97 and 98 (R97/98)</td>
<td>55</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Release 99 (R99)</td>
<td>57</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Release 5 (R5)</td>
<td>68</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Release 6 (R6)</td>
<td>74</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Release 7 (R7)</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>Packet Data Transfer in UMTS Cellular Networks</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>David Soldani and Paolo Zanier</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Packet data transfer across EGPRS networks</td>
<td>91</td>
</tr>
<tr>
<td>4.1.1</td>
<td>User plane protocols</td>
<td>91</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Control plane protocols</td>
<td>96</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Radio channels and frame structure</td>
<td>97</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Mapping of packet data channels</td>
<td>102</td>
</tr>
<tr>
<td>4.2</td>
<td>Packet data transfer across WCDMA networks</td>
<td>103</td>
</tr>
<tr>
<td>4.2.1</td>
<td>User plane protocol stack</td>
<td>104</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Control plane protocol stack</td>
<td>107</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Radio interface protocol architecture and logical channels</td>
<td>109</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Radio Resource Control Protocol states and state transitions</td>
<td>111</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Transport and physical channels</td>
<td>113</td>
</tr>
<tr>
<td>4.3</td>
<td>Introduction to high-speed downlink packet access (HSDPA)</td>
<td>124</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Concept description</td>
<td>124</td>
</tr>
</tbody>
</table>
4.3.2 Protocol architecture 125
4.3.3 Radio channel structure 126
4.3.4 Adaptive modulation and coding (AMC) and multicode transmission 127
4.3.5 Link adaptation 128
4.3.6 Fast hybrid ARQ 130
4.3.7 Iub data transfer and flow control 131
4.3.8 MAC-hs packet scheduler 132

4.4 Introduction to high-speed uplink packet access (HSUPA) 133
4.4.1 Physical layer models for HSUPA 134
4.4.2 Protocol architecture 135
4.4.3 HARQ protocol 137
4.4.4 Node B controlled scheduling 137
4.4.5 Non-scheduled transmissions 139

References 139

5 QoS Functions in Access Networks

David Soldani, Paolo Zanier, Uwe Schwarz, Jaroslav Uher, Svetlana Chemiakina, Sandro Grech, Massimo Barazzetta and Mariagrazia Squeo

5.1 QoS management functions in GERA networks 142
5.1.1 Radio interface 142
5.1.2 QoS differentiation in R97/98 EGPRS radio access networks 145
5.1.3 QoS differentiation in R99 or later EGPRS radio access networks 148
5.1.4 Handovers and cell reselection in 2G networks 151

5.2 QoS management functions in UTRA networks 158
5.2.1 Admission control 158
5.2.2 Packet (bit rate) scheduler 160
5.2.3 Load control 163
5.2.4 Power control 164
5.2.5 Handover control 164
5.2.6 Capacity gains of service differentiation in UTRAN 177

5.3 HSDPA with QoS differentiation 179
5.3.1 Radio access bearer attributes 180
5.3.2 QoS information provided to MAC-hs 180
5.3.3 Setting the HSDPA QoS parameters 183
5.3.4 HSDPA power allocation 183
5.3.5 Channel-type selection and admission control 184
5.3.6 HS-DSCH release for inactivity 186
5.3.7 Overload control with DCH and HS-DSCH users 186
5.3.8 HSDPA handover algorithm with QoS differentiation 187
5.3.9 Flow control algorithm in Node B and RNC handling of
Iub congestion
5.3.10 Packet scheduler

5.4 HSUPA with QoS differentiation
5.4.1 QoS control
5.4.2 HSUPA dynamic resource handling
5.4.3 Simulation results

5.5 Service performance in UTRA-GERA networks
5.5.1 Service control
5.5.2 QoS renegotiation
5.5.3 Handover/Cell reselection performance for PS services
5.5.4 Handover performance for CS services
5.5.5 Service performance and terminal capabilities
5.5.6 Load balancing between GSM and WCDMA

5.6 3GPP–WLAN inter-working
5.6.1 QoS and QoE aspects in 3GPP–WLAN inter-working

References

6 QoS Functions in Core and Backbone Networks
Renaud Cuny, Heikki Almay, Luis Alberto Peña Sierra and Jani Lakkakorpi

6.1 Circuit-switched QoS
6.1.1 Architecture of the circuit-switched core network
6.1.2 Circuit-switched services
6.1.3 Factors affecting the quality of circuit-switched services
6.1.4 Circuit-switched core and the 3GPP QoS concept
6.1.5 QoS mechanisms in the circuit-switched core

6.2 Packet-switched core QoS
6.2.1 Session management
6.2.2 Intelligent edge concept (change for QoS control in packet core)
6.2.3 Packet core and high-speed downlink packet access (HSDPA)
6.2.4 Traffic management

