Index

A
- Adherence (of a set) 21
 \[\text{ALAOGLU} : \text{ — theorem 199} \]
 \[\text{BANACH—BOURBAKI} \text{ theorem 257} \]
 \[\text{ASCOLI’s theorem 161} \]
 Axiom of choice 157

B
- **BAIRE** theorem 134
- Ball 23
- **BANACH** : — **ALAOGLU—BOURBAKI** thm. 257
 \[\text{— BOURBAKI} \text{ theorem 199} \]
 \[\text{— DIEUDONNÉ} \text{ theorem 224} \]
 \[\text{— (fixed point) theorem 133} \]
 \[\text{— MACKEY} \text{ theorem 231} \]
 \[\text{— MAZUR–ORLICZ–MACKEY} \text{ theorem 130} \]
 \[\text{— SCHAUER} \text{ theorem 138} \]
 \[\text{— space 55} \]
 \[\text{— STEINHAUS theorem 149} \]
 \[\text{HAHN— theorem 209} \]
 \[\text{BERNOULLI’s inequality} 321 \]
 Bicontinuous (bijection) 106
 Bidual : — norm 195
 \[\text{— space 189} \]
 Bijective (mapping), bijection 2
 Bilinear : — form of duality 203
 \[\text{— mapping 107} \]
 \[\text{BOLZANO–WEIERSTRASS} \text{ theorem 59, 72} \]
 \[\text{BOREL–LEBESGUE} \text{ theorem 59, 71} \]
 Bound : Lower — (of an ordered set) 2
 \[\text{— Upper — (of an ordered set) 2} \]
 Boundary (of a set) 21
 Bounded : — set 17
 \[\text{— mapping 123} \]
 Simply — (family of mappings) 148
 BOURBAKI : **BANACH—ALAOGLU** — thm. 257
 \[\text{BANACH— theorem 199} \]

C
- Canonical : — bilinear form onto \(E' \times E \) 204
 \[\text{— injection into the bidual} 244 \]
 \[\text{— isomorphism of a Hilbert space} 197 \]
 CANTOR’S diagonal method 58, 200
 \[\text{CAUCHY} : \text{ — SCHWARZ inequality 66} \]
 \[\text{— sequence 15} \]
 Chain rule theorem 286, 314
 Choice (axiom of —) 157
 Closed (set) 18
 Closure (of a set) 21
 Combination (linear) 256
 Compact (linear mapping) 127
 Compact set(s) : — of a Fréchet space 57
 \[\text{— of} \mathbb{R}^d 59, 71 \]
 Definition of a — 25
 Compacting (linear mapping) 126
 Complete : — space 63
 \[\text{Sequentially — space 55} \]
 Completely continuous (mapping) 127
 Completion : — (space) 63
 \[\text{Sequential} 63 \]
 Composite : — mapping 102
 \[\text{Differentiation of a — function 314} \]
Differentiation of a — mapping 286
Connected : — component of a set 30
t — set 30
Continuous : Completely — mapping 127
— mapping 97
— mapping in a subset 101
— mapping in a topological space 117
Sequentially — mapping 98
Uniformly — mapping 97
Continuously differentiable (mapping) 276
Convergent : Absolutely — series 61
— sequence 15
— series 61
Real — sequence 6
Weakly — sequence 222
Convex (set) 31
Countable (set) 3
Cover (of a set) 25
Cut 4

D
Decreasing : Real — function 317
Real — sequence 6
Dense : — subset 23
Sequentially — subset 23
Derivative : — of composite func. 314
— of a func. of a real variable 313
— in the Fréchet sense 276
— in the Gâteaux sense 277
DIEUDONNÉ : BANACH— theorem 224
— theorem 233
— SCHWARTZ theorem 261
Differentiable : Continuously — mapping 276
— composite mapping 286
— mapping 275
Indefinitely — mapping 303
m times — mapping 303
Differential : — (definition) 275
Partial — 295
Direct sum (of semi-normed spaces) 89
Dual : — equality 228
— norm 194
— scalar product (of a Hilbert space) 198
— space 189
Weak — space 191
*weak — space 191
Duality (— bilinear form) 203
Duality bilinear form 203
E
Equality : dual — 228
topological — 35
Equicontinuous (family of mappings) 146
Euclidean (product of semi-normed spaces) 73
Exponential 323
Extension : Continuous — of a function 142, 144
Linear form — 209
Mapping — 2
Extractable (space) 265
F
Filtering (family of semi-norms) 43
Finite : — intersection property 28
— set 3
Fixed point : BANACH’S — theorem 133
Definition of a — 133
Formula : LEIBNIZ’S — 319, 320
FRÉCHET : Derivative in the — sense 55
— space 55
— theorem 57
RIESZ — representation theorem 196
Free (family, in a vector space) 256
G
Gâteaux (derivative in the — sense) 277
Gauge (of an convex open set) 234
GOLDSTINE’s theorem 252
Graph : Mapping — 139
Closed — theorem 139
H
HAHN–BANACH theorem 209
HAUSDORFF’S theorem 167
HEINE’S theorem 123
HILBERT space 65
I
Identification : Dangerous — 216
— of a Hilbert space to its dual 217
— of the dual of a dense subspace 218
Image : — of a set by a mapping 2
Pre— 2
Inclusion : Dual — 218
Topological — 35
Increasing : Real — function 317
Real — sequence 6
Indefinitely differentiable (mapping) 303
Induced (topology) 117
Inequality: Bernoulli’s — 321
 Cauchy–Schwarz — 66
 Minkowski’s — 66
Use of ≥ or > in an — 6
Infinite (set) 3
Infrabarreled (space) 250
Injection (canonical — in the bidual) 244
Injective (mapping), injection 2
Interior (of a set) 21
Intermediate value theorem 125
Intersection: Finite — (property) 28
 — of semi-normed spaces 80
Inverse mapping 2
Isomorphism: Canonical — of a Hilbert space 197
 — (definition) 106

