This chapter presents an overview of the quantum mechanical nature of electrons in a solid. Following this discussion, through adoption of a relatively simple language, we will attempt to tackle a number of very complicated phenomena (such as charge transport). One of the remarkable achievements of the pioneers of semiconductor electronics has been their success in proposing an intuitive set of simplifying assumptions for reducing the mathematically complex language of quantum mechanics to the closed-form descriptions of the effective charged particles. While oftentimes we find it hard to justify these assumptions, they have proven their capabilities for large devices and under low electric fields.

1.1 WAVE/PARTICLE ELECTRONS IN SOLIDS

Early in the twentieth century, a number of important experiments revealed that electrons are not just simply particles in the Newtonian sense. Electrons in some of the experiments demonstrated a wavelike nature. These experiments were very similar to the double-slit optical experiments. It was demonstrated that electrons coming from the two slits, if not observed, produce interference patterns expected from wave propagation only. However, if we try to observe the electrons, by means such as the study...
of absorption and emission of light, the uncertainty created by these interactions reduces electrons to almost Newtonian particles. The same argument can be applied to the movement of electrons in a perfectly crystalline lattice (also known as monocrystalline lattice). As a result of these experiments, wavelparticle duality is attributed to electrons. In this duality, the de Broglie wavelength is the wavelength assigned to a particle of momentum \(p \) (given by \(\lambda = h/p \)).

Electronic materials, which are suitable for fabrication of high-performance semiconductor devices, come in monocrystalline solid forms. The presence of both long- and short-range orders in the structure of these crystalline solids extends many important properties to charge transport through these media. However, the assumption of periodicity in crystals is always relative. In real crystals a number of intentional and unintentional mechanisms (such as introduction of impurities, crystal defects, and thermal vibrations) result in scattering of electrons after a typical travel distance on the order of 100 Å. Such scattering processes can be seen as mechanisms of observation of electrons. Of course, the distance paced between successive scattering events is dependent on the presence and dominance of different scattering mechanisms. The most unavoidable crystal imperfection is rooted in lattice vibrations, which are even present in a defectless crystal devoid of impurities at temperatures above 0 K. As a result of these scattering events, instead of seeing a three-dimensional large crystal, electrons are only exposed to a small volume on the order of \(10^{-18} \text{cm}^3 \) containing only about 3000 atoms, before they are dephased by lattice vibrations.

In a flawless monocrystalline lattice, electrons are predicted by quantum mechanics to travel as propagating waves. This results in either a persistent current or in oscillations. Electron interactions with the vibrations of the lattice (expressed in terms of observation by quantum particles known as phonons) and the resulting generation of Joule heat prevent electrons from acting in such a fashion. The emission of phonons with a broad range of energies and wave vectors results in dephasing of electrons and loss of coherence.

Although the electron–phonon interactions do not result in total elimination of quantic nature of electrons, they considerably weaken these properties. This reduced degree of quantum nature is often expressed in terms of perturbation theory, through employing the so-called Fermi golden rule. Throughout this chapter, with the help of analytical models developed on the basis of this theory, familiar characteristics of semiconductors (e.g., their sometimes Ohmic behavior) are evaluated. Rivaling the results of this approach, the only way that quantum mechanics can produce an

1. Heisenberg’s uncertainty principles (which are named after Werner Heisenberg) state that the uncertainties of two conjugate variables such as momentum and position (i.e., \(\Delta p \) and \(\Delta x \), respectively) cannot be both reduced to 0, since \(\Delta p \Delta x \geq \frac{h}{2\pi} \). This is also true between uncertainty of energy and time. Where \(h \), named after Max Planck, is the Planck’s constant, which is equal to \(6.63 \times 10^{-34} \text{J} \cdot \text{s} \).
2. Named after Louis de Broglie.
3. These phenomena will be further elaborated in Section 1.7.
5. Named after Georg Ohm.
Ohmic characteristic is when the complicated many-body Schrödinger equations\(^6\) for electrons and phonons are solved.

Since electrons in solids are subject to the laws of quantum mechanics, any discussion of electron transport through solids requires at least a rudimentary description of the quantum mechanical wave nature of electrons. Although the present text does not seek to present this picture through explicitly invoking the laws of quantum mechanics, a number of important outcomes of such studies are reviewed in this section.

1.1.1 Quantum Description of Electrons

In order to formulate the wave function of electrons (which is often represented in form of function \(\psi(\vec{r})\) in space) the time-independent 3-D Schrödinger equation should be solved,

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + U(\vec{r})\right] \psi(\vec{r}) = E \psi(\vec{r}).
\]

This equation can be presented equivalently through invoking the concept of Hamiltonian\(^7\) (i.e., \(H\)),

\[
H \psi(\vec{r}) = E \psi(\vec{r}).
\]

In (1.1) and (1.2), \(\hbar\) is the modified Planck’s constant,\(^8\) \(m\) is the electron mass,\(^9\) \(E\) is the energy, and vector \(\vec{r}\) represents the spatial coordinates. In these partial differential equations, the potential function \(U(\vec{r})\) is assumed to be time independent.

For a constant potential (i.e., the case of an electron in free space), the solution is rendered in the form of plane waves,

\[
\psi(\vec{r}) = \frac{1}{\sqrt{\Omega}} \exp\left(j \vec{k} \cdot \vec{r}\right)
\]

where \(\Omega\) represents the normalization volume, which is defined using the square of the amplitude of the wave function as the probability density function. Evidently, \(\vec{k}\) in (1.3) is the wave vector. In quantum mechanics, the eigenvalue of momentum is given by \(\hbar \vec{k}\).

Oftentimes, semiconductor devices such as field-effect transistors (FETs) are realized as a 2-D plane through which charge transport takes place. Assuming a semiconductor slab in the \(x\)–\(y\) plane with an infinitesimal thickness \(W\) in the \(z\)-direction,

\(^6\) Named after Erwin Schrödinger.

\(^7\) Named after William Hamilton.

\(^8\) \(\hbar = \hbar / 2\pi\), where \(\hbar = 6.62 \times 10^{-34}\) Js.

\(^9\) In here, intentionally the notions of effective mass \((m^*\)\) which is to be defined in Section 1.1.2) and the rest mass of electron (i.e., \(m_0 = 9.1 \times 10^{-31}\) kg) are not used. \(m\) will be later replaced by \(m^*\).
quantum mechanics provides a picture for electrons confined in the z-direction while free to move in the x–y plane. For these quasi 2-D electrons, separation of variables of the 3-D time-independent Schrödinger equation results in

\[\psi(\vec{r}) = \phi(z) \cdot \phi(x,y) = \phi(z) \cdot \frac{1}{\sqrt{A}} \exp[j(k_x x + k_y y)] = \phi(z) \cdot \frac{1}{\sqrt{A}} \exp(j k_\| \cdot \vec{\rho}) \]

(1.4)

in which \(A \) is the normalization area and \(\vec{\rho} \) is a vector in the x–y plane. In the case of a confining potential, which imposes an infinite barrier against the movement of electrons normal to x–y plane, quantization of energy will yield

\[\psi(\vec{r}) = \phi(z) \cdot \phi(x,y) = \phi(z) \cdot \frac{1}{\sqrt{A}} \exp[j(k_x x + k_y y)] = \phi(z) \cdot \frac{1}{\sqrt{A}} \exp(j k_\| \cdot \vec{\rho}) \]

(1.5)

This is the case of the so-called infinite potential well.

If the confinement is further extended to the y-direction and the confining potential is turned into a simple square well of infinitely high barriers, one will have

\[\psi(\vec{r}) = \phi(y,z) \cdot \phi(x) = \phi(y,z) \cdot \frac{1}{\sqrt{L}} \exp[j(k_x x)] \]

(1.6)

where

\[\phi(y,z) = \frac{2}{W} \sin \left(\frac{m \pi y}{W} \right) \sin \left(\frac{n \pi z}{W} \right), \quad m,n = 1,2,\ldots \]

(1.7)

in which \(L \) is the normalization length. This is the case of the so-called quantum wire.

Figure 1.1 provides schematics for a quantum well and a quantum wire.

What is common between the cases of electron in free space, confinement in a quantum well, and confinement in a quantum wire is that according to (1.3), (1.4), and (1.6) for all three cases, electrons assume a propagating-wave nature. What this means is that electrons feel almost free to move, either in 3-D, 2-D, or 1-D space.

As mentioned earlier, confinement of electrons in one and two dimensions results in energy quantization. This is expressed through integer values of \(n \) and \(m \).

Assuming a potential well in which an electron is only allowed to move between the barriers and not parallel to them, energy quantization is expressed by

\[E_n = \frac{\hbar^2 \pi^2}{2m^* W^2} n^2, \quad n = 1,2,\ldots \]

(1.8)

where, as shown in Figure 1.1, \(W \) is the distance between the two barriers.

In this equation, each of the values of energy expressed by \(E_n \) represents an allowed energy level (or overlooking the spin of an electron: energy state). Electrons are prohibited to assume all other values of energy. In the case of a finite potential well,
quantization is present to a lesser degree, and a recursive equation should be solved to calculate the allowed energy values.

Extending the degrees of freedom of electrons in the potential well results in overlapping of the wave functions of the neighboring electrons residing on each of these energy states. As a result, due to the restrictions of Pauli’s exclusion principle, each quantized energy state will split into a number of very closely packed energy states. As will be seen later on in this section, these split energy levels, depending on the degree of confinement, can grow into bands or the so-called subbands of energy.

In the form of confinement in a 2-D plane, the quantum-well situation especially resembles that of the thin silicon body of a silicon-on-insulator MOSFET. This device will be seen in Chapter 3. In this context, each of the energy levels expressed in (1.8) stands for a subband with many allowed momentum states (also known as k-states) in the x–y silicon plane. As shown by (1.8), increasing the confinement (i.e., reducing W) increases the separation of the subbands. As will be observed later on in this chapter, this is important to the reduction of the chance of electron scattering from one subband to the next. In this system, through assigning an effective value of mass to electrons (i.e., \(m^* \)), the total energy written as the sum of kinetic energy and confining energy is given by

\[
E(\vec{k}) = E_n + \frac{\hbar^2 k^2}{2m^*}, n=1,2,3,...
\]

(1.9)

where \(k_x^2 = k_x^2 + k_y^2 \). The relationship between the energy and momentum (which is represented by \(\hbar k \)) is known as the dispersion relationship (also known as \(E-k \)).

As observed through our brief encounter with the Schrödinger equation, knowledge of the Hamiltonian and the potential function is pivotal to understanding the

\[10\] Named after Wolfgang Pauli.

\[11\] Also known as SOI.
behavior of electrons in different solid structures. The following laws of mechanics govern the time evolution of position (i.e., \(x\)) and momentum (i.e., \(p\)) in terms of \(H\):

\[
\frac{\partial p_i}{\partial t} = -\frac{\partial H(p_i, x_i)}{\partial x_i}
\]

\[
\frac{\partial x_i}{\partial t} = \frac{\partial H(p_i, x_i)}{\partial p_i}.
\]

The vector of average velocity for electrons is also identified as

\[
\vec{v} = \frac{1}{\hbar} \nabla_k E(\vec{k}).
\]

1.1.2 Band Diagram and Effective-Mass Formalism

The most basic outcome of such a quantum mechanical entity (i.e., electrons in a solid) appears in the form of energy bands and forbidden gaps. The evolution of the band diagram composed of these energy bands and forbidden gaps (and its more detailed version known as the \(E-k\) diagram) is deeply rooted in the interaction between the wave-natured electrons and the periodic potential function of the crystalline solid. Within each of the allowed bands, the variation of energy with momentum is calculated and represented in the form of energy versus momentum (i.e., \(E-k\) diagrams).

A major component of the simplified theory representing electrons in solids is the band theory, which is the outcome of effective-mass theory. Effective-mass theory is based on the resemblance of the form of the electron wave dispersion diagram at the energy range of interest\(^{13}\) to that of electrons in free space. For an electron in free space, since the effective mass (i.e., \(m^*\)) is clearly a constant (i.e., the rest mass of the electron: \(m_0\)), Equation (1.9) reduces to a parabola.

