Index

a
- absorbance 246
- accuracy 41
- accurate mass and retention time (AMRT) library 164
- acidic acetonitrile-methanol (AANM) 13
- advanced exploratory analysis 275–277
- airway lining fluid (ALF) 128
- analyte 41
 - detection 245
 - – electrochemical 246–247
 - – optical 245–246
- ANOVA and univariate methods 273–275
- aqueous normal phase chromatography (ANP) 24, 25
- aromatic amino acids (AAAs) 399, 400
- ASCA 274, 275
- atmospheric pressure chemical ionization (APCI) 40, 97, 141, 156, 324
- atmospheric pressure photoionization (APPI) 40, 156, 326
- Automatic Liquid Sampler (ALS) 165
- automatic mass spectral deconvolution and identification system (AMDIS) 170–172
- axial trapping frequency 122–123

b
- background electrolyte (BGE) 178, 244, 245
- bacterial fatty acid methyl esters (BAMEs) 145
- baseline offsets and corrections 83–85
- bidirectional orthogonal-PLS (O2PLS) 227
- binning. See bucketing
- biofluids 345, 355, 356–359
- bioinformatics 126
- biological fluids and cellular material 146–148
- biological questions 225
- data processing and
 - – biomarkers 264
 - – methods following questions 264
 - – networks and mechanistic insight 265
 - – treatment effects 264–265
- microfluidics
- – metabolic response to stimulation and cell-to-cell signaling, monitoring 249–251
- pharmacokinetics and pharmacodynamics 253–254
- – clinical diagnostics 254
- biomarkers 32–33, 264, 323, 371, 372, 402
- biomass density 2, 4
- biosynthetic pathways, for stress-induced metabolites 229
- biotechnology 379–382
- – analytical methods for microbial metabolomics 382–384
- – microbial metabolomics
 - – applications 386–388
 - – custom-made separation for 384–385
- – higher throughput and 385–386
- blood 190, 201
- boiling ethanol (BE) 12, 13
- Bonferroni correction 274
- bottom-up approach 42
- – calculation, according to bottom-up approach 42–48
- brain natriuretic peptide (BNP) 372
- branched chain amino acids 372, 399, 400
- bucketing 225

c
- capillary electrochromatography (CEC) 211, 245
capillary electrophoresis-mass spectrometry (CE-MS) 177–179, 211, 326
 – applications 190–202
 – – nontargeted approaches 196–200, 202–203
 – – targeted approaches 190, 191–195, 202
 – coupling
 – – interfacing 180, 182–184
 – – mass analyzers 184–185
 – – data analysis 187–190
 – – sample pretreatment 185–187
 – – separation conditions 179–180
 – coupling
 – – interfacing 180, 182–184
 – – mass analyzers 184–185
 – – data analysis 187–190
 – – sample pretreatment 185–187
 – – separation conditions 179–180
capillary zone electrophoresis (CZE) 178, 244–245
carbon transitions modeling 298
cause-and-effect diagram (CaED) 44
cell extracts LC-MS measurement uncertainty calculation 63–65
ceramide (CERs) 149, 152, 159, 164, 165, 166
charged lipids 156
chemometrics 77, 126, 231
chemotaxonomy 319
Chemspider 109
ChenomX NMR Suite 222
chloroform methanol (CM) 12
cholesterol esters (CEs) 141
Circadian rhythms 360
cold methanol quenching 5, 7
collision-induced dissociation (CID) 39, 157, 326, 368
combined standard uncertainty 42–43
 – calculation 45
 – relative contribution to 58
combined two-dimensional methods 217, 219
complex regional pain syndrome (CRPS) 202
conjugated linoleic acids (CLAs) 168
Corneofix® 148
correlation spectroscopy (COSY) 215–216
cross-talk 28
cross-validation 227–228
 – and permutations 267–271
data-dependent acquisition (DDA) 157
data processing 261
 – biological questions
 – – biomarkers 264
 – – methods following questions 264
 – – networks and mechanistic insight 265
 – – treatment effects 264–265
 – characteristics
correlation structure 261–262
dynamics 263
informative versus noninformative variation 262–263
low samples-to-variables ratio 263
measurement error 263
nonlinear relations 264
methods overview
 – advanced exploratory analysis 275–277
 – ANOVA and univariate methods 273–275
 – discriminant analysis 280–281
 – exploratory analysis 272–273
 – multilevel approaches 281–282
 – network inference 282–283
 – regression methods 277–280
validation
 – cross-validation and permutations 267–271
dimensionality curse 266–267
 – levels 265
dC amperometry 246, 247
deconvolution 86–87
dendogramms 127
deproteinization 359
desorption electrospray ionization (DESI) 145
diabetes 139
direct infusion mass spectrometry 354, 367, 368
direct injection mass spectrometry 324
discriminant analysis 280–281
diurnal variation 99
Duty cycle 28
electron capture dissociation (ECD) 124, 246, 247
electron impact (EI) ionization 39, 62, 79, 325, 366–367
electroosmotic flow (EOF) 178, 180, 181, 243, 245
electrospray ionization (ESI) 21, 40, 60, 97, 141, 155, 157, 179, 182
Entner–Doudoroff pathway 285, 293, 294, 300
enzymatic assays 13
Eurachem/CITAC guide 44
Exactave Orbitrap 29
exhaled breath condensate, application example using 128
biochemical mass difference networking and statistical results synthesis 131–133
Index

