Contents

List of Contributors
Preface

1 Green Carbon
Maria-Magdalena Titirici

1.1 Introduction
1.2 Green Carbon Materials
1.2.1 CNTs and Graphitic Nanostructures
1.2.2 Graphene, Graphene Oxide, and Highly Reduced Graphene Oxide
1.2.3 Activated Carbons
1.2.4 Starbons
1.2.5 Use of Ionic Liquids in the Synthesis of Carbon Materials
1.2.6 Hydrothermal Carbon Materials (HTC)
1.3 Brief History of Hydrothermal Carbons
References

2 Porous Hydrothermal Carbons
Robin J. White, Tim-Patrick Fellinger, Shiori Kubo, Nicolas Brun, and Maria-Magdalena Titirici

2.1 Introduction
2.2 Templating – An Opportunity for Pore Morphology Control
2.2.1 Hard Templating in HTC
2.2.2 Soft Templating in HTC
2.2.3 Naturally Inspired Systems: Use of Natural Templates
2.3 Carbon Aerogels
2.3.1 Ovalbumin/Glucose-Derived HTC-Derived Carbogels
2.3.2 Borax-Mediated Formation of HTC-Derived Carbogels from Glucose
2.3.3 Carbogels from the Hydrothermal Treatment of Sugar and Phenolic Compounds
2.3.4 Emulsion-Templated “Carbo-HIPES” from the Hydrothermal Treatment of Sugar Derivatives and Phenolic Compounds
2.4 Summary and Outlook
References
Contents

3 Porous Biomass-Derived Carbons: Activated Carbons 75
 Dolores Lozano-Castelló, Juan Pablo Marco-Lozar, Camillo Falco,
 María-Magdalena Titirici, and Diego Cazorla-Amorós

 3.1 Introduction to Activated Carbons 75
 3.2 Chemical Activation of Lignocellulosic Materials 77
 3.2.1 H₃PO₄ Activation of Lignocellulosic Precursors 78
 3.2.2 ZnCl₂ Activation of Lignocellulosic Precursors 82
 3.2.3 KOH and NaOH Activation of Lignocellulosic Precursors 84
 3.3 Activated Carbons from Hydrothermally Carbonized Organic Materials and Biomass 86
 3.3.1 Hydrochar Materials: Synthesis, Structural, and Chemical Properties 88
 3.3.2 KOH Activation of Hydrochar Materials 89
 3.4 Conclusions 95
 Acknowledgments 95
 References 96

4 Hydrothermally Synthesized Carbonaceous Nanocomposites 101
 Bo Hu, Hai-Zhou Zhu, and Shu-Hong Yu

 4.1 Introduction 101
 4.2 Hydrothermal Synthesis of Unique Carbonaceous Nanomaterials 102
 4.2.1 Carbonaceous Nanomaterials 102
 4.2.2 Carbonaceous Nanocomposites 110
 4.3 Conclusion and Outlook 121
 Acknowledgments 121
 References 121

5 Chemical Modification of Hydrothermal Carbon Materials 125
 Stephanie Wohlgemuth, Hiromitsu Urakami, Li Zhao, and María-Magdalena Titirici

 5.1 Introduction 125
 5.2 In Situ Doping of Hydrothermal Carbons 126
 5.2.1 Nitrogen 126
 5.2.2 Sulfur 130
 5.2.3 Boron 132
 5.2.4 Organic Monomers Sources 132
 5.2.5 Properties of Heteroatom-Doped Carbon Materials 133
 5.3 Postmodification of Carbonaceous Materials 139
 5.3.1 Chemical Handles for Functionalization Present on HTC Materials 140
 5.3.2 Perspectives on HTC Postmodification Strategies 143
 References 145
6 Characterization of Hydrothermal Carbonization Materials
Niki Baccile, Jens Weber, Camillo Falco, and Maria-Magdalena Titirici