Although in a real semiconductor charge carriers are not truly traveling as propagating waves, under many important circumstances, they almost behave that way. These almost free charge carriers, however, feel a different mass than that of the free electron. Based on the almost parabolic form of the dispersion diagram, effective-mass theory uses the curvature of this diagram to assign a value of mass to charge carriers,

\[
m^* = \frac{\hbar^2}{\partial^2 E/\partial k^2}.
\]

While this simple picture successfully reduces the wave/particle electrons to simple particles, it fails to hold when charge carriers receive substantial amounts of kinetic energy. Under those circumstances, the resemblance in form to the dispersion diagram of a free electron vanishes.

\(^{12}\) Also referred to as dispersion diagram.

\(^{13}\) This will be clarified shortly.
In some situations the complete set of information offered in an $E-k$ diagrams is needed; however, in most cases of interest to the present volume, we only adopt a selective portion of this information. As will be pointed out shortly, this selection of information in the $E-k$ diagram comes from calculating the $E-k$ curvature given specific values of momentum matched to the edges of two of the bands resulting from splitting of energy levels.

Localization of electron states, caused by unavoidable imperfections in real semiconductors, can be incorporated into this model through the corrective measure of scattering processes. Incorporation of such small perturbations to the perfect crystal is implemented through determining the scattering rates using Fermi golden rule (or Born approximation14).

Under these presented conditions, the $E-k$ diagram is reduced to merely a one-dimensional energy diagram, which, at least for the sake of presentation, is often expanded into a second dimension (i.e., position). Figure 1.2 illustrates a typical $E-k$ diagram and the resulting 1-D and 2-D band diagrams. As pointed out in these illustrations, forbidden gaps of energy are present among allowed energy bands. As shown, the momentum information is not presented in an energy-band diagram. Later on in this chapter, through invoking the concept of momentum relaxation time constant, we will discuss the significance of this lost bit of information.

The curvatures of the $E-k$ diagram and therefore the values of the effective mass are different along different directions in a crystal. At this point in our discussion, it is important to point out that in calculating the subband energies in (1.8), effective mass in the direction of the confining potential should be employed.

1.1.3 Density of States Function

As indicated earlier, the bands of energy are composed of very narrowly packed sets of individual energy states. However, since at normal temperatures of operation of an

14Named after Max Born.
electronic device the separation between the individual states is much smaller than the average random thermal energy of an electron in a 3-D solid \((i.e., \frac{3}{2}kT) \), electrons tend to see the band as a continuum of energy states. Since the occupancy of each individual energy state is governed by Pauli’s exclusion principle \((i.e., \text{maximum accommodation for only two electrons that must have opposite spins at each energy level}) \), each band has a certain maximum capacity for electrons, which is identified by a density of states \((i.e., \text{DOS}) \) function. This function is a double-density function, and it essentially expresses the density of states per unit energy, per unit volume.

For three-dimensionally moving charge carriers, the DOS at the bottom of a band \((i.e., \text{identified by } E_c) \) can be approximated by

\[
D_{3D}(E) = \frac{(2m^*)\frac{3}{2}}{2\pi^2\hbar^3} \sqrt{E-E_c}.
\]
(1.14)

However, in the case of 2-D charge-carrier confinement, the two-dimensional density of states per unit energy and area is given by

\[
D_{2D}(E) = \frac{m^*}{\pi\hbar^2}.
\]
(1.15)

This is only with the assumption of the first subband. Finally, with the same assumption the DOS in the one-dimensional case is given by

\[
D_{1D}(E) = \frac{\sqrt{2m^*}}{\pi\hbar} \frac{1}{\sqrt{E-E_c}}.
\]
(1.16)

Figure 1.3 illustrates the dependence of the DOS function on energy for the three cases. Due to the direction dependence of effective mass, the value of the effective mass used in calculation of the DOS is very often different than that used in the transport problem.

1.1.4 Conduction and Valence Bands

Due to electrons’ natural tendency to arrive at minimum enthalpy, electrons occupy states of lower energy before filling up states of higher energy. In the presence of thermal energy, however, this picture gets slightly distorted. This is caused by thermal excitation of electrons from lower energy states to higher energy states. In the case of a semiconductor, this renders lower energy bands to be full, renders higher energy bands to be empty, and also causes two of the adjacent bands to be only partially occupied at temperatures above 0 K. At 0 K, however, a semiconductor behaves like an insulator and is composed only of full and empty bands. Figure 1.4 illustrates this
FIGURE 1.3 (a) Typical form of the density of states function in a 3-D semiconductor. (b) Typical form of the DOS function in a quantum well. (c) Typical form of the DOS function in a quantum wire.

FIGURE 1.4 (a) Occupancy status of the conduction and valence band of a semiconductor at 0 K, where the full portion of a band is hash marked. (b) The water pipe analogous to the band occupancy presented in (a). In this analogy the full portion of the pipe is presented in gray, while the empty portion is white. (c) Occupancy status of the conduction and valence band of a semiconductor at a finite temperature, where the full portion of a band is hash marked. One can see the electron transfer from valence to the conduction band in analogy with water transfer from the lower to the upper pipe.
picture at 0 K and at a temperature T, in analogy with doubly sealed water pipes. According to this picture, since neither a full nor an empty band can contribute to net movement of charge carriers (i.e., in water pipe analogy: water), among all of the bands resulting from the aforementioned quantum mechanical description, only those bands that at normal temperature of operation of a device are partially full/partially empty are of prime value.\(^{16}\)

A partially full band is created by means such as thermal excitation of electrons from the top of a lower band to the unoccupied states at the bottom of a higher band. In semiconductors we therefore encounter two partially full/partially empty bands. All other bands below these remain completely full, and those above remain completely empty. As a result, only two bands are worth mentioning: the valence and the conduction band. The valence band is the highest band that is full at 0 K, and the conduction band is the lowest band that is empty at 0 K. The energy difference between the bottom of the conduction band (i.e., E_c) and the top of the valence band (i.e., E_v) is the bandgap (i.e., E_g).

Since the size of the forbidden gap is much larger than the average amount of thermal energy acquired by an electron in a three-dimensional solid, one can expect such a charge-carrier transfer to be far more probable between the top of the valence band and the bottom of the conduction band. These values of energy are therefore much more important to study than the other energy levels in the rest of conduction and valence bands.

Although approximate equations such as (1.14) present the DOS of conduction and valence band\(^{17}\) in the form of a square-root law, higher in the conduction band (and also lower into the valence band) the proportionality of DOS to $\sqrt{E-E_c}$ (and $\sqrt{E_v-E}$ in the valence band) vanishes. This is due to the more complicated E–k variation at higher values of energy. For these higher energies, numerical methods are needed to evaluate the DOS. As will be observed shortly, even for the case of lower energies, in the presence of high concentrations of impurities, there is a need to reevaluate this square-root law.

1.1.5 Band Diagram and Free Charge Carriers

The band diagram representation of Figure 1.5, through extending the bandgap information in space, substantially helps in implying the relatively free nature of electrons in the conduction and valence band (i.e., those that are not associated with the nuclei of the atoms in the crystal). This relative freedom is implied since the electrons are now free to be at different positions in the semiconductor without any need for changing their energy value. The energy axis of the band diagram imports only the energy difference between the lowest energy value of the conduction band (i.e., E_c) and the highest energy value of the valence band (i.e., E_v) of the E–k diagram. As a result, as mentioned earlier, momentum and curvature information of the E–k diagram are simply omitted (of course with the exception of the curvature used in calculation of the

\(^{16}\) Just like the case of a zero net movement of liquid in a full, or an empty, doubly sealed water pipe.

\(^{17}\) In this equation, in case of valence band $\sqrt{E-E_c}$ changes to $\sqrt{E_v-E}$.

effective electron mass). While in reality in charge transport through electronic devices larger than tens of nanometers, the presence of many scattering processes results in the loss of coherence in transport and the randomization of momentum, this simplifying omission of momentum information comes at a very affordable cost. As mentioned earlier, this cost is paid through adoption of the notion of effective electron mass.

Knowing that the band diagram provides only a selective set of information about the energy and momentum, which is sufficient only for specific applications, Table 1.1 provides a summary of links between the considered range of energy in the band structure and various electronic devices. This table can provide a sense of the limitations inherent to the band diagram.

Table 1.1 Energy Range of Interest in the Band Structure of Semiconductor for Understanding the Behavior of Various Electronic Devices and under Different Conditions

<table>
<thead>
<tr>
<th>Electronic Device</th>
<th>Energy Range of Interest within the Bandgap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low electric-field regions of a transistor</td>
<td>Approximately (2kT) from the band edges</td>
</tr>
<tr>
<td>High electric-field regions of a transistor</td>
<td>Approximately 0.5 eV</td>
</tr>
<tr>
<td>Power transistors and devices operating close to breakdown conditions or operating on those basis</td>
<td>The full size of the bandgap</td>
</tr>
</tbody>
</table>

\(k \), is the Boltzmann constant; \(T \), is the temperature in Kelvin.

Supplementary Notes on Band Diagram

A two-dimensional band diagram, such as the one shown in Figure 1.5, is often used while discussing the behavior of electrons in bulk semiconductors. However, the
one-sided potential imposed on the electrons at the surfaces and interfaces disrupts the periodicity of potential applied on electrons and as a result the formation of the bandgap. Nevertheless, with the goal of simplifying the complicated reality of these surfaces and interfaces, oftentimes the aforementioned notion of a band diagram is readily extended to the surface. The presence of a surface is then factored into the band diagram through improvising an interfacial layer known as surface layer. Since most FETs operate through charge transport in the vicinity of these surfaces and interfaces, later on in the chapter, we will deal with these nonidealities at greater length. Figure 1.6 shows an example of incorporation of such a layer.

In the operation of semiconductor devices, the presence of surface states (which as implied in Fig. 1.6 are present in the bandgap of the surface layer) often results in hysteresis of the devices’ characteristics. In order to avoid this, in high-speed semiconductor devices, bare surfaces should always be avoided. This can be done through implementing the so-called self-aligned technologies or even by passivating these surfaces through deposition of an insulator layer over them. In later chapters, these technologies will be covered in greater depth.

Additionally, while periodicity of crystal structure is key in developing a band diagram, in the description of the behavior of electronic devices, the notion of a band diagram is extended to amorphous materials (such as dielectrics used in FET technologies), which clearly do not possess a periodic structure. In strictest sense such an extension is not allowable. However, in these materials the presence of short-range order induces effects that are approximately explainable with the aid of a band diagram. One of the most important assets of silicon technology has been the possibility of achieving an almost perfect interface between the crystalline silicon and amorphous SiO2. Thermal growth of SiO2 on silicon results in a few dangling bonds with very little bond-angle distortion at the SiSiO2 interface. Even the few present dangling bonds can be saturated by the presence of hydrogen or fluorine throughout the thermal oxidation process. While SiO2 is an amorphous solid, it exhibits an almost tetrahedral arrangement at short range.

As already pointed out, bandgap is an important property of semiconductors. This property is itself dependent on a number of factors including temperature. Table 1.2 summarizes the temperature dependence of the size of the bandgap of a number of important semiconductors.
Another piece of information that is present in a band diagram is referred to as electron affinity (i.e., $q\chi$). This quantity represents the amount of energy required to set a conduction-band electron free from the bulk of the semiconductor. This amount of energy is denoted by the difference between the bottom of conduction band (i.e., E_c) and vacuum energy level (i.e., E_0). Figure 1.7 illustrates this in a band diagram. The definition of electron affinity is only loosely connected to measurable quantities such as phototreshold. This is due to the contribution of other factors including image forces18 and the formation of surface layer to these measurable quantities. As a result, electron affinity remains as a quantity that can only be used in relative terms with a certain attributed approximation.

18These will be dealt with in Chapter 2.
1.1.7 Bond Model

A parallel description often used in explaining the electronic behavior of semiconductors is the bond model. The analog of migration of electrons across the bandgap in the bond model is the breaking away of electrons from covalent bonds. In other words, electrons in the valence band represent the electrons in covalent bonds with the atoms in the crystal, while those in the conduction band are the ones that have broken away from the covalent bonds and are almost free to roam within the confines of the crystal. While the bond model provides a simple picture for the electrons in the conduction and valence bands, it fails to satisfactorily describe the quantic nature of the wave/particle electrons and the role of the density of states function in each band.

1.2 ELECTRONS, HOLES, AND DOPING IN SEMICONDUCTORS

According to the energy-band and bond models, in an ideal semiconductor the number of electrons missing from the covalent bonds (i.e., missing from the valence band) and the number of free electrons (i.e., conduction-band electrons) are equal to one another. Such a semiconductor is referred to as intrinsic semiconductor. In the operation of electronic devices, however, we deal with semiconductors in which electron concentration in the conduction band (i.e., n_0 in cm$^{-3}$) and concentration of energy states devoid of electrons in the valence band (i.e., p_0 in cm$^{-3}$) are often not equal to one another. These semiconductors are referred to as extrinsic semiconductors.