– C–H–N–O–S–P formula annotation 130
– data preprocessing 129–130
– experiment 128–129
– FT-ICR/MS measurement 129
– statistical preprocessing 130–131
expanded uncertainty 45, 57
extracted compound chromatograms (ECCs) 153
extracted ion chromatograms (EICS) 153
extraction efficiency 54, 57
extractive electrospray ionization (EESI) 97

f
false discovery rate (FDR) 274, 353
fast scan cyclic voltammetry (FCSV) 247
fatty acid methyl esters (FAMEs) 145, 165, 166, 167, 168, 170, 172
fatty acids (FAs) 149, 151, 158, 160
fecal metabolome analysis 110
fermentations, sampling and sample preparation in metabolite profiling in 49–53
field amplified sample injection (FASI) 244
flame ionization detection (FID) 75
flow channel systems 249
flow injection analysis 385
flow–injection-based (FIA-MS) metabolomics 22
fluidic pumping for on-chip mixing 242
fluorescence microscopy 245
fluorescence resonance energy transfer (FRET) 383
flux dynamics 307–308
fluxome profiling 307
fluxomics 70, 285, 302, 308
Fourier Transform–ion cyclotron resonance (FT-ICR) 119–120, 212
– application example using exhaled breath condensate 128
– – biochemical mass difference networking and statistical results synthesis 131–133
– – C–H–N–O–S–P formula annotation 130
– – data preprocessing 129–130
– – experiment 128–129
– – FT-ICR/MS measurement 129
– – statistical preprocessing 130–131
– network analysis and NetCalc composition assignment 126–127
– – dataset statistics 127–128
– principles
– – applied physical techniques 123–124
– – natural ion movement inside ICR cell subjected to magnetic and electric fields 121–123
– – practical advantages 124–126
Fourier transform mass spectrometry (FT-MS) 29, 40, 124
free induction decay (FID) 212
freezing-thawing in methanol (FTM) 13
fructose bisphosphatase 303, 305
functional genomics 263, 273
functional networks 126
galaphimine series 322
gas chromatography (GC) 39, 40
– based metabolite profiling, sample preparation for 71–74
– data analysis strategies and software 82–87
– illustrative examples 88–89
– MS 61–63, 210–211, 325, 367, 383
– – GC-TOFMS instrumentation and 74–82
– MS-based lipidomics 165
– – data processing and analysis 170–172
– – GC-MS 166–170
– – sample preparation 165–166
Gaussian graphical models (GGM) 282
genetically modified crops 318–319
genome 379, 386, 387
genomics 139
glutathione (GSH) 58
glutathione disulphide (GSSG) 58
glycerolipids (GLs) 151
glycerophospholipids (GPs) 141, 149, 152
glyoxylate 285, 296, 302, 303
graph theory 126
Guide for Measurement Uncertainty (GUM) 41, 42, 45
heatmaps 127
heteronuclear multiple bond coherence (HMBC) 217
heteronuclear multiple quantum coherence (HMQC) 217
heteronuclear single quantum coherence (HSQC) 217
heteronuclear two-dimensional methods 217
hierarchical cluster analysis (HCA) 381
hierarchical principal component analysis (HPCA) 87
Index