6.3 Backbone QoS
6.3.1 QoS is an end-to-end issue
6.3.2 Choice of backbone technology
6.3.3 QoS in IP networks
6.3.4 QoS in ATM networks
6.3.5 QoS in MPLS networks
6.3.6 Deriving backbone QoS needs
6.3.7 Need for QoS in IP backbones
6.3.8 Queuing and scheduling
6.3.9 Implementing QoS interworking

References
7 Service and QoS Aspects in Radio Network Dimensioning and Planning

David Soldani, Carolina Rodriguez and Paolo Zanier

7.1 WCDMA radio dimensioning and planning
7.1.1 Radio dimensioning aspects of UTRAN FDD
7.1.2 A virtual time simulator for UTRAN FDD

7.2 High-speed downlink packet access (HSDPA) dimensioning
7.2.1 Relevant radio resource management
7.2.2 HSDPA power vs. throughput
7.2.3 Dimensioning assumptions, inputs and flows
7.2.4 Numerical results
7.2.5 Impact on radio link budget

7.3 (E)GPRS dimensioning
7.3.1 (E)GPRS dimensioning procedure for CS and PS traffic
7.3.2 (E)GPRS dimensioning with capacity and bit rate guarantees
7.3.3 (E)GPRS dimensioning with QoS guarantees
7.3.4 (E)GPRS dimensioning example

References

8 QoS Provisioning

David Soldani, Man Li and Jaana Laiho

8.1 Hierarchy in QoS management
8.2 Radio, core and transport QoS provisioning
8.2.1 Core network bearer QoS provisioning
8.2.2 Provisioning QoS mapping in the network layer
8.3 Service and mobile terminal QoS provisioning
8.3.1 Service QoS provisioning
8.3.2 Mobile terminal QoS provisioning
8.4 QoS provisioning tools
8.4.1 Configuration management in NMSs
8.4.2 Policy-based QoS management
8.4.3 Service configurator
8.4.4 Mobile terminal provisioning tools
8.5 Example of complete service management solution for NMS
8.5.1 Centralised monitoring
8.5.2 Efficient service creation and deployment
8.5.3 Centralised subscription management
8.5.4 Centralised device management

References

9 QoE and QoS Monitoring

David Soldani, Davide Chiavelli, Jaana Laiho, Man Li, Noman Muhammad, Giovanni Giambiasi and Carolina Rodriguez

9.1 QoE and QoS assurance concept
9.1.1 Conceptual architecture
9.2 QoE monitoring framework
9.2.1 Service level approach using statistical samples
9.2.2 Network management system approach using QoS parameters
9.2.3 QoE metrics
9.3 QoS monitoring framework
9.3.1 Performance monitoring based on bearer service attributes
9.3.2 QoS monitoring in BSS
9.3.3 QoS monitoring in RAN
9.3.4 QoS monitoring in packet core and backbone networks
9.3.5 QoS service level agreement
9.4 Post-processing and statistical methods
9.4.1 Data types
9.4.2 Probability model and key parameters
9.4.3 Distribution types
9.4.4 Calculating the confidence interval
9.4.5 Statistical confidence on measured data
9.5 Mapping between QoE and QoS performance
9.6 QoE and QoS monitoring tools
9.6.1 Introduction to QoE monitoring tools
9.6.2 Introduction to QoS monitoring tools
9.7 Example of complete service assurance solution for NMS
9.7.1 Centralised performance management
9.7.2 Active, service monitoring tools
9.7.3 Service quality manager
References

10 Optimisation

David Soldani, Giovanni Giambiasi, Kimmo Valkealahti, Mikko Kylvää, Massimo Barazzetta, Mariagrazia Squeo, Jaroslav Uher, Luca Allegri and Jaana Laiho

10.1 Service optimisation concept and architecture
10.1.1 Conceptual breakdown of service and QoS management
10.1.2 Service optimisation framework and process
10.1.3 Benefits of intelligent and automated optimisation process
10.1.4 Optimisation using OS tools
10.2 QoS optimisation in GERA networks
10.2.1 QoS optimisation in GPRS radio access networks
10.2.2 QoS optimisation in EGPRS radio access networks
10.3 QoS optimisation in UTRA networks
10.3.1 QoS-sensitive parameters
10.3.2 QoS optimisation in WCDMA radio access networks
10.3.3 Genetic algorithms in QoS optimisation
10.3.4 Simple fuzzy optimisation
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4</td>
<td>QoS optimisation in core and backbone networks</td>
<td>416</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Parameter optimisation</td>
<td>416</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Routing configuration</td>
<td>424</td>
</tr>
<tr>
<td>10.4.3</td>
<td>GPRS core network and GPRS backbone troubleshooting</td>
<td>426</td>
</tr>
<tr>
<td>10.5</td>
<td>Service application performance improvement</td>
<td>429</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Impact of parameter settings</td>
<td>430</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Impact of traffic characteristics</td>
<td>433</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Impact of flow control</td>
<td>435</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Impact of performance enhancing proxies</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>438</td>
</tr>
</tbody>
</table>

Index | 441