Index

biomass-derived, 77–86
for CO₂ storage, 260–64
in gas adsorption, 200–202
for hydrogen storage, 264–5
hydrothermal carbon, 86–95
introduction to, 75–7
in supercapacitors, 229–34
using H₃PO₄, 78–82
using ZnCl₂, 82–4
using KOH, 84–6
for water purification, 267–70
adsorption
CO₂ adsorption, 260–64
heavy metals adsorption, 265–71
hydrogen adsorption, 264–5
N₂ adsorption
amino-modified carbons, 140, 43, 280
applications of HTC in biomedicine, 275–82
bioimaging, 279–82
drug delivery, 276–9
applications of HTC in Fuel Cells, 241–55
methanol electrooxidation, 243–50
oxygen reduction reaction, 250–55
applications of HTC in heterogeneous catalysis, 234–60
biofuels production, 18, 240
electrocatalysis, 242–55
methane oxidation, 277
phenol hydrogenation, 236
photocatalysis, 255–60
applications of HTC in secondary batteries, 215–29
in Li ion batteries, 218–24
in Li–S batteries, 227–9
in Na ion batteries, 224–7
applications of HTC in Supercapacitors, 230–34
artificial coal, 27–9, 308–09
boron doped carbons, 132
applications in fuel cells, 252–5
borax-based, 56
carbo-HYPES, 65
emulsion template, 65
phenol-based, 63
protein gelators, 52
Te-nanowires templated, 109
carbon fibers, 105–6, 109–16, 120
carbon modification via cycloadditions, 141–2
carbon nanocomposites, 110–21,
219–24, 225–38, 242–50, 255–9, 270
as electrocatalysts in fuel cells, 242–50
in heterogeneous catalysis, 225–38
in Li ion Batteries, 219–24
for medical applications, 278
as photocatalysts, 255–9, 273
as sensors, 273
for water purification, 270

carbon nanotubes (CNTs), 4–11, 174–5
hydrothermal production of, 7–8
NMR of, 174–5
sustainable catalysts for production of, 4–6
sustainable precursors for production of, 7–11
carbon quantum dots, 102–4, 258–60, 273, 277, 279–82
applications in bioimaging, 279–82
applications in drug delivery, 277
applications in photocatalysis, 258–60
applications in sensors, 273
characterization techniques
porosimetry, 190–283
solid state NMR, 172–90
chemical structure of HTC, 178–90
chromatographic stationary phases, 19
commercialization of HTC, 325–9, 341–52
Ava CO₂ up-scale plant, 348–52
batch reactors, 344
tubular reactors, 345
deep eutectic solvents, 23–6
fullerenes, 174

graphene, 11–13
sustainable catalysts for chemical reduction of, 12
sustainable precursors for the production of, 13
heterogenous catalysts, 19
hollow spheres, 45, 226, 229, 278
HTC as solid fuel, 308–9
HTC for gas storage, 260–65
CO₂ Capture, 260–64
Hydrogen Storage, 264–5
HTC for water purification, 265–74, 308
removal of organic pollutants, 271–4, 308
removals of heavy metals, 265–71
HTC in sensors, 272–5
chemical sensors, 272–4
gas sensors, 274–5
HTC in soil (biochar), 309–25
CO₂ sequestration, 309–18
green-house emissions, 323–5
soil fertility and crop yields, 318–23
ionic liquids, 19–23

measure of porosity for HTC, 190–204

carbon quantum dots, 280
as catalysts for oxygen reduction reaction, 251–5
as catalyst supports, 139, 237
NMR of, 187
in supercapacitors, 232–3

photocatalysis, 255–60
polymer modified carbons, 141
porous carbons, 14–19, 21–3, 24–6, 37–70, 190–204
activated carbons, 75–95, 230–33
based on deep eutectic solvents, 24–6
BET model, 191–2
borax templated, 56–63
carbon hollow spheres, 45, 226, 229, 278
CO₂ adsorption, 197–202
DFT models, 195–7
emulsion template, 65–69
hard templated, 40–42
ionic-liquid derived carbons, 21–3
mercury intrusion porosity, 202
natural templated, 49, 237
pore size distribution and pore volume, 193–7
porosity analysis, 190–204
protein templated, 52–6, 252
Index 357

PVA-assisted, 116–17
soft templated, 45–9
specific surface area, 191–2
starbons, 14–19
tellurium nanowires templated, 106,
109, 113, 120
TiO2, 256–58

starbons, 14–19
alginate acid-derived, 16

as stationary phases in chromatography,
19
in heterogeneous catalysis, 18
pectin-derived, 17
starch-derived, 15
sulfur doped carbons, 130–32

waste as carbon precursors, 297–306
animal waste, 302–6
municipal solid waste, 298–302