The process of forming of an extrinsic semiconductor is referred to as doping. Doping occurs when a limited concentration of impurities is introduced into the semiconductor, and impurities are driven to replace some of the compositional atoms of the crystal. There are a few different doping processes. In these processes, impurities (also referred to as dopants) are either in situ incorporated into the crystal structure, as the crystal is being grown, or added in after crystallization. In the latter case, dopants are either thermally diffused into the crystal at the gas/solid interface (i.e., due to their higher concentration at the gaseous side) or implanted into the crystal in the form of highly energized ions. Each of these techniques has its own advantages in terms of cost/accuracy balance in the creation of the dopant profiles. The creation of a certain dopant profile (i.e., with precise control on the concentration, depth, and lateral extent of the distribution of impurities) and maintenance of their form throughout the operation of the device (i.e., when the device is exposed to high electric fields and temperatures) are keys to the success of a doping process.

1.2.1 Electrons and Holes

In both doped and undoped semiconductors, empty energy states of the valence band comprise only a small fraction of the states available in that band. Likewise, only a

19 Whereas electron density in metals is in the order of 10^{23} cm$^{-3}$, in semiconductors this value is at least two orders of magnitude smaller.
small fraction of the states of the conduction band are filled by electrons. Based on the knowledge of Pauli’s exclusion principle and the limited capacity of each of these bands for electrons, charge transfer can be envisioned either through movement of electrons or equally well through the transfer of empty states (of course in the opposite direction). As previously done in Figure 1.4, if we imagine a doubly sealed partially full water pipe, we can analogously say that the net movement of liquid caused by tilting the pipe is also representable through the movement of bubble in the opposite direction. In dealing with charge transfer in the conduction band, electrons are fewer in number than the empty states. Between the two equivalent presentations of charge transfer, it will be much simpler to focus on electrons. The opposite of that happens in the valence band. In the valence band, instead of electrons, charge transfer is studied through the movement of their complementary profile (i.e., profile of empty states). Of course, it will be easier to treat this complementary profile if we use a more addressable name for the empty states. Traditionally we call these empty states holes.20

Increasing the temperature of an undoped semiconductor causes the generation of electrons and holes in pairs (known as electron–hole pairs (EHP)). Caused by a number of events including collisions, these charge carriers can also go through the inverse of this generation process (which is known as recombination). During the recombination process, electrons fall back into the valence band and effectively annihilate an equal number of holes. These processes can either take the form of direct band-to-band transitions or be assisted transitions involving impurity states or excitonic states.21 Through the process of recombination, the energy difference (i.e., almost equal to E_g) is either emitted in form of photons or is nonradiatively passed onto other particles such as phonons.

Holes have an equal amount of charge but are opposite in polarity to electrons. Hole effective mass is calculated according to the quantum mechanical information expressed in the E–k diagram of the valence band. E–k diagrams or band diagrams are developed for a negatively charged particle (i.e., electron). The opposite charge polarity of a hole requires us to look at these diagrams upside down while studying holes. Whereas the basis of calculation of the effective mass is already presented (1.13), it is important to point out that often the E–k diagrams are not as simple as illustrated in Figure 1.2. Among the intricacies present in these diagrams are the overlapping profiles of branches known as degeneracy. In terms of the presence of degeneracies, the structure of the E–k diagram of conduction band, however, is much simpler than that of the valence band.

Among the elements of the periodic table of which semiconductors are made of, valence electrons either occupy s-type or p-type orbitals. Even in the crystalline semiconductor made out of these elements, charge carriers in the conduction and valence

20 These are imaginary charged particles in the valence band.\n
21 An exciton is a hydrogen atom-like entity, in which the role of the nucleus is replaced by a hole. In the case of an exciton in the form of a bond between an electron and a very heavy hole, the exciton acts not unlike an impurity level. However, the picture is more complicated if the hole mass is comparable to that of the electron.
band retain much of these s- and p-type characters. This is especially remarkable, when we remind ourselves of the fact that these charge carriers are now free Bloch electrons22 and not bound by the nucleus of an atom. This s- and p-type nature plays a very important role in charge transport in semiconductors. This nature also extensively simplifies the quantum mechanical description of semiconductors, as now the shape of s- and p-type orbitals can be used as eigenvectors in the matrix representation. This simplification is used in the implementation of tight-binding technique.

According to the tight-binding technique, the top of the valence band is explained in terms of a threefold degeneracy, corresponding to that of p-orbitals (i.e., \(p_x, p_y, p_z \)). With incorporation of spin degeneracy, this threefold degeneracy grows to a sixfold. The threefold degeneracy, or sixfold with reference to spin degeneracy, is observed in the form of a twofold degeneracy of two bands (one heavy hole and one light hole) of equal energy at the top of the valence band and another band with slightly lower electron energy referred to as split-off band. The names heavy and light hole are given in terms of effective mass of electrons and holes at the top of the valence band. In terms of the definition of the effective mass, the wider band (i.e., of smaller curvature) poses a larger effective mass on the holes, hence the name heavy-hole band. The effects of these bands can be incorporated only in the case of incorporation of relativistic effects of the problem, which are referred to as spin–orbit coupling.

Figure 1.8 provides a schematic representation of the nature of the valence and conduction band of most semiconductors. On the basis of the typical concave and convex \(E-k \) diagrams presented in Figure 1.8 (i.e., for conduction and valence bands, respectively) and considering the opposite polarity of the charge of a hole, it can be observed that both electrons and holes (i.e., charge carriers of the conduction and valence bands, respectively) possess positive effective mass. In spite of commonalities between semiconductors, the curvature at the top of the \(E-k \) diagram of a band is not always negative. In the case of tellurium, the \(E-k \) diagram is of the form shown in Figure 1.9, which prohibits the definition of negative mass for electrons, and as result prohibits the definition of imaginary positively charged particles (i.e., holes) for missing electrons.

Semiconductors are divided into two groups according to their value of momentum at the conduction-band minima: direct bandgap and indirect bandgap. The \(E-k \) diagrams for these two groups are illustrated in Figure 1.8. While in the \(E-k \) diagram of direct-bandgap semiconductors the top of the valence band and the bottom of conduction band coincide at a momentum of 0,23 indirect semiconductors only have the top of their valence band defined there. As a result of the difference between the momentum at the top of the valence band and the bottom of conduction band of indirect semiconductors, these semiconductors are not efficient producers of photons. This is because another momentum changing collision will be required

22 Electrons expressed in terms of propagating waves belonging to quantized energy states. The quantized energy states are referred to as Bloch states. Named after Felix Bloch.

23 We will identify later in the chapter that this coincidence happens at the \(\Gamma \)-point in the so-called Brillouin zone.
ELECTRONS, HOLES, AND DOPING IN SEMICONDUCTORS

(a) $E-k$ diagram of a direct-bandgap semiconductor; in this case the direct bandgap is smaller than the indirect bandgaps. (b) $E-k$ diagram of an indirect-bandgap semiconductor; in this case the direct bandgap is larger than one or more of the indirect bandgaps. Top of the valence band is defined at $k = 0$.

FIGURE 1.8

FIGURE 1.9 Top of the valence band in some materials such as tellurium present a positive effective mass for electrons hence at this position prohibits the definition of the positive charge carrier (i.e., hole).
besides the electron–hole interaction involved in the recombination process. In this case, the transitions involve a photon (which is responsible for energy change) and a phonon (which is responsible for momentum change). This division of responsibilities is caused by the very small momentum of photons and very small energies of phonons.

Silicon has an indirect bandgap,\(^{24}\) with a sixfold degenerate conduction-band edge. Germanium is another well-known indirect semiconductor.\(^{25}\) In both of these cases, a strong anisotropy of electron wave function persists near the band edge, which is caused by the mixing of p-type and s-type orbitals. The conduction-band minima of direct-bandgap semiconductors, being made of s-type orbitals, have spherically symmetric central cells. However, in the states further into the conduction band, this spherical symmetry, as the result of increasing contribution of p-type orbitals, fades. This is an important issue to be considered under high kinetic energy conditions.

In contrast to the conduction-band edge, the valence-band edges of most semiconductors are quite similar. In the case of the valence band, the central part of the electron wave functions is primarily p-type.\(^{26}\)

As shown in Figure 1.10, there exists a declining trend between the electron effective mass and the size of the bandgap of direct-bandgap semiconductors.

1.2.2 Doping

Now that we know about holes, we can say that in an intrinsic semiconductor electron concentration of the conduction band (i.e., \(n_0\)) is equal to hole concentration of the valence band (i.e., \(p_0\)). In an extrinsic semiconductor, this balance is either tilted in

\(^{24}\) Which, as will be seen later in this chapter, has a conduction-band minimum near the \(X\) point of the Brillouin zone.

\(^{25}\) Whose band edge is defined near \(L\) point of the Brillouin zone.

\(^{26}\) This nature induces a strong spin–orbit interaction.
favor of electrons (i.e., \(n_0 > p_0 \) in an n-type semiconductor) or holes (i.e., \(p_0 > n_0 \) in a p-type semiconductor).

Tilting the intrinsic balance of electron and hole concentration upon doping can be explained in terms of either the energy-band or bond models. In this review, we will address the process of doping in a specific group IV semiconductor (of the periodic table): silicon.

In an n-type semiconductor: \(n_0 > p_0 \). This means that not all of the electron population of the conduction band has originated from the valence band. In this case, the source of the excess population of electrons is the loosely bound electrons to the nucleus of dopants added to the semiconductor crystal. In silicon technology, the dopants used for this purpose are group V atoms of phosphorus and arsenic. These group V atoms possess one electron in excess of the four that they should share with the nearest neighboring silicon atoms while substituting one. This is schematically shown in Figure 1.11. The ionization energy of this excess electron is much smaller than the ionization energy of the dopant atom outside the confines of the crystal. This is caused by the overriding effect of the other atoms surrounding the dopant in the crystal, which renders an ionization energy quite close to that of the hydrogen atom. The effective mass of this electron and the value of the permittivity needed in the calculation of ionization energy are, however, modified to those values imposed by the silicon crystal. For offering an effective impurity, this ionization energy should be small compared to the average thermal energy of electrons at operating temperature.

Figure 1.11 A 2-D schematic representation of silicon crystal upon substitutional doping with phosphorus. Covalent bonds are represented by the double lines, while the circles are representative of the silicon and phosphorus atoms.
of the device. Under such a condition, dopants can be effectively activated (i.e., contribute their excess electrons to the conduction band). This is one of the reasons P and As are chosen as suitable n-type dopants in silicon technology as their ionization energies are within the range of 20–40 meV. These dopants are referred to as shallow dopants. This is in contrast to the dopants with higher ionization energies, which are known as deep dopants.

The other reason for the choice of As and P in silicon technology is the relatively high concentrations at which these atoms can be incorporated into the silicon structure under thermodynamic equilibrium. Under thermodynamic equilibrium there is an upper limit to the concentration of impurities that can be incorporated into a solid at a given temperature, known as solid solubility. Because the earliest technique of doping (i.e., diffusion doping) was a thermal-equilibrium process, this property played an important role in the choice of these dopants. However, in ion implantation doping, which is not performed under thermodynamic equilibrium, the solid solubility is not as important.

While in silicon crystal the concentration of Si atoms is on the order of 10^{22} cm$^{-3}$ at room temperature, the maximum level of doping is only slightly above 10^{20} cm$^{-3}$. As a result, to a first approximation we can assume that semiconductor properties such as the size of the bandgap are not much altered by the doping process. In reality, the random nature of substitutional doping results in a disrupted periodicity of the crystal (and also a disruption in the formation of forbidden energy gaps). Due to this disruption, the doping process results in an introduction of energy levels within the forbidden energy gap. If an n-type dopant is shallow, the energy levels will form closer to the conduction-band edge (i.e., E_c). This is the band diagram explanation of the n-type doping process, which is illustrated in Figure 1.12. With an increasing doping level

Since we deal small amounts of energy, in semiconductor electronics instead of using Joule as the unit of energy, we use electron Volt (i.e., eV). One electron Volt is almost equal to 1.6×10^{-19} J.
(i.e., number of incorporated substitutional dopants per unit volume), these shallow energy levels will split into bands of energy (often referred to as an impurity band). The splitting is caused by the overlapping wave function of the electrons residing in the impurity energy levels. As shown in Figure 1.13, doping at very high levels, through merging of these bands with the conduction band (or valence band in the case of p-type doping), results in shrinkage of the bandgap. If the energy levels introduced by dopants are separated from the conduction band by only tens of milli-electron volt, at room temperature electrons residing in those energy states (i.e., loosely bound electrons to the nuclei of the n-type impurity) can readily leave these levels and jump to the conduction band without adding a hole to the valence band. This is how the balance between the electron and hole concentration is broken in an extrinsic n-type semiconductor.