high-performance liquid chromatography (HPLC) 22, 24, 25, 27, 40, 59, 124, 322
high-throughput flux screening 307
hippuric acid 396
Homeostasis Model Assessment Insulin Resistance (HOMA-IR) 112
host plant resistance and plant–environment interactions 320–321
hot water method (hw) 12
Human Metabolome Database (HMDB) 109, 130, 189, 365–366, 402
hydrophilic interaction liquid chromatography (HILIC) 24, 25, 96, 106, 112, 144, 325
hyphenated methods 1, 13

i
information-dependent acquisition (IDA) 34
injection system 59–60
insulin resistance 399–400, 401
internal standards (IS) 73, 103
– isotopic 13, 15–17
International Lipid Classification and Nomenclature Committee (ILCNC) 141
intracellular metabolite quantitation, in yeast
– sample preparation uncertainty calculation for 53
– general sample workflow 53–54
– sample preparation protocol for uncertainty estimation 54–59
intracellular metabolites 2, 3, 4, 5, 10–11
determination, quenching procedure for 6–7
ion cyclotron resonance (ICR) 121, 123
ion distribution 27
ionization performance 94
ionization techniques 27–28
ion mobility mass spectrometry (IMS) 29–30
ion pairing chromatography (IP-LC) 24
ion suppression 95, 101
Ishikawa diagram. See cause-and-effect diagram (CaED)
isotope dilution mass spectroscopy (IDMS) 5–6, 15
isotope labeling 292–293
– pattern definition 289–290
– radiolabeled isotopes 293–295
– stable isotopes 295–296
isotope ratio (ir) 301
isotopologs 15, 43
isotopomer 43
– mapping 299
– mass 289, 290
– positional 289
j
J-resolved spectroscopy (JRES) 215
k
KEGG 130
Kragten spreadsheet, for uncertainty propagation 46, 47, 57
l
labeling fingerprint 293
laminar diffusion 241–243
laser-induced fluorescence (LIF) 245
LASSO 275
latent vectors 278
limit of quantification (LOQ) 28, 31
limits of detection (LODs) 81, 184, 245, 246
linear discriminant analysis (LDA) 280
LipidMaps 130
LIPID MAPS Structure Database (LMSD) 140
lipidomics 139–140
– GC-MS-based 165
– data processing and analysis 170–172
– GC-MS 166–170
– sample preparation 165–166
– LC-MS based 146
– data processing and analysis 161–162, 164–165
– ionization characteristics 155–156
– lipid extraction 146–150
– lipid identification 156–161
– retention time characteristics 151–155
– lipid diversity 140–141
– state-of-the-art tackling 141–146
liquid chromatography (LC) 22, 24–27. See also nontargeted metabolomics, LC-MS based
– MS 59–61, 211, 325–326, 367, 383
– cell extracts measurement uncertainty calculation 63–65
– lipidomics 146–165
– targeted metabolomics 22
liquid chromatography/electrospray ionization mass spectrometry (LC-ESI-MS) 13, 15
liquid–liquid extraction 316
loading plot 225, 226
Lorentz force 121
low-order nonlinear locally estimated smoothing function (LOESS) 363
Madin Darby Canine Kidney (MDCK) cells 253
magnetron frequency 123
mammalian systems study 345–347
– analytical experiments 348–350
– applications 369
– cardiovascular diseases 371–373
– pregnancy complications 369–371
– hypothesis generation and testing studies 347–348
– metabolite identification 365–369
– quality assurance and quality control 360–365
– sample types 355–360
– study and experimental design 350–354
Mann–Whitney test 274
MassHunter Qualitative Analysis software 164
mass isotopomers 289, 290
mass–mass difference networks 126
mass spectral overlap 60
MassTRIX 130
MATLAB 104, 291
matrix-assisted laser desorption ionization (MALDI) 97, 145, 256, 324
– time-of-flight (TOF) 301, 385
Matrix Generator algorithm 129
maximum likelihood methods 263
mean centering 225
measurand 41
– definition 43, 63
– model 43
– model equation 56, 64
– value calculation and associated expanded uncertainty 45, 47
measurement error 263
measurement uncertainty, in quantitative metabolomics
– calculation, according to bottom-up approach 42–48
– definition 41–42
– MS-based techniques 39–40
– MS experiments 48
– cell extracts LC-MS measurement uncertainty calculation 63–65
– GC-MS 61–63
– uncertainties in sample preparation 48–59
– reporting and documentation 47–48
– uncertainty sources
– identification 44
– quantification 44–45
metabolic fingerprinting 119, 209, 228, 246
metabolic flux analysis 285–286
– application 303
– industrial production strains improvement 303–305
– integration into systems biology approaches 306–307
– labeling studies using isotopes 292–293
– radiolabeled isotopes 293–295
– stable isotopes 295–296
– prerequisites
– isotope labeling pattern definition 289–290
– metabolic and isotopic steady state 288–289
– network formulation and condensation 287–288
– network topology and cellular composition 287
– recent advances
– flux dynamics 307–308
– high-throughput flux screening 307
– state-of-art 13C flux analysis 296–298
– carbon transitions modeling 299
– experimental design 299
– flux calculation and flux data statistical evaluation 300–301
– labeling analysis by mass spectrometry 301–302
– labeling analysis by nuclear magnetic resonance spectroscopy 302
– stoichiometric flux analysis 290–292
metabolic profiling 48, 93, 97, 98, 101, 103, 109, 111, 112, 118, 209, 228, 247, 349
– sampling and sample preparation in 49–53
metabolic quenching methods 381, 386
metabolite cartography, in metabolomics 118
Metabolite Mass Spectrometry Analysis Tool (MMSAT) 34
metabolome 21, 22, 32, 33, 35, 117. See also individual entries
MetAlign 104
methyl-tert-butylether (MTBE) 148
METLIN 109
micellar electrokinetic chromatography (MEKC) 178, 245
microchip capillary electrophoresis 243
– sample injection 244
– separations 244–245
– systems 243–244
microfluidics 239–240
– cellular analysis and 249–254
– biological questions 248–249
– single cell metabolomics requirements 247–248
– sample processing 240
– fluidic pumping for on-chip mixing 242
– laminar diffusion 241–243
– solid phase extraction 240–241
– separations for metabolic analysis 243
– analyte detection 245–247
– microchip capillary electrophoresis 243–245
modulation period 76
molar enrichment 290
Molecular Biometrics 112
MSDChem software (Agilent Technologies) 172
multilevel approaches 281–282
multilevel component analysis (MSCA) 282
multilevel data analysis (MLDA) 394
multiple linear regression (MLR) 277–278
multiple reactions monitoring (MRM) 28, 103, 142, 187
multivariate data analysis (MVA) 319
multivariate statistical analysis 94
mutants and metabolic pathways 326–327
MZmine 104
mzXML 104

