Index

a
advection-diffusion equation 11, 124, 147, 148, 150, 164
all-to-all communication 11, 21, 112, 113, 126–133, 140–142, 144, 150
all-to-all coupling see all-to-all communication
autonomous mobile robot 5–7

b
behavior-based approach 6, 146

c
cognitive radio network (CRN)
additive white Gaussian noise (AWGN) 67, 69, 72–75, 87, 90–95
cognitive radio (CR) 4, 64, 66–68, 70, 97, 101
dynamic communication channels 66, 67, 76, 79–82, 87–89, 92, 93
energy detector 10, 64, 67–69, 72, 76, 87, 89
radio frequency (RF) 37, 38, 103–106, 109, 113, 216, 217
Rayleigh fading 67, 75–76, 87, 90–94, 96
receiving operating curves (ROC) 91–96
collective behavior 1, 2, 5, 9

d
communication complexity 112, 135, 150
computation complexity 110–113
consensus see distributed consensus
consensus filter
continuous-time 10, 22, 30
discrete-time 10, 20–22, 30–31, 38
PI average consensus filter 10, 29–31, 38
PI consensus filter (see PI average consensus filter)
CRN see cognitive radio network (CRN)
deterministic quantization 54, 214
distributed consensus
average consensus 4, 22
continuous-time consensus protocol 26–27
discrete-time consensus protocol 28–29
group agreement 19, 27, 37
weighted average consensus 66, 71, 73
distributed Kalman filter 11, 101–103, 114–116, 118
distributed robotic systems see multirobotic systems
DSA see dynamic spectrum access (DSA)
dynamic spectrum access (DSA) 4, 64

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Guo/DistributedCooperativeControl
e

E-puck robot 11, 138–140, 142–144

expectation maximization (EM) 11, 102, 106–108, 110–113, 136, 137

f

fixed topology 10, 30, 31, 44, 46–48, 52, 56, 59, 61

FK model see Frenkel-Kontorova (FK) model

formation control 6, 7, 20, 123, 124

free-end boundary condition 171

Frenkel-Kontorova (FK) model 167, 169–172, 191

friction control 10, 22, 167, 169–194

g

graph theory

adjacent matrix 22

balanced graph 22, 23, 25, 43
digraph 22, 24, 25, 28, 78
directed graph 10, 22, 23, 25, 26, 40, 43–57, 61

incidence matrix 24, 25, 60

jointly connected 23, 67, 71, 80–82

Laplacian matrix 20, 23–28, 31, 42, 47, 52, 53, 77, 78, 83, 84, 131, 168, 199, 204

spanning tree 23, 25, 26

strongly connected 22–24, 27, 28, 43, 44, 46–53, 78, 84
tree 22, 23

undirected graph 22–26, 30, 40, 50–52, 54, 59, 61, 78, 81, 83, 129, 133

h

H_∞ consensus 21, 40, 41

i

Lang and Kobayashi equation 12, 197, 209

leader-following 6, 123

level curve tracking 147

L_2 gain 42, 61, 215

limit cycle 9, 12, 197, 202, 203, 206, 209

limited communication 11, 112, 126, 133–135, 140–144

linear matrix inequality (LMI) 40, 42, 46, 47, 49, 54, 61

LMI see linear matrix inequality (LMI)

m

MAE see mean absolute error (MAE)

mean absolute error (MAE) 114–116, 118

M-matrix 20, 174, 175

Morse-type interaction 3, 171, 172, 178

multirobotic systems 4–6, 9, 22, 123–124

n

nano-particle array 169–194

nanoscale systems 3, 7–9, 167

non-Lipschitzian control 169

p

Perron-Frobenius theorem 29, 52, 77, 78

phase oscillator 9, 197

PI average consensus filter 10, 29–31, 38

plume front tracking 146–164

probabilistic quantization 10, 40, 42, 47–49, 52, 54, 59, 61, 214

q

quantized communication 4, 9, 10, 22, 39–61

r

radio environment mapping (REM) 4, 5, 22, 38, 101–118
Index

radio signal propagation model 103, 105, 113, 118, 216–217
REM see radio environment mapping (REM)

s
semiconductor laser 12, 22, 167, 168, 197–209
source seeking 7, 9, 11, 123, 125–135, 138, 142–144
spatial-temporal dynamics 105
spectrum sensing
 cooperative spectrum sensing 4–5, 9, 22, 38, 64–97
 primary user (PU) 4, 37, 64, 67–69, 76, 89
 secondary user (SU) 10, 37, 64
switching topology 2, 53, 54, 61
synchronization 2–9, 12, 20, 22, 167, 168, 197, 198, 200, 203–209

Transformation matrix 44, 183, 204

u
unmanned surface vehicles 148

v
virtual structure 6, 140

w
weighting matrix design 10, 40–54