The more appropriate name for an n-type dopant is donor because it donates electron to the conduction band. In the energy-band model, the energy levels provided by these donors to the previously forbidden bandgap are also known as donor levels. Through the process of electron donation to the conduction band, the donor atom becomes a positively charged ion, and as a result, charge neutrality prevails in the semiconductor. Using the energy-band model, we can describe this behavior in terms of the following definition for the donor level:

An energy level is referred to as donor, if it were to be neutral when full and positively charged when empty.

For very highly doped semiconductors, when the impurity band developed by the donors merges with the conduction band, the semiconductor adopts a metallike behavior and remains highly conductive even at very low temperatures. This formation is also known as an impurity band tail. As shown in Figure 1.14, the choice of the name comes from the presence of finite DOS at the band edge and the gradual, and not sharp, increase of the DOS function. This is unlike the predictions of (1.14). Later in

FIGURE 1.13 Schematic depiction of the role of heavy doping in shrinking the bandgap of a semiconductor. The wide gray band of energy stands for the impurity band resulting from the splitting of donor energy levels.
this chapter, we will talk about formation of band tails also in the case of the so-called alloyed semiconductors.

It is worthwhile mentioning that arsenic, due to its larger atomic size than phosphorus, has a smaller thermal diffusion constant through the silicon crystal. Since many processing steps run at very high temperatures, achieving the small n-type dopant profiles that are required in modern devices is much easier with the use of As. For that reason, in many applications of Si technology, As has already replaced P as the proper donor.

So far, with exception of a few points, we have avoided discussing p-type doping. A slightly different version of events can explain the intricacies of p-type doping. The suitable p-type dopant in Si technology is the group III atom of boron. Substitution of Si with B (which has only three electrons in its valence shell) leaves one out of four broken covalent bonds, originally formed between nearest neighboring Si atoms, in need of an electron. The missing electron, however, can be acquired by breaking one electron away from an existing covalent bond in the vicinity of the impurity.

In terms of energy-band model, this can be explained through the addition of an energy level closer to valence band in the forbidden gap, which is keen to accept electrons. Through receiving electrons from the valence band, a hole is left behind in that band. For this reason, this energy level is called an acceptor level, and the p-type dopants are referred to as acceptors. Quite similar to the definition of the donor energy level, an acceptor energy level is neutral when empty and negatively charged when full. Boron, like arsenic and phosphorus, provides silicon with a shallow impurity level.

Doping process can take place through substitution of structural atoms of the crystal with dopants (also referred to as direct doping) or indirectly through incorporation

FIGURE 1.14 Schematic depiction of the evolution of the conduction band’s DOS function upon increase of the donor concentration, from (a) to (c). Scales are linear.
of dopants into the interstitial sites. For dopants to contribute to electron and hole concentration, however, they need to take substitutional positions. As already indicated implicitly, dopants also need to be activated through ionizations. The movement of dopants in the crystal and their later activation is a process that requires exposure to high temperatures. The process of movement of dopants within a crystal can happen through thermal diffusion of dopant in the form of interstitial diffusion, substitutional diffusion, or a mixture of the two (dopants sometimes taking substitutional positions and sometimes interstitial throughout the diffusion process), which is referred to as interstitialcy.

A doped semiconductor under a number of conditions will retain its intrinsic characteristics:

1. When the lattice temperature is very low and dopants are under carrier freeze-out (i.e., not ionized).
2. When the concentration of activated donors and acceptors are equal to one another. This case is referred to as compensative doping.
3. When lattice temperature is high and the number of thermally induced charge carriers to conduction and valence band, in the form of EHP, well exceeds the concentration of electrons and holes contributed by donors and acceptors, respectively. As shown in Figure 1.15, the characteristic temperature of this behavior is determined by the size of the bandgap of the semiconductor.

FIGURE 1.15 Variation of the electron concentration versus temperature for two n-doped semiconductors of different bandgaps. The wider bandgap semiconductor is assumed to have been doped more lightly. The levels of doping of the two semiconductors, in increasing order of the size of the bandgap, are indicated by \(N_{d1} \) and \(N_{d2} \), respectively. The dashed lines represent the variation of electron concentration in each semiconductor when undoped (i.e., \(n_i \)). Diagrams in black represent the smaller bandgap semiconductor, while the gray diagrams represent the wider bandgap semiconductor. Within the temperature range for which the electron concentration reaches a plateau, semiconductor behaves extrinsically. Scales are linear.

29 It will be identified in Section 1.4.4 why instead of simply speaking of temperature, we are talking about a temperature quantity called lattice temperature.
Realization of extrinsic semiconductors is a prime requirement in formation of electronic devices. In these devices, the interaction between regions of different charge-carrier concentrations provides the chance for enforcing selective control over the movement of charge carriers. Such junctions between regions of different dopant concentration can be realized through simply doping the semiconductor and/or growing semiconductors of different bandgaps and/or electron affinities on top of one another.

1.2.3 Calculation of Ionization Energies in Semiconductors

With regard to the process of doping, it is quite important to be able to have means to approximately calculate the energy of donor and acceptor states. For the loosely bound fifth electron of ordinary donors such as P, As, and Sb in Ge or Si technologies, the ionization energy, referenced to the conduction-band edge (i.e., E_c), calculated in terms of hydrogenic models provides us with

$$E_d = -13.6 \left(\frac{m^*}{m_0} \right) \left(\frac{\epsilon_0}{\epsilon} \right)^2 \frac{1}{n^2} \text{ eV}$$

(1.17)

where n is the principal quantum number, ϵ is the dielectric constant, and ϵ_0 is the permittivity of the vacuum.

In the above equation, the differences between the effective mass of an electron and the free electron mass, and also the dielectric constant of a semiconductor and that of the free space, cause the electron orbit for the impurity atom to be much larger than the value in a free atom. As a result, ionization energy is much smaller for an impurity in a semiconductor than that of the hydrogen atom.

A similar relationship can be developed for acceptor states. This approximate framework is, however, not as valid due to the more complicated nature of the $E-k$ diagram of the valence band. Here the effective mass of the electron should be replaced with that of the hole. Because of the much higher effective mass of holes compared to electrons in most semiconductors (with the exception of Ge), realizing the full activation of acceptors requires higher temperatures than those required for activating donors. Between Si and Ge, the ionization energies in Si for both types of dopants are larger. This is due to the smaller dielectric constant and larger effective mass in Si.

Despite their usefulness, it should be pointed out that the aforementioned formalism of calculation of donor and acceptor energy levels is only sufficient for evaluation of ionization energies within an order of magnitude approximation. However, since more accurate estimations require more intensive quantum mechanical mathematics, this framework is often used for providing the first-order estimate. Although for the considered case of a hydrogen atom the potential and, as a result, effective mass are spherically symmetric, not all semiconductor energy bands have this degree of symmetry. With regard to this case, it is necessary to use an appropriate average of the effective mass in different directions. The other simplifying assumption used in the development of the hydrogenic model of (1.17) is that the position of the conduction band is taken to coincide with E_d when the quantum number tends to infinity. While
not true in a strict sense, this has been deemed to provide a good estimate. The last limitation that this model suffers from is that it does not distinguish between the ionization energies of different dopants. Although the impact of the ion core on the ionization energy is reduced in a dopant-in-semiconductor scenario, this reduced impact still can be felt in terms of the difference in ionization energy of different dopants.

Table 1.3 provides a detailed list of ionization energies for impurities in Si, Ge, GaAs, InP, and GaN.

1.3 THERMAL-EQUILIBRIUM STATISTICS

Considering the large number of energy states in the conduction and valence band, studying the state of the electron population of these bands (i.e., electron concentration and hole concentration in the conduction and valence band, respectively) can be only addressed statistically. However, before presenting the suitable statistical framework of this problem, it should be mentioned that such a statistical framework loses its validity when statistical fluctuation of the number of dopants in an extremely small-size device grows close to the small number of dopants incorporated in its volume. As a result, the framework presented in this section faces difficulties in application to nanoscale devices.

Evidently, absence of time variation yields a more manageable mathematical framework. The condition set in the study of this time-invariant situation is referred to as thermal-equilibrium condition. Under thermal equilibrium, the semiconductor is not exposed to any external source of excitation, and at a given temperature (which we will call from now on lattice temperature), all thermal processes are counterbalanced. As a result, electron and hole concentration among other properties of the semiconductor will remain time independent.

1.3.1 Fermi–Dirac Statistics

In Appendix 1.A, with special attention to the restrictions of Pauli’s exclusion principle, the mathematical derivation of the fundamental outcome of this thermal-equilibrium statistics, which is referred to as the Fermi–Dirac distribution function, 30 is provided. This temperature-dependent statistical model, irrelevant of the presence of an energy state at a given energy value, determines the chance of having an electron of that value of energy. As a result of the definition of Fermi–Dirac statistics, one can calculate the spatial concentration of electrons within an infinitesimally small range of energy by multiplying the Fermi–Dirac distribution function by the known density of states function of the conduction band.

The process of establishing a state of thermal equilibrium is not instantaneous. Instead, for a given crystal at a set temperature, thermal equilibrium evolves spontaneously over a certain period of time.

30 Named after Enrico Fermi and Paul Dirac.
TABLE 1.3 List of Ionization Energies for a Number of Important Impurities in Si, Ge, GaAs, InP, and GaN

<table>
<thead>
<tr>
<th>Semiconductor</th>
<th>Ionization Energies of a Number of Important Impurities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>Li: $E_c - 0.034$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>Sb: $E_c - 0.043$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>P: $E_c - 0.046$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>As: $E_c - 0.054$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>Be: $E_V + 0.42$ eV (A), $E_V + 0.17$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Au: $E_c - 0.54$ eV (A), $E_v + 0.35$ eV (D), $E_v + 0.29$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>Cu: $E_v + 0.53$ eV (A), $E_v + 0.4$ eV (A), $E_v + 0.24$ eV (A)</td>
</tr>
<tr>
<td>Ge</td>
<td>Li: $E_c - 0.0095$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>Sb: $E_c - 0.0096$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>P: $E_c - 0.012$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>As: $E_c - 0.013$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>Pt: $E_c - 0.23$ eV (A), $E_v + 0.04$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Au: $E_c - 0.04$ eV (A), $E_c - 0.2$ eV (A), $E_v + 0.15$ eV (A), $E_v + 0.05$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>Cu: $E_c - 0.26$ eV (A), $E_v + 0.32$ eV (A), $E_v + 0.045$ eV (A)</td>
</tr>
<tr>
<td>GaAs</td>
<td>Si: $E_c - 0.0058$ eV (D), $E_v + 0.035$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Ge: $E_c - 0.0061$ eV (D), $E_v + 0.0404$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>O: $E_c - 0.4$ eV (D), $E_v + 0.67$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>C: $E_v + 0.026$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Be: $E_v + 0.028$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Mg: $E_v + 0.028$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Au: $E_v + 0.09$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Mn: $E_v + 0.095$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Cu: $E_v + 0.44$ eV (A), $E_v + 0.24$ eV (A), $E_v + 0.19$ eV (A), $E_v + 0.14$ eV (A), $E_v + 0.023$ eV (A)</td>
</tr>
<tr>
<td>InP</td>
<td>S, Si, Sn, Ge: $E_c - 0.0057$ eV (D)</td>
</tr>
<tr>
<td></td>
<td>C: $E_v + 0.04$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Hg: $E_v + 0.098$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Zn: $E_v + 0.035$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Si: $E_v + 0.03$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Cu: $E_v + 0.06$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Be: $E_v + 0.03$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Mg: $E_v + 0.03$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Ge: $E_v + 0.021$ eV (A)</td>
</tr>
<tr>
<td></td>
<td>Mn: $E_v + 0.027$ eV (A)</td>
</tr>
<tr>
<td>GaN</td>
<td>Si: $E_c - (0.02 - 0.12)$ eV (D) (often instead of a single value, a range has been reported)</td>
</tr>
<tr>
<td></td>
<td>Mg: $E_v + (0.14 - 0.21)$ eV (A) (often instead of a single value, a range has been reported)</td>
</tr>
</tbody>
</table>

(D) and (A) are indicators of energy level of donor and acceptor nature, respectively. The presented information for the first three semiconductors is more complete.
In the description of the Fermi–Dirac distribution function, a certain value of energy, known as Fermi level (i.e., E_f), serves as the reference value of energy in determination of the probability of occupation of all energy states. According to Fermi–Dirac statistics, an energy state with E_f as its energy value, at any given temperature, has a 50% chance of being occupied by an electron. Energy states above E_f have lower than 50% chance of occupation, and those below have higher than 50% chance of occupation. Fermi–Dirac statistics is presented by

$$f_D(E) = \frac{1}{1 + \exp((E-E_f)/kT)}.$$ \hfill (1.18)

In this equation, T is the lattice temperature in Kelvin and k is the Boltzmann constant.\(^{31}\) At 0 K, $f_D(E)$ reduces to a Heaviside unitary step function. Whereas at all temperatures $f_D(E_f) = 1/2$, an increase in temperature causes this step function to spread out further.