n
natural product discovery 329
– phytopreparation effect and 321–322
negative ionization 97
netCDF 104
network analysis and NetCalc composition assignment 126–127
– FTICR-MS dataset statistics 127–128
network inference 282–283
neutral lipids 156
nontargeted metabolomics, LC-MS based
– analytical strategies 103–104
– applications 109–112
– data analysis 104–107
– LC issues 94–97
– mass spectrometry 97–98
– metabolite identification 107, 109
– sample preparation 100–102
– study design 98–100
normal-phase liquid chromatography (NP-LC) 144, 148
nuclear magnetic resonance (NMR) 118, 119, 209–210, 317–318, 323
– applications 228
– agricultural applications 233
– application to bioactivity screening 230–231
– chemotaxonomy 232
– herbal medicines quality control 231–232
– stress response understanding 228–230
– metabolomics and 219
– bidirectional orthogonal-PLS (O2PLS) 227
– data preprocessing 223–225
– metabolite identification 221–223
– partial least squares (PLS) projections to latent structures 226–227
– principal component analysis 225–226
– sample preparation 220–221
– validation 227–228
– metabolomics platforms 210
– Fourier Transform–Infrared spectroscopy (FT–IR) 212
– mass spectrometry (MS) 210–212
– principles and techniques 212
– combined two-dimensional methods 217, 219
– correlation spectroscopy (COSY) 215–216
– heteronuclear two-dimensional methods 217
– J-resolved spectroscopy (JRES) 215
– one-dimensional 213–215
– total correlation spectroscopy (TOCSY) 217
– labeling analysis by 302
nutrition, of plant 320, 327
nutritional metabolomics 393–394
– dynamic nature 400, 402
– food metabolome and human samples 396, 398
– future and research needs 402–410
– health and disease states, human metabolome variability in 398–400
– plasma 394
– urine 395–396