K
Kernel of a semi-norm 94
Kolmogorov’s theorem 50

L
Lebesgue (Borel — theorem) 59, 71
Leibniz’s formula 319, 320
Linear: — combination 256
 — form 189
 — mapping 104
Linearly independent (vectors) 256
Local inversion (theorem) 290, 317
Logarithm 321
Least lower bound (of an ordered set) 2
Lower bound (of an ordered set) 2

M
Mackey: Banach — theorem 231
 Banach–Mazur–Orlicz — theorem 130
Mapping: Definition 2
 Inverse — 2
 — extension 2
 — restriction 2
 Open — theorem 136
 Transposed — 261
Maximal (element) 155
Maximum: Definition of a — 2
 Use of max or sup for a — 19
Mazur:
 Banach — Orlicz–Mackey theorem 130
 — theorem 235
Mean value theorem 281, 284, 316
Metrizable (semi-normed space) 49
Milman’s theorem 252
Minimum (of an ordered set) 2
Minkowski’s inequality 66
Monotonous (function) 317
Multilinear (mapping) 107

N
Neumann (von): — space 55
 — theorem 13
Norm: Bidual — 195
 Dual — 194
 Hilbertian — 65
 — on a vector space 12
Normable (semi-normed space) 49
Normed (space) 12

O
Open: — set 18
 — mapping theorem 136
Order (relation) 2
Ordered: — set 2
 Totally — set 2
Orlicz (Banach–Mazur—Mackey th.) 130
Orthogonal (in a Hilbert space) 70

P
Parallelogram law 66
Polar topology 251
Positive (function) 317
Precompact (set) 25
Preimage (of a set) 2
Pre-Hilbertian (space) 65, 68
Prereflexive (space) 243
Product: Dual scalar — (of a Hilbert space) 198
 — of functions 319, 320
 — of semi-normed spaces 73
 Scalar — (on a vector space) 65
Projection (into a Hilbert space) 68

Q
Quasi-continuous (mapping) 110
Quotient (space) 93

R
Real interval 6
Reflexive (space) 243
Relatively:
- compact (set) 25
 - compactness theorem 71
Representation (Riesz–Fréchet—theorem) 196
Restriction (of a mapping) 2
Riesz (Frigyes):
- compactness theorem 71
 - Fréchet representation theorem 196
ROLLÉ’s theorem 315

S
Schauder (Banach—theorem) 138
Schwartz (Dieudonné—theorem) 261
Schwarz: Cauchy—inequality 66
 - theorem 305
Segment 31
Semi-ball 22
Semi-cut 4
Semi-norm 11
Semi-normed (space) 12
Semi-reflexive (space) 243
Separable:
- (set) 24
 - sequentially (set) 24
Separation (set) 24
Sequential closure (of a set) 21
Sequential completion (space) 63
Sequentially:
- closed (subset) 18
 - compact (subset) 25
 - compacting (mapping) 126
 - complete (space) 55
 - continuous (mapping) 98
 - dense (subset) 23
 - separable (set) 24
Series:
Convergent — 61
Simply bounded (family of mappings) 148
Smulian’s theorem 237
Space:
Banach — 55
 - C (continuous mapping) 154
 Complete — 63
 Dual (E’) 189
 Extractable — 265
 F (mappings) 153
Fréchet — 55
Hilbert — 65
L (continuous linear mappings) 163
Ld (continuous multilinear mappings) 178
Locally convex topological vector — 13
Metrizable — 49
Neumann — 55
Normed — 12
Pre-Hilbertian — 65, 68
Pre-reflexive — 243
Quotient — 93
Reflexive — 243
Semi-normed — (E) 12
Semi-reflexive — 243
Separable — 24
Separated — 12
Sequentially complete — 55
Sequentially separable — 24
Strong (E-strong) 251
Topological — 20
Uniform — 21
Vector — 11
Weak (E-weak) 221
Weak dual (E’-weak) 191
weak dual (E’-weak) 191
Steinhaus (Banach—theorem) 149
Subcover (of a set) 25
Subsequence 3
Subspace:
 - Topological — 39
 Vector — 34
Successive approximations (method) 133
Sum of semi-normed spaces 83
Strong (topology) 251
Surjective (mapping), surjection 2