1.3.2 Maxwell–Boltzmann Statistics

The Fermi–Dirac distribution function when $E-E_f \gg kT$ can be reduced to a simpler distribution function, which is referred to as Maxwell–Boltzmann distribution function,\(^{32}\)

$$f_M(E) = \exp\left(-\frac{E-E_f}{kT}\right).$$ \hfill (1.19)

As shown in Appendix 1.A, the derivation of Fermi–Dirac statistics is bound by the constraints of Pauli’s exclusion principle. Electrons and holes, as particles that are required to follow these constraints, are referred to as Fermions. Although in the case of Maxwell–Boltzmann statistics such a constraint is not present, simplifying Fermi–Dirac statistics by the distribution function of (1.19) does not impose any difficulty. The reason is rooted in the condition applied to this approximation (i.e., $E-E_f \gg kT$). Under this condition, the chance of finding an electron at energy state E will be very small. As a result the chance of encountering two electrons at the same state and clashing with Pauli’s exclusion principle will be equally small. The semiconductor for which Maxwell–Boltzmann statistics is applicable is referred to as a nondegenerate\(^ {33}\) semiconductor. Figure 1.16 presents the form of temperature variation of the

\(^{31}\) $k = 8.62 \times 10^{-5}$ eV/K.

\(^{32}\) Named after James Maxwell and Ludwig Boltzmann.

\(^{33}\) In this case the definition of degeneracy is with reference to becoming metallike, which as hinted earlier happens when the dopant concentration is very high and as a result of overlapping the impurity-band and conduction-band (likewise valence band in case holes) charge-carrier concentration of conduction- or valence-band approaches that of the metal. This degeneracy is different from the one observed in our discussions of $E-k$ diagram.
Fermi–Dirac distribution function and its approximation with the Maxwell–Boltzmann distribution function.

For a nondegenerate semiconductor the distribution function of (1.18) can be simplified to a Maxwell–Boltzmann distribution function. Through adopting a semiclassical approach to the definition of energy such as
\[E = E_c + \frac{1}{2} m^* v^2, \]
(1.20)
one can rewrite (1.19) as
\[f_M \cong \exp \left(\frac{E_f - E_c}{kT} \right) \cdot \exp \left(- \frac{m^* v^2}{2kT} \right) = C \cdot \exp \left(- \frac{m^* v^2}{2kT} \right). \]
(1.21)

It can be proven that \(C \) for a given doping level is constant.\(^{34}\) According to this equation, charge-carrier velocities of a nondegenerate semiconductor are distributed in the form of a Gaussian with an average velocity of 0 and a variance, which is a function of lattice temperature. In the three-dimensional setting,

\(^{34}\) That is, using (1.23) and (1.32) or (1.33).
\[v^2 = v_x^2 + v_y^2 + v_z^2 \]

(1.22)

and as a result such a conclusion can also be drawn for carrier velocities along each of the axes of the Cartesian coordinate system.

1.3.3 Calculating Electron and Hole Concentration in Nondegenerate Semiconductors

As suggested earlier in this section, in calculating thermal-equilibrium electron concentration in the conduction band (i.e., \(n_0 \)), one needs to multiply the Fermi–Dirac distribution function (or where appropriate the Maxwell–Boltzmann distribution function) with the density of states function of the conduction band and take an integral over the energy width of this band. Likewise, in calculating the thermal-equilibrium hole concentration in the valence band (i.e., \(p_0 \)), one should multiply the DOS function of the valence band by the complementary of the Fermi–Dirac (or where appropriate the Maxwell–Boltzmann) distribution function and take an integral over the energy extent of the band. For cases in which Maxwell–Boltzmann statistics is applicable, such calculations result in the following closed-form expressions for \(n_0 \) and \(p_0 \):

\[n_0 = N_c \exp \left(\frac{E_f - E_c}{kT} \right) \]

(1.23)

and

\[p_0 = N_v \exp \left(\frac{E_v - E_f}{kT} \right) \]

(1.24)

where \(N_c \) and \(N_v \) are the effective density of states at the lower edge of the conduction band (i.e., \(E_c \)) and the higher edge of the valence band (i.e., \(E_v \)), respectively. These effective values are mathematical tools proposed to yield the above simple expressions.\(^{35}\) While in reality in a bulk semiconductor, the DOS at the lower edge of conduction band and the higher edge of the valence band are either \(^0\) or have a very small value (i.e., in case of formation of band tail), the values of \(N_c \) and \(N_v \) are quite large. This is because they effectively represent the total number of states distributed throughout the bands in the form of two Dirac delta functions defined at the edge of each band. These values, as expressed in (1.25) and (1.26), are dependent on lattice temperature and effective mass of electrons and holes (i.e., for \(N_c \) and \(N_v \), respectively):

\[N_c = 2 \left(\frac{2\pi m^*_e kT}{\hbar^2} \right)^{3/2} \]

(1.25)

\(^{35}\) In terms of these effective density of states, the aforementioned integral is calculated using the gamma function.

\(^{36}\) See (1.14).
and

\[N_v = 2 \left(\frac{2\pi m^* kT}{\hbar^2} \right)^{3/2}. \] \hspace{1cm} (1.26)

Equations (1.23)–(1.26) imply that the Fermi level of an intrinsic semiconductor is very close to the middle of the bandgap but not exactly there since \(m^*_n > m^*_p \).

Table 1.4 presents a list of important properties, such as \(N_c \) and \(N_v \), for a few well-known semiconductors.

Since in nondegenerate doping of a semiconductor, due to low levels of dopant concentration, structural properties of the semiconductor remain almost intact, under these conditions \(N_c \) and \(N_v \) will not change with doping. As a result, letting \(E_i \)
represent the Fermi level of the intrinsic semiconductor, (1.23) and (1.24) can be rewritten in terms of E_i and n_i (i.e., intrinsic electron and hole concentration):

$$n_0 = n_i \exp \left(\frac{E_i - E_f}{kT} \right)$$

(1.27)

and

$$p_0 = n_i \exp \left(\frac{E_i - E_f}{kT} \right).$$

(1.28)

1.3.4 Mass Action Law

Concentration profiles of electrons and holes in a semiconductor are not independent from one another. From (1.27) and (1.28) it is quite obvious that

$$p_0 n_0 = n_i^2.$$

(1.29)

This relationship is referred to as the mass action law.

Also based on (1.23) and (1.24),

$$n_i = \sqrt{N_c N_v} \exp \left(\frac{-E_g}{2kT} \right).$$

(1.30)

On the basis of (1.30), for a semiconductor of smaller bandgap, at any given temperature the intrinsic charge-carrier concentration (i.e., n_i) is larger. This explains why a wider bandgap semiconductor remains extrinsic over a wider range of temperatures (Fig. 1.15).

Equation (1.23) shows that as a result of elevation of the Fermi level through n-type doping, E_f approaches E_c, and $E - E_f$ at the bottom of the band will become smaller. When this difference becomes smaller than a few times kT, the approximation of Fermi–Dirac statistics by Maxwell–Boltzmann statistics is inadmissible. An identical situation will happen when E_f is lowered toward E_v. Under these situations, which are caused by heavy n- and p-type doping, approximate equations of (1.23)–(1.28) are no longer valid. A highly doped semiconductor like this is referred to as a degenerate semiconductor, since with the increase in charge-carrier concentration, the conduction properties of the semiconducting material have essentially degenerated into those of a metal.\(^{37}\) In degenerate semiconductors, electron and hole concentrations should be calculated with the use of Fermi–Dirac integrals.

\(^{37}\)We have previously come across this situation while speaking of the merger of the impurity band and conduction or valence bands in a highly doped semiconductor.
The mass action law is a thermal-equilibrium relationship. Whereas simply multiplying (1.27) and (1.28) proved the mass action law in a nondegenerate semiconductor, for all semiconductors under thermal equilibrium, such a relationship is readily extendable. In a general form, this can be easily proven through considering the counterbalancing processes of generation and recombination of EHP. While the process of generation is a thermally induced process (where its rate can be expressed in terms of a function of temperature: \(f_1(T) \)), the process of recombination is not only temperature dependent but also dependent on the population of electrons in the conduction band and holes in the valence band. The temperature-dependent part of the rate of the recombination process is expressed in terms of another function of temperature, which we will call \(f_2(T) \). By equating the rates of the two counterbalancing processes, under thermal equilibrium,

\[
G = R \Rightarrow f_1(T) = p_0 n_0 f_2(T) \Rightarrow \frac{f_1(T)}{f_2(T)} = p_0 n_0 = f_3(T). \tag{1.31}
\]

Knowing that the function \(f_3(T) \) is just a function of temperature and not the doping process, it will be evident that \(f_3(T) = n_i^2 \), which yields the mass action law (i.e., (1.29)).

On the basis of the mass action law and charge neutrality, one can prove that in a semiconductor doped with both donors (i.e., \(N_d \) in cm\(^{-3}\)) and acceptors (i.e., \(N_a \) in cm\(^{-3}\)), if all dopants were to be activated,

\[
n_0 = \left(\frac{N_d - N_a}{2} \right) + \sqrt{\left(\frac{N_d - N_a}{2} \right)^2 + n_i^2} \text{ for } N_d > N_a, \tag{1.32}
\]

which yields \(n_0 \approx N_d - N_a \) when \(N_d - N_a \gg n_i \).

In addition,

\[
p_0 = \left(\frac{N_a - N_d}{2} \right) + \sqrt{\left(\frac{N_a - N_d}{2} \right)^2 + n_i^2} \text{ for } N_a > N_d, \tag{1.33}
\]

which yields \(p_0 \approx N_a - N_d \) when \(N_a - N_d \gg n_i \).

Example

A Ge sample is uniformly doped with both B and As to the levels of \(10^{16} \) and \(10^{15} \) cm\(^{-3}\), respectively. Determine the electron concentration in this sample at both 300 and 500 K. Assume that at both temperatures, all impurities are activated.

According to Table 1.4, the bandgap of Ge at room temperature is 0.67 eV, while \(n_i = 2.4 \times 10^{13} \) cm\(^{-3}\).

Based on Table 1.2 the size of the bandgap at 500 K is given by

\[
E_g(T = 500 \text{ K}) = 0.742 - 4.8 \times 10^{-4} \frac{500^2}{735} \approx 0.579 \text{ eV}.
\]
According to this value and the values of N_c and N_v at room temperature (provided in Table 1.4), (1.30) yields the intrinsic electron concentration at 500 K:

$$n_i(T=500\text{ K}) = \sqrt{1.04 \times 10^{19} \times 6 \times 10^{18} \left(\frac{500}{300}\right)^3 \exp\left(-\frac{0.579}{2 \times 0.0258 \times \frac{500}{300}}\right)}$$

$$\approx 2.03 \times 10^{16} \text{ cm}^{-3}$$

Based on these values, Equation (1.33), and the mass action law, we can calculate the electron concentration given $N_d = 10^{15} \text{ cm}^{-3}$ and $N_a = 10^{16} \text{ cm}^{-3}$.