6.1 Introduction 151
6.2 Morphology of Hydrothermal Carbon Materials 152
 6.2.1 Morphology of Glucose-Derived Hydrothermal Carbons 153
 6.2.2 Morphology of Other Carbohydrate-Derived Hydrothermal Carbons 157
 6.2.3 Morphology of Cellulose- and Biomass-Derived Hydrothermal Carbons 159
6.3 Elemental Composition and Yields 161
6.4 FTIR 164
6.5 XPS: Surface Groups 165
6.6 Zeta Potential: Surface Charge 166
6.7 XRD: Degree of Structural Order 169
6.8 Thermal Analysis 170
6.9 Structure Elucidation of Carbon Materials Using Solid-State NMR Spectroscopy 172
 6.9.1 Brief Introduction to Solid-State NMR 172
 6.9.2 Solid-State NMR of Crystalline Nanocarbons: Fullerenes and Nanotubes 174
 6.9.3 Solid-State NMR Study of Biomass Derivatives and their Pyrolyzed Carbons 175
 6.9.4 Solid-State NMR Study of Hydrothermal Carbons 178
6.10 Porosity Analysis of Hydrothermal Carbons 190
 6.10.1 Introduction and Definition of Porosity 190
 6.10.2 Gas Physisorption 191
 6.10.3 Mercury Intrusion Porosity 202
 6.10.4 Scattering Methods 204
References 204

7 Applications of Hydrothermal Carbon in Modern Nanotechnology
Marta Sevilla, Antonio B. Fuertes, Rezan Demir-Cakan, and Maria-Magdalena Titirici

7.1 Introduction 213
7.2 Energy Storage 214
 7.2.1 Electrodes in Rechargeable Batteries 215
 7.2.2 Electrodes in Supercapacitors 229
 7.2.3 Heterogeneous Catalysis 234
 7.2.4 Hydrothermal Carbon Materials as Catalyst Supports 235
 7.2.5 Hydrothermal Carbon Materials with Various Functionalities and Intrinsic Catalytic Properties 239
7.3 Electro catalysis in Fuel Cells 241
 7.3.1 Catalyst Supports in Direct Methanol Fuel Cells 242
 7.3.2 Heteroatom-Doped Carbons with Intrinsic Catalytic Activity for the ORR 250
Contents

7.4 Photocatalysis
7.5 Gas Storage
 7.5.1 CO₂ Capture Using HTC-Based Carbons
 7.5.2 Hydrogen Storage Using HTC-Based Activated Carbons
7.6 Adsorption of Pollutants from Water
 7.6.1 Removal of Heavy Metals
 7.6.2 Removal of Organic Pollutants
7.7 HTC-Derived Materials in Sensor Applications
 7.7.1 Chemical Sensors
 7.7.2 Gas Sensors
7.8 Bioapplications
 7.8.1 Drug Delivery
 7.8.2 Bioimaging
7.9 Conclusions and Perspectives

8 Environmental Applications of Hydrothermal Carbonization Technology: Biochar Production, Carbon Sequestration, and Waste Conversion
Nicole D. Berge, Claudia Kammann, Kyoung Ro, and Judy Libra
8.1 Introduction
8.2 Waste Conversion to Useful Products
 8.2.1 Conversion of Municipal Solid Waste
 8.2.2 Conversion of Animal Manure
 8.2.3 Potential Hydrochar Uses
8.3 Soil Application
 8.3.1 History of the Idea to Sequester Carbon in Soils Using Chars/Coals
 8.3.2 Consideration of Hydrochar Use in Soils
 8.3.3 Stability of Hydrochar in Soils
 8.3.4 Influence of Hydrochar on Soil Fertility and Crop Yields
 8.3.5 Greenhouse Gas Emissions from Char-Amended Soils
 8.3.6 Best-Practice Considerations for Biochar/Hydrochar Soil Application
8.4 HTC Technology: Commercial Status and Research Needs
 8.4.1 Commercial Status
 8.4.2 General Research Needs
References

9 Scale-Up in Hydrothermal Carbonization
Andrea Kruse, Daniela Baris, Nicole Tröger, and Peter Wieczorek
9.1 Introduction
9.2 Basic Aspects of Process Development and Upscaling
 9.2.1 Batch Reactors
 9.2.2 Tubular Reactors
References
Contents ix

9.2.3 CSTRs 345
9.2.4 Product Handling 345
9.3 Risks of Scaling-Up 346
9.4 Lab-Scale Experiments 347
 9.4.1 Experimental 347
 9.4.2 Results and Discussion 348
9.5 Praxis Report 348
9.6 Conclusions 352
References 353

Index 355