T
Theorem / Lemma:
 Alaoglu’s — 199
 Ascoli’s — 161
 Baire’s — 134
 Banach (fixed point) — 133
 Banach–Alaoglu–Bourbaki — 257
 Banach–Bourbaki — 199
 Banach–Dieudonné — 224
 Banach–Mackey — 231
 Banach–Mazur–Orlicz–Mack, — 130
 Banach–Schauder — 138
 Banach–Steinhaus — 149
 Bolzano–Weierstrass — 59, 72
 Borel–Lebesgue — 59, 71
 Chain rule — 286, 314
 Closed graph — 139
 Continuous extension — 142, 144
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieudonné's</td>
<td>233</td>
</tr>
<tr>
<td>Dieudonné–Schwartz</td>
<td>261</td>
</tr>
<tr>
<td>Fixed point</td>
<td>133</td>
</tr>
<tr>
<td>Fréchet's</td>
<td>57</td>
</tr>
<tr>
<td>Goldstine's</td>
<td>252</td>
</tr>
<tr>
<td>Hahn–Banach</td>
<td>209</td>
</tr>
<tr>
<td>Hausdorff's</td>
<td>167</td>
</tr>
<tr>
<td>Heine's</td>
<td>123</td>
</tr>
<tr>
<td>Intermediate values</td>
<td>125</td>
</tr>
<tr>
<td>Kolmogorov's</td>
<td>50</td>
</tr>
<tr>
<td>Local inversion</td>
<td>290, 317</td>
</tr>
<tr>
<td>Mazur's</td>
<td>235</td>
</tr>
<tr>
<td>Mean value</td>
<td>281, 284, 316</td>
</tr>
<tr>
<td>Milman's</td>
<td>252</td>
</tr>
<tr>
<td>Neumann's</td>
<td>13</td>
</tr>
<tr>
<td>Open mapping theorem</td>
<td>136</td>
</tr>
<tr>
<td>Representation</td>
<td>196</td>
</tr>
<tr>
<td>Riesz's compactness</td>
<td>71</td>
</tr>
<tr>
<td>Riesz–Fréchet</td>
<td>196</td>
</tr>
<tr>
<td>Rolle's</td>
<td>315</td>
</tr>
<tr>
<td>Schwarz's</td>
<td>305</td>
</tr>
<tr>
<td>Šmulian's</td>
<td>237</td>
</tr>
<tr>
<td>Tychonoff's</td>
<td>72, 157, 160</td>
</tr>
<tr>
<td>Zorn's</td>
<td>155</td>
</tr>
<tr>
<td>Topology</td>
<td>117</td>
</tr>
<tr>
<td>- of a semi-normed space</td>
<td>20</td>
</tr>
<tr>
<td>- of a topological space</td>
<td>20</td>
</tr>
<tr>
<td>Polar</td>
<td>251</td>
</tr>
<tr>
<td>Strong</td>
<td>251</td>
</tr>
<tr>
<td>Weak - of a semi-normed space</td>
<td>221</td>
</tr>
<tr>
<td>*strong - of a dual</td>
<td>193</td>
</tr>
<tr>
<td>*weak - of a dual</td>
<td>191</td>
</tr>
<tr>
<td>Topological</td>
<td>35</td>
</tr>
<tr>
<td>- equality</td>
<td>35</td>
</tr>
<tr>
<td>- inclusion</td>
<td>35</td>
</tr>
<tr>
<td>- space</td>
<td>20</td>
</tr>
<tr>
<td>Totally ordered (set)</td>
<td>2</td>
</tr>
<tr>
<td>Transpose (mapping)</td>
<td>261</td>
</tr>
<tr>
<td>Tychonoff theorem</td>
<td>72, 157, 160</td>
</tr>
</tbody>
</table>

U

Uniform (space) 21
Uniformly - - continuous (mapping) 97
- equicontinuous (family of mappings) 146
Upper bound (of an ordered set) 2
Upper envelope (of semi-norms) 44
Usage convention - - of ≥ or > 6
- of B(u, r) or \(\hat{B}(u, r) \) 23
- of sup or max 19

V, W, Z

Von Neumann: see Neumann
Weak: Dual *- topology 191
- topology 221
Weakly: - continuous (mapping) 224
- convergent (sequence) 222
Weierstrass (Bolzano — theorem) 59, 72
Zorn lemma 155