For $T=300\text{ K}$,

$$p_0 = \left(\frac{10^{16} - 10^{15}}{2}\right) + \sqrt{\left(\frac{10^{16} - 10^{15}}{2}\right)^2 + (2.4 \times 10^{13})^2} \approx 9 \times 10^{15} \text{ cm}^{-3}$$

and

$$n_0 = \frac{n_i^2}{p_0} = \frac{(2.4 \times 10^{13})^2}{9 \times 10^{15}} \approx 6.4 \times 10^{10} \text{ cm}^{-3}.$$

For $T=500\text{ K}$,

$$p_0 = \left(\frac{10^{16} - 10^{15}}{2}\right) + \sqrt{\left(\frac{10^{16} - 10^{15}}{2}\right)^2 + (2.03 \times 10^{16})^2} \approx 2.5 \times 10^{16} \text{ cm}^{-3}$$

and

$$n_0 = \frac{n_i^2}{p_0} = \frac{(2.03 \times 10^{16})^2}{2.5 \times 10^{16}} \approx 1.6 \times 10^{16} \text{ cm}^{-3}.$$

1.3.5 Calculation of Electron and Hole Concentration in a Degenerate Semiconductor

According to the density of states functions presented Section 1.1.3 and the Fermi–Dirac distribution function of (1.18), the calculation of electron concentration in terms of Fermi–Dirac integral yields the following for bulk 3-D, 2-D, and 1-D semiconductors. The calculation of hole concentration follows the same principles.

In the case of the 3-D semiconductor, using (1.14),

$$n_0 = \int_0^\infty f_D(E)D_{3D}(E)dE = N_{3D}F_{1/2}\left[\frac{E_F - E_m}{kT}\right] = N_{3D}F_{1/2}(\eta_F)$$

(1.34)
where \(N_{3D} = 2 \left(\frac{2 \pi m^* kT}{\hbar^2} \right)^{3/2} \) and \(F_{1/2} \) is the order \(\frac{1}{2} \) Fermi–Dirac integral.\(^{38}\)

As presented in Section 1.3.3, for a nondegenerate 3-D semiconductor, this simplifies to the familiar form of

\[
n_0 = N_{3D} \exp \left(\frac{E_t - E_c}{kT} \right).
\]

(1.35)

Similar to this, in the two-dimensional case,

\[
n_s = N_{2D} F_0(\eta_F) \text{ cm}^{-3}
\]

(1.36)

where

\[
F_0(\eta_F) \equiv \frac{1}{\Gamma(1)} \int_0^\infty \frac{d\xi}{1 + \exp(\xi - \eta_F)} = \frac{1}{\Gamma(1)} \int_0^\infty \frac{\exp(\eta_F - \xi)d\xi}{1 + \exp(\eta_F - \xi)} = -\frac{1}{\Gamma(1)} \ln(1 + \exp(\eta_F - \xi))|_0^\infty.
\]

(1.37)

As a result, in the case where the second subband is much above Fermi level,\(^{39}\)

\[
n_s = N_{2D} \ln \left[1 + \exp \left(\frac{E_t - E_1}{kT} \right) \right].
\]

(1.38)

\(E_1\) is the bottom of the first subband identified in (1.8) and \(N_{2D} = \left(m^* kT \right) / \pi \hbar^2 \).

Again, under nondegenerate conditions,

\[
n_s = N_{2D} \exp \left(\frac{E_t - E_1}{kT} \right).
\]

(1.39)

For the one-dimensional case,

\[
n_L = N_{1D} F_{-1/2}(\eta_F)
\]

(1.40)

where

\[
N_{1D} = \sqrt{\frac{2m^* kT}{\hbar}}.
\]

(1.41)

\(^{38}\)Fermi–Dirac integral of order \(j \) is defined in terms of the Gamma function: \(F_j(\eta) \equiv 1/\Gamma(j + 1) \int_0^\infty \frac{\xi^j d\xi}{(1 + \exp(\xi - \eta))} \).

\(^{39}\)That is, at least 3–4\(kT \) above \(E_t \). In this case, only the first subband will be having a chance of having electrons.
Under nondegenerate conditions, with the assumption of only the first subband,

\[n_L(E_i) = N_{1D} \exp \left(\frac{E_i - E_1}{kT} \right). \] (1.42)

1.3.6 Quasi-Fermi Levels

It should be kept in mind that the definitions of Fermi–Dirac statistics and the Fermi level are only possible under thermal equilibrium. For a semiconductor removed from thermal equilibrium, through the application of external excitations (such as electrical, optical, magnetic, or nonuniform thermal excitations), the definition of the Fermi level is not possible. However, we tend to preserve the form of the two closed-form Equations (1.27)–(1.28) for calculating the electron and hole concentration. This is done through proposing the following equations:

\[n = n_i \exp \left(\frac{E_{fn} - E_i}{kT} \right) \] (1.43)

and

\[p = n_i \exp \left(\frac{E_{fp} - E_i}{kT} \right) \] (1.44)

where \(n \) and \(p \) are the nonthermal-equilibrium concentration of electrons and holes in the conduction and valence band, respectively. These values can either be larger than the concentrations under thermal equilibrium (i.e., \(n_0 \) and \(p_0 \)) or smaller. \(E_{fn} \) and \(E_{fp} \) are referred to as quasi-Fermi levels of electrons and holes, respectively. Unlike the Fermi level, there is no physical origin to the quasi-Fermi levels. Often quasi-Fermi levels are referred to as imref (i.e., Fermi spelled backward). Evidently, under thermal equilibrium, quasi-Fermi levels will overlap one another and the Fermi level. The degree of deviation from thermal equilibrium can be quantified in terms of the difference between the quasi-Fermi levels of electrons and holes.

1.3.7 Statistics of Dopant Activation Process

Whereas at high enough temperatures all shallow dopants are ionized, in the low-to-moderate temperature range the degree of ionization of dopants requires attention. In evaluating this degree of ionization, the occupation status of donor and acceptor states should be studied. In such an investigation Fermi–Dirac distribution functions, slightly different from the one presented in (1.18), are employed. The electron distribution functions determining ionization status of donor and acceptor states (i.e., \(E_d \) and \(E_a \)) are expressed as

\[^{40}\text{Subscript 0 assigned in the previous equations to electron and hole concentrations is reserved for thermal-equilibrium situations.}\]
\[
f_{d/a} = \frac{1}{1 + \beta_{d/a} \exp \left(\frac{E_{d/a} - E_f}{kT} \right)}.
\]

(1.45)

In here \(\beta_d\) and \(\beta_a\) are often approximated by 1/2 and 2,\(^{41}\) respectively (Landsberg, 1969, p. 270). Spontaneously arriving at the thermal-equilibrium state, which is expressed in (1.45), normally requires a considerably long period of time. This time requirement is due to the fact that in this case the donor and acceptor states should reach systemic thermal equilibrium with valence and conduction band.

There are important differences in the application of Fermi–Dirac statistics to the occupancy of the conduction and valence band and those of the donor and acceptor energy levels. In the latter cases, attention should be paid to the fact that while an energy state in the conduction or valence band can accommodate two electrons (i.e., considering spin degeneracy\(^{42}\)), a donor state (or an acceptor state) can accommodate only one electron (or one hole), which is to be donated to the conduction band (or valence band). This single electron or hole, however, can take any of the two spin values at its ground state and also excited states. This is the fact that results in the presence of \(\beta_{d/a}\) unequal to 1 in (1.45).

In silicon technology in the case of a donor atom, the donor state (i.e., \(E_d\)) is occupied if the fifth valence shell electron is occupying it. If ionized, this donor state will be unoccupied. What makes this process unlike the process of EHP generation is that this fifth electron has one of the two spin-orientation choices in occupying the donor state (i.e., one spin-up and one spin-down). However, all of the electrons in covalent bonds (i.e., in valence band) have such a choice. A spin state is associated with the presence of the electron. As a result, in the absence of an electron, the donor state, instead of two empty states, merely has one. The two states of opposite spin orientation have the same value of energy and as a result impose a twofold degeneracy in the Fermi–Dirac distribution function of electrons, which as we saw in (1.45) is represented by \(\beta_{d/a}^{-1}\). In terms of this distribution function, the density of activated donors in a 3-D semiconductor is given by

\[
n_d = \frac{N_d}{1 + 2 \exp((E_t - E_d)/kT)} \approx N_d \quad \text{for} \quad E_d - E_t \gg kT
\]

(1.46)

where \(N_d\) is the volume density of donors. Since for low-to-moderate dopant levels the density of states function of dopant states is representable by a Dirac delta function, integration over the product of the density of states and the distribution function of (1.45) was not required to be shown explicitly.

This discussion, with an important modification, can also be extended to the acceptor states. Since the valence-band electrons in many semiconductors are shown to have wave functions rooted in p-type orbitals (hence exhibiting a threefold orbital degeneracy), \(\beta_a\) is expected to go beyond the pure spin degeneracy (addressed by \(\beta_d\)).

\(^{41}\) As we will see shortly, \(\beta_a\) in many situations is equal to 4.

\(^{42}\) See the discussions in Section 1.1.2.
This threefold degeneracy that impacts the occupation function of acceptor states can be partially lifted by the crystal field and spin–orbit coupling. As a result, either a twofold degeneracy between the heavy- and light-hole bands or a pure spin-degenerate valence-band edge will evolve. For these two cases, β_a is equal to 4 or 2, respectively.43

As a result, without lifting the degeneracy between the heavy- and light-hole bands,44 the density of activated acceptors is given by

$$p_a = \frac{N_a}{1 + 4 \exp((E_a - E_f)/kT)}$$

(1.47)

in which β_a is equal to 4.

In the development of this formalism, it has been assumed that the doping level has been low enough so that no serious perturbation on the band structure of the host crystal is induced. As a result, the definition of the effective charge-carrier mass is still possible in terms of the simple parabolic band approximation near the band edges (i.e., calculated in terms of (1.13)). As we took note earlier, with increasing the doping level, when the dopants are on average separated from one another only by about 10 nm, such a formalism cannot be used. In that case, since dopants are not acting independent of one another, electron–electron interactions develop. Caused by Pauli's exclusion principle and electron exchange of energy, electrons will spread in their momenta. This spreading is to avoid the overlapping of the wave function of individual electrons. As mentioned earlier, this is the cause of the evolution of the donor and acceptor states into bands and eventual formation of band tails and shrinkage of the bandgap. This issue causes the optical bandgap to become larger than the electronic bandgap, which is mathematically defined using the mass action law (i.e., Equation (1.30)).

1.4 CHARGE-CARRIER TRANSPORT IN SEMICONDUCTORS

On the basis of the Bloch theorem, as indicated in Section 1.1, quantum mechanics predicts that in a perfect semiconductor (i.e., devoid of any lattice vibration and crystal defects) charge carriers travel as propagating waves within the boundaries of the 3-D semiconductor. Nevertheless, the presence of nonidealities existing in real semiconductors imposes randomizing scattering processes on the trajectory of charge carriers, rendering them to be not as free as Bloch theorem alludes. Many of these scattering processes are inelastic.

In electronic devices of relatively large sizes, the randomizing effect of the scattering processes paves the way for the description of charge transport45 in terms

43 In the case of acceptors, the degeneracy factor appears as g in the complementary Fermi–Dirac function: $1 + \exp((E_a - E_f)/kT)$, which is β_a in the Fermi–Dirac function of (1.45).

44 Usually the split-off band due to its energy separation from the top of the valence band is not considered.

45 From this point onward instead of speaking of charge-carrier transport, we will talk of charge transport.
of averaging. In order to be able to identify the length scale of the devices to which this language of charge transport is applicable, we will identify more quantifiable length scales in Section 1.4.2. The transport language used under these circumstances is drift–diffusion transport. In this averaging formalism, there are charge carriers that go through fewer scattering processes and obtain higher carrier velocities (and therefore energies), which are referred to as lucky electrons (or holes), and there are those that suffer from scattering with a higher frequency than average. As expected, over a shorter travel length, the chance of encountering lucky electrons grows, and as a result the average-based drift–diffusion formalism fails to account for the full behavior of charge transport. Although for modern deep-submicron and nanoscale FETs such a formalism, which is developed according to the Drude model, is insufficient, we will still focus our treatment of transport in this chapter on this model. Later on in Chapter 6, we will discuss the transport formalism for these smaller-size devices.

As one of the reference scales of length, the concept of mean free path is adopted as the length over which an average electron goes through a scattering process, resulting in total loss of momentum. Under the condition of charge transport in a device of shorter length than the mean free path, it is said that charge carriers travel ballistically. This situation is encountered in deep-submicron FETs. Later on in this chapter, other length scales, which are also important to the description of charge transport, are reviewed.