o
oral glucose tolerance test (OGTT) 400, 402
Orbitrap 29, 40, 97, 112, 368
orthogonal partial least-squares (OPLS) 127, 281
– discriminant analysis (OPLS-DA) 87, 110, 281
Index

O2PLS-DA models 131
orthogonal signal correction (OSC) 130
– filter 227
– PLS model 131
2-oxoglutarate 372–373
ozone-induced dissociation (OzID) 160

P
Packed column supercritical fluid chromatography (pSFC) 144
PARAFAC 276, 277, 279
PARAFASCA 276, 278, 280
Pareto scaling 225
partial least square-discriminant analysis (PLS-DA) 127, 187, 227, 229, 330, 394
partial least squares (PLS) 246
– projections to latent structures 226–227
partition and adsorption chromatography 59
peak alignment 225
peak capacity 77–82, 89, 120
Penicillium chrysogenum 6, 7, 15
pentose phosphate pathway (PPP) 285, 288, 293, 294, 296, 300, 303, 305
phase optimized liquid chromatography (POP-LC) 384
phosphoinositol (PI) lipids 155
phytopharmaceuticals, quality control of 322–323, 328
Pichia pastoris 6
pipeline, metabolomics 262
plant physiology 230
plant science applications 313–314
– analytical methods 316–317
– applications 318–323, 326–329
– combined approaches 329–330
– direct MS methods 324
– direct NMR fingerprinting 317–318
– future trends 323
– MS hyphenation to separation techniques 324–326
– NMR hyphenation to separation techniques 323
metabolite identification
– databases 332–334
– mass spectra interpretation 330–332
– novel metabolites and model validation 334–336
– sample preparation 314
– culture and harvesting 314–315
– extraction 315–316
– storage and drying 315
pneumatic valving 242
polar lipids 156
positional isomers 145, 168
positional isotopomers 289
principal component analysis (PCA) 106, 127, 187, 225–226, 229, 246, 272, 273, 275, 276, 278, 381, 394
principal component discriminant analysis (PCDA) 280
principal component regression (PCR) 278
projected one-dimensional spectrum (p-JRES) 215
pulsed electrochemical detection (PED) 246

Q
QTRAP 98
quadrupole mass spectrometry (qMS) 78, 79
quadrupoles 24, 28, 29, 35, 141
– ion trap (QIT) 182, 183
Quality Control-Robust Loess Signal Correction (QC-RLSC) 363
quality control samples 103–104
quenching
– bacteria 7
– procedure validation and metabolic leakage minimization 5–6
– procedures and properties 4–5
– procedures for intracellular metabolites determination in extracellular abundance presence 6–7

r
radiolabeled isotopes 293–295
random forest 127, 246, 275
receiver operating characteristic (ROC) curve 110, 111
regression methods 277–280
relative quantification 350
relative standard deviations (RSDs) 190, 203, 363
retention time locked (RTL) 166, 171, 172
reversed-phase (RP) liquid chromatography (RP-LC) 96, 144, 146, 148
reversed-phase pentfluorophenylpropyl (PFPP) 24, 25

s
samples-to-variables ratio, low 263
sampling and sample preparation problem 1
– 13C-labeled internal standards 13, 15–17
– metabolite extraction
weak anion exchange (WAX) 149
Wilcoxon test. See Mann–Whitney test

x
XCMS 104, 106

y
yeast metabolomics, validation of extraction methods for 9, 12–13