While asserting that under thermal-equilibrium spatial profiles of electron and hole concentration are time independent, it should not be imagined that charge carriers at temperatures above 0 K remain stationary. On the contrary, as invoked earlier, according to the laws of statistical mechanics at a temperature T (in Kelvin) per degree of freedom, an average particle possesses an amount of energy equal to $1/2kT$. As a result, in a three-dimensional semiconductor, the average semi-Newtonian charged particle (i.e., with effective mass of m^*) has a finite thermal velocity (i.e., v_{th}), which can be calculated through the following equation:

$$\frac{1}{2}m^*v_{th}^2 = \frac{3}{2}kT.$$ \hspace{1cm} (1.48)

This random thermal velocity, however, results in a zero net velocity for the total population of charge carriers. It should be mentioned that the above equation, which is based on semiclassical quantum mechanics, is only an approximation and it suffers from improper averaging.

In the presence of an external source of energy (such as an electric field) or a non-zero gradient in charge-carrier concentration, this random thermal velocity can be slightly biased toward a certain trajectory to produce a nonzero net velocity of charge carriers. This results in electrical current. While (1.48) predicts a random thermal velocity in the order of 10^7 cm/s at room temperature, the net velocity would be much smaller than this. Therefore, only a semiclassical description of quantum mechanics

46 Named after Paul Drude.
47 In Section 1.4.2 we will present this condition on a more accurate ground.
(certainly without invoking relativistic mass) needs to be considered in the formulation of charge transport.\(^{48}\)

1.4.1 Current-Continuity Equation

A capable tool in the description of the net movement of charge carriers in a relatively large-size semiconductor is the current-continuity equation. According to Figure 1.17, the charge-carrier concentrations in a semiconductor’s conduction and valence bands evolve with time as functions of carrier transport and generation/recombination rates of carriers (i.e., \(G\) and \(R\) in terms of the number of carriers per unit time, per unit volume). According to this one-dimensional depiction,

\[
\frac{\partial n}{\partial t}A\cdot dx = [F_n(x)-F_n(x+dx)]A + [G_n-R_n]A\cdot dx \tag{1.49}
\]

\[
\frac{\partial p}{\partial t}A\cdot dx = [F_p(x)-F_p(x+dx)]A + [G_p-R_p]A\cdot dx. \tag{1.50}
\]

In these equations, \(F_{np}(x)\) stand for the flow rates of charge carriers normal to the cross-sectional area \(A\). Since electrons and holes are not always created (or annihilated) in pairs,\(^{49}\) in the above equations (with indication of the appropriate

\(^{48}\) In semiconductors, due to Bragg diffraction and evolution of negative mass, velocities much higher than \(10^8\) cm/s do not usually transpire.

\(^{49}\) That is, through direct band-to-band processes.
subscripts50, the rates of generation/recombination of electrons and holes are differentiated from one another.

If the flow rates were to change almost linearly (i.e., expressed by the first-order Taylor series) between the two ends of the elemental volume $A\,dx$, $F_{n/p}(x) - F_{n/p}(x + dx) \approx -\frac{\partial F_{n/p}}{\partial x} dx$. As a result,

$$\frac{\partial n}{\partial t} \approx -\frac{\partial F_n(x)}{\partial x} + [G_n - R_n] \quad (1.51)$$

$$\frac{\partial p}{\partial t} \approx -\frac{\partial F_p(x)}{\partial x} + [G_p - R_p]. \quad (1.52)$$

While in terms of electron and hole current densities (i.e., J_n and J_p, in units of A/cm^2), $F_n = J_n - q$ and $F_p = J_p/q$,51 we have

$$\frac{\partial n}{\partial t} \approx \frac{1}{q} \frac{\partial J_n(x)}{\partial x} + [G_n - R_n] \quad (1.53)$$

$$\frac{\partial p}{\partial t} \approx -\frac{1}{q} \frac{\partial J_p(x)}{\partial x} + [G_p - R_p]. \quad (1.54)$$

According to the continuity equation, in the absence of a considerable generation/recombination rate, the time evolution of charge-carrier concentration will be purely explainable in terms of the spatial gradient of the electrical current density. The time constant determined in terms of the charge-transport processes for removing any amount of excess charge concentration in the semiconductor (i.e., beyond charge neutrality) is referred to as the dielectric relaxation time. Dielectric relaxation time is one of the important metrics in evaluation of charge-transport properties of a semiconductor.

\textbf{1.4.2 Drift–Diffusion Formalism}

We shall start our description of the drift–diffusion formalism with drift transport and also address the limitations of this carrier-transport formalism. This mode of carrier transport, due to its similarity with electron transport through conductors (which is normally expressed in terms of Ohm’s law), is relatively easier to understand for a reader not so familiar with semiconductors. According to Ohm’s law, for a rectangular slab of semiconductor with homogeneous concentration of charge carriers, conductance (G in Siemens) can be written in terms of its width (W), length (L), thickness (T), and the important material property known as conductivity (σ in $1/\Omega \cdot cm$):

$$G = \sigma \frac{W \cdot T}{L}. \quad (1.55)$$

50That is, n for electrons and p for holes.

51 q is the absolute value of the charge of an electron.
As will be further explored in Chapter 6, with the reduction of the length scale of this slab on the order of a few mean free paths at normal temperatures of operation (i.e., into deep submicrometers), such an equation will not hold. One recent development in physics of semiconductor devices has taken place regarding determining these minimum dimensions. Physical realization of deep-submicron devices (i.e., of dimensions within the range or smaller than the mean free path) has led to significant progress in understanding the meaning of resistance at nano- and molecular scales and also the notion of contact resistance to these small-scale entities.\(^{52}\)

With respect to this concept, a relatively new area has evolved in semiconductor electronics, which is referred to as mesoscopic electronics. In mesoscopic devices, dimensions are intermediate between the atomic scales and scales over which the Ohmic behavior of drift transport prevails. Although so far we have only talked about this length scale relative to mean free path, it is worth elaborating more on the matter. For a conductor to exhibit an Ohmic behavior, the dimensions ought to be much larger than each of the following three characteristic length scales (and not just one of them):

- The de Broglie wavelength of the electron
- The mean free path
- The phase-relaxation length

Whereas we are already acquainted with the first two, the last of these length scales indicates the distance that a wave electron travels before its initial phase information is lost.

These characteristic length scales are dependent on material, processing, temperature, and also external forces. As a result of the shortening of these characteristic length scales with increase in temperature and bias, a mesoscopic behavior is further encountered at lower temperatures and under lower biases. At room temperature, this characteristic is often washed out by the many existing scattering processes.

Caused by the tremendous push to realize electronic devices of ever-smaller dimensions, it is worth paying attention to the underlying physics of these length characteristics. This qualitative description paves the way to better understand three important (and often confused or overlooked) time constants in evaluation of the behavior of electronic devices: momentum relaxation time, phase relaxation time, and energy relaxation time.

Not all collisions and interactions that electrons go through are inelastic. As a result, momentum relaxation time (referred to as \(\tau_m\)) in terms of collision time constant (i.e., \(\tau_c\)) can be given by

\[
\frac{1}{\tau_m} = \frac{1}{\tau_c} \alpha_m, \quad (1.56)
\]

\(^{52}\) Measuring semiconductor properties requires creating a contact between the macroscale world and nano- or micron-scaled semiconductor devices. Starting from Chapter 2, through dealing with the concept of contact, we will address this issue more in-depth.
where α_m is a constant varying between 0 and 1, which indicates the effectiveness of the collision for destruction of momentum. For example, collisions resulting in small-angle *scattering* have very little impact on erasing the momentum information.

In order to get a more hands-on feeling about the length scales over which *mesoscopic transport* prevails, let’s consider the case of low-temperature conduction through a 2-D populated channel, where the conductance is entirely determined by the electrons with energies close to the *Fermi level*.\(^{53}\)

$$v_f = \frac{\hbar k_f}{m^*} = \frac{\hbar}{m^*} \sqrt{2\pi n}. \quad (1.57)$$

In this example, on the basis of (1.56), the *mean free path* is calculated in terms of *Fermi velocity* (i.e., v_f) as\(^{54}\)

$$L_m = v_f \tau_m. \quad (1.58)$$

For an electron concentration on the order of 10^{11} cm\(^{-2}\), *Fermi velocity* will be about 10^7 cm/s. As a result, for a *momentum relaxation time* of 100 ps, *mean free path* will amount to about 30 μm. Considering the size of modern semiconductor devices, this is extremely large.\(^{55}\) As a result, as suggested earlier, application of equations such as (1.55) will not be extendible to devices operating under these regimes, even when the dimensions of the devices are still on micron scale.

In order to magnify the differences in nature of the three aforementioned length scales, it is worth paying attention to the special case of electron–electron *scattering*.\(^{56}\) Among the many *scattering* events, electron–electron scattering is a *scattering* process that does not impact the *mean free path*. This is due to the fact that in such processes, no net loss in momentum of electrons occurs. In this average sense, a momentum lost from one electron is a momentum gained for the other. However, unlike the efficiency factor of this process (i.e., α_m), that of *phase relaxation time* is not equal to 0. *Phase relaxation* in general is the byproduct of *scattering* by fluctuating *scatterers*.

Whereas rigid sources of *scattering* such as impurities in general do not contribute to the *phase relaxation* process, magnetic impurities due to their internal degree of freedom (i.e., their time-fluctuating *spin*) serve as *phase randomizers* while *scattering* electrons.

\(^{53}\) This is due to the fact that under low temperatures, the Fermi–Dirac function of (1.18) turns into a *step function*.

\(^{54}\) Which is the velocity of electrons in states matched to Fermi level.

\(^{55}\) In (1.57) electrons are assumed to be in a 2-D channel, which is almost like that of MOSFETs to be seen in Chapter 3. On the basis of assumptions of low temperature and occupation of only one subband in this channel, Equation (1.15) yields $n = \langle m^*/\pi \hbar^2 \rangle (E_f - E_1)$. Using the semiclassical definition of energy as $E = \frac{1}{2m^*} (mv)^2 = \frac{\hbar}{2} (hk)^2$, this yields the Fermi wave number $k_f = \sqrt{2\pi n}$.

\(^{56}\) In Section 1.7, we will deal with *scattering* mechanisms at a greater length.
In normal temperatures of operation, depending on the semiconductor’s crystal structure and electron energy, an electron can propagate without perturbation over an inelastic mean free path in the range of 3×10^{-7} to 10^{-5} cm. Because these distances span many lattice constants, electrons still see the crystal as a phase-coherent quantum mechanical entity. This explains why, between the scattering events, perturbation theory allows us to see the electrons in light of Bloch states, which are defined by the periodic crystal. However, after this unperturbed propagation, electrons, according to Fermi golden rule, scatter to other Bloch states and go through dephasing. As a result of this discussion, as indicated in the opening of Section 1.4, on geometric scales much larger than the inelastic mean free path, electrons are more or less seen as classical particles.

Evaluation of the aforementioned time constants and modes of scattering is extremely important in the formulation of the Boltzmann transport equation (BTE), of which the drift–diffusion formalism dealt with in this chapter is only a special case. For the BTE one needs to identify a distribution functional for electrons in terms of time, position, and momentum. Considering the constraint of the uncertainty principle, such a definition would be possible only if the geometrical flight length allows the application of the aforementioned semiclassical framework.

According to the earlier discussions and as a result of the uncertainty principle, the allowable value of uncertainty of the electron wave vector will be about 10^5 cm$^{-1}$, which is matched to the geometrical uncertainty in the range of 10^{-5} cm. This degree of accuracy in determining wave vector \hat{k} is often deemed sufficient, since the Brillouin zone boundary is about 10^8 cm$^{-1}$. In compliance with these conditions, a distribution functional $f(\vec{k}, \vec{r}, t)$ representing the probability of finding an electron having a wave vector between \vec{k} and $\vec{k} + d\vec{k}$ and located in a space between \vec{r} and $\vec{r} + d\vec{r}$ can be identified.

1.4.2.1 Drift Transport

So far in our discussions, we have encountered three velocity terms:

- Random thermal velocity (which is of zero net velocity)
- Drift velocity or net velocity (which is a slight bias imposed on random thermal velocity through application of an external sources of energy)
- Fermi velocity

Our aim is now to see why in Equation (1.57) Fermi velocity, and not the other velocities, was used in determining the characteristic length scale L_m.

57 The long-range order in a crystalline material indicates the presence of unit cells, which are repeated in the structure. As will be elaborated in Section 1.6, lattice constant is an indicatory dimension of these unit cells.

58 Using Schrödinger equation, a real-space crystal structure can be transformed into momentum space. While in the real space periodicity of crystal presents itself through the notion of repetition of unit cells, in the momentum space also the information is repeated in the form of repetition of a building block, which is known as Brillouin zone. This is named after Léon Brillouin.
In a large homogeneous semiconductor, carrier transport is explained in terms of the drift velocity (i.e., \(v_d \)), which yields the electron drift current density as

\[
J_n = qnv_{dn}. \tag{1.59}
\]

The drift hole current density can also be expressed through an equation identical in form to (1.59). However, instead of electron concentration (i.e., \(n \)), hole concentration (i.e., \(p \)), and instead of drift velocity of electrons (i.e., \(v_{dn} \)), drift velocity of holes (i.e., \(v_{dp} \)) should be used. In the calculation of current under conditions very close to thermal equilibrium, we can still approximately rely on Fermi–Dirac statistics. However, for further deviations from thermal equilibrium, another distribution functional should be used in the current calculation.

In this equation, through incorporation of electron concentration \(n \), it is implied that all conduction-band electrons are contributing to current conduction. However, in the case of conductors, or in degenerate semiconductors, such a framework becomes misleading. In these cases, application of an external electric field does not induce a net velocity (i.e., \(v_d \)) in all conduction electrons. With the use of energy-resolved measurements, it has been shown that only those electrons with energy values within a few \(kT \) of the electron quasi-Fermi level are carriers of the net current. This occurs while the rest of the conduction-band electron population maintains at its zero net velocity. This finding results in a tremendous simplification in studying the behavior of these solids at very low temperatures, since only a very small concentration of conduction electrons are now required to be studied.

This fact highlights the difference between the impact of application of electric field on electrons as individual single particles or as an ensemble of electrons. From the point of view of an ensemble of electrons, the application of an electric field results in moving only a few electrons from states with negative wave number (i.e., \(-k_f\)) to states with positive wave number (i.e., \(+k_f\)). This is schematically illustrated in Figure 1.18. Accordingly, the drift transport equation in this case can be rephrased as

\[
J_n = qn\left[\frac{v_{dn}}{v_f} \right] v_f, \tag{1.60}
\]

where the quantity in the square brackets is representative of a small fraction of total concentration of electrons with energies within a few \(kT \) of quasi-Fermi level. These are the electrons that move with Fermi velocity. Although from a purely quantitative point of view this equation implies no change in the value of drift current density, it conceptually indicates why it is required to talk about Fermi velocity in metals as well as in low-temperature/low-dimensional degenerate semiconductor systems. As is shown in (1.60), in degenerate systems under low temperature, conduction takes place

59 Which, as indicated earlier in this chapter, refers to the cases where Fermi level is positioned above the conduction-band edge for a three-dimensional bulk semiconductor or above the first subband level for the case of a lower-dimensional semiconductor \(k_BT \ll E_1 - E_f \), which materializes specially at lower temperatures. Many of the FETs have degenerate channels for current conduction.
through the movement of a small number of electrons at velocities much higher than indicated by the drift velocity.

However, aside from this ballistic transport in low-dimensional systems and low-temperature transport behavior of degenerate systems, transport under low electric fields can be easily described in terms of the drift (and to be added in Section 1.4.2.2 diffusion) formalism.

As expected, upon application of an electric field, the net movement of charge carriers is materialized either along the direction of electric field (for holes) or opposite of that (for electrons). In macroscopic electronic devices, an instantaneous relationship is proposed between the applied electric field and this net velocity (i.e., drift velocity: \(v_{dn}\) and \(v_{dp}\)):

\[
\begin{align*}
v_{dn} & = -\mu_n E \\
v_{dp} & = \mu_p E
\end{align*}
\]

Equations (1.61) and (1.62) certainly have their own limitations. Assumption of such instantaneous relationships even in portions of large-size semiconductor devices

![Figure 1.18](image_url)
(i.e., in regions of rapidly changing electric field) has been proven to be misleading. In these relationships, it is assumed that an average semi-Newtonian electron, while traveling through a piece of semiconductor across which an electric field (i.e., E) has been established, will at any given point experience a force equal to $-qE$. As a result of this force, assuming a constant electric field between any two inelastic scattering events (which are separated from one another by an amount of time typically referred to as mean scattering time), the electron will receive an amount of energy equal to $qE\lambda$ over the length of one mean free path (i.e., λ). If we assume that on average after a time period equal to the so-called mean scattering time (i.e., τ_{cn} for electrons), an electron undergoes an inelastic scattering process (and sees a drop in its field-contributed drift velocity to 0), we can write the following Newtonian equation for this particle:

$$qE\tau_{cn} = -m^*_n v_{dn}$$

(1.63)

in which m^*_n is the effective mass of electron.

As a result, based on (1.61),

$$\mu_n = \frac{q\tau_{cn}}{m^*_n}.$$

(1.64)

Likewise, we can calculate the low-field hole mobility as

$$\mu_p = \frac{q\tau_{cp}}{m^*_p},$$

(1.65)

where τ_{cp} and m^*_p are the mean scattering time and effective mass of holes, respectively.

These approximations, in circumstances dealing with large-size electronic devices and when the applied electric field is small, hold well. Nevertheless, at higher electric fields since electrons (and holes) move away from the bottom of conduction band (and valence band), the effective-mass values calculated at the band boundaries will not be applicable. It is worth noting that in formalizing drift transport, if electric field were large, higher powers of E would be required in explaining the transport. This is because high electric field appreciably disturbs the equilibrium distribution of velocities of carriers (i.e., profile expressed in (1.21)). In addition, increase in energy will not only change the scattering rates, and as a result the value of mean scattering time, but will also trigger a number of new scattering processes. In Section 1.7.3, we will perform a fuller evaluation of a variety of scattering processes.

60 While this discussion is being presented for electrons, in case of holes, evidently with the appropriate change of signs, appropriate equations are developed.

61 It should be emphasized that τ_{cn} (also its counterpart in case of holes: τ_{cp}) is given by the momentum relaxation time and not the collision time constant in (1.56).
In a simple review of this problem, we see that we have thus far made a good number of assumptions, including:

- The electron, which is a wave/particle dual, is a Newtonian particle.
- Transport is one-dimensional.
- The electric field is constant between any two inelastic scattering events.
- An inelastic scattering process happens every τ_{cn} (i.e., mean scattering time for electrons) and τ_{cp} (i.e., mean scattering time for holes).

These assumptions prevent us from developing a thorough understanding of the behavior of the quantum wave/particle charge carrier. The processes of receiving (or dissipating) energy of these wave/particles are not instantaneous. These processes are instead governed by a relaxation time constant, referred to as energy relaxation time.

Prompted by the difference in the energy of phonons and electrons, the momentum relaxation time is often shorter than the energy relaxation time. This is because the thermalization of electrons requires a number of inelastic scattering events, considering the large electron energy (i.e., electron–phonon energy exchange). However, in contrast, even with one scattering event, the momentum of the charge carrier can be randomized.

As mentioned before, the low-field mobility is dependent on the frequency of electron interaction with scattering processes. Temperature and presence of ionized impurities are two prime contributors to scattering processes, on which the low-field mobility depends. These contributions result in ionized-impurity scattering and lattice-vibration scattering (also known as phonon scattering). At low temperatures, due to insignificant lattice vibrations, ionized-impurity scattering is dominant. At higher temperatures, phonon scattering plays the dominant role.

As a result, the temperature dependence of the low-field mobility takes two completely different characteristics at the temperature extremes. At high temperatures, because of the strengthening of the dominant scattering process (i.e., phonon scattering), the frequency of scattering events increases, and as a result carrier mobility deteriorates. At lower temperatures, an increase in temperature results in a mobility improvement. This improvement in mobility is due to the increased thermal velocity of carriers and, as a result, reduction in the time spent by them in the vicinity of the dominant scatterers (i.e., ionized impurities). In semiconductors free of ionized impurities (i.e., in the absence of ionized-impurity scattering), at lower temperatures mobility becomes temperature independent. Whereas depending on the curvature of the E–k diagram and the value of mean scattering time, the values of electron and hole mobility of different semiconductors are different, at higher temperatures the low-field mobility becomes almost independent of the semiconductor.

With increase in dopant concentration and when ionized-impurity scattering is dominant, carrier mobility deteriorates. Figure 1.19 schematically illustrates these temperature- and doping-dependent variations of carrier mobility.
1.4.2.2 Diffusion Transport

Under the aforementioned circumstances, which were identified as suitable for the application of drift-transport formalism, the second mode of conduction is diffusion. Diffusion is a thermal process that, unless there is a gradient in the concentration of carriers, produces a zero net movement of charge carriers. This is because the average carrier, although moving with thermal velocity, has a random zero-sum movement. In the presence of a gradient in charge-carrier concentration, however, carriers will diffuse from regions of higher concentration to regions of lower concentration.

According to the one-dimensional situation depicted in Figure 1.20, with a few assumptions a simple equation can be produced for this net movement of charge in the presence of a carrier concentration gradient (while electric field is 0). In this one-dimensional situation, carriers at any given point have a 50% chance of traveling toward the right or the left side. Taking two points to the right and to the left of a given reference point, distanced from the reference point by the mean free path, one can assume that an average carrier starting at each of these two points and coming to the reference point will not go through any inelastic scattering event before reaching \(x = 0 \). As a result, in the case of electrons, the net flux of carriers at \(x = 0 \) will be equal to

\[
F = \frac{1}{2} v_{th} n(x-\lambda) - \frac{1}{2} v_{th} n(x+\lambda).
\]

\((1.66) \)
Assuming that the electron concentration gradient is small enough so that \(n(x) \) can be approximated by the first-order Taylor series, we can write

\[
F \approx -\lambda v_{th} \frac{dn}{dx}. \tag{1.67}
\]

Since for electrons diffusion current and flow rate of electrons can be related as \(J_{\text{Diff-n}} = -qF \), the diffusion-current density can be written as

\[
J_{\text{Diff-n}} \approx q\lambda v_{th} \frac{dn}{dx}. \tag{1.68}
\]

The factor \(\lambda v_{th} \) is referred to as the diffusion constant of electrons (\(D_n \) in units of \(\text{cm}^2/\text{s} \)).

For the case of holes, with appropriate modifications, the following equation is developed:

\[
J_{\text{Diff-p}} \approx -q\lambda v_{th} \frac{dp}{dx}. \tag{1.69}
\]

1.4.2.3 Einstein Relationship

It is important to understand that the constants of drift and diffusion in terms of current are not independent of one another. At conditions close to thermal equilibrium (i.e., low \(E \)) and for nondegenerate
semiconductors, a simple derivation will result in the famous *Einstein relationship*\(^{62}\) between these constants.\(^{63}\)

According to our earlier discussions,

\[
D_n = \lambda v_{th}^2 = v_{th}^2 \tau_{cn} = v_{th}^2 \frac{\mu_n m_n^*}{q}.
\]

(1.70)

For a one-dimensional semiconductor, with no electric field, according to the *equipartition* theorem,

\[
\frac{1}{2} m_n^* v_{th}^2 = \frac{1}{2} kT.
\]

(1.71)

As a result, based on (1.70) and (1.71),

\[
D_n = \mu_n \frac{kT}{q}.
\]

(1.72)

An identical relationship can also be established between the *diffusion constant* of holes and their *low-field mobility*. As a result, between the four transport factors of *drift–diffusion* formalism, we have

\[
\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q},
\]

(1.73)

which, as indicated already, is referred to as *Einstein relationship*.

This version of *Einstein relationship* is only valid for a *nondegenerate* semiconductor (i.e., the *Maxwellian* semiconductor expressed in (1.21)). However, as proven in Appendix 1.B, for a *degenerate* semiconductor at low electric fields, in terms of *Dirac integrals*, we will have

\[
\frac{D}{\mu} = \frac{kT}{q} \left[2F_{3/2}(\eta)/3F_{1/2}(\eta) \right],
\]

(1.74)

where

\[
F_j(\eta) \equiv \int_0^\infty \frac{\xi^j d\xi}{1 + \exp(\xi - \eta)} \quad \text{and} \quad \eta = \frac{E_f - E_c}{kT}.
\]

(1.75)

Notice that \(F_j(\eta)\), which we saw in Section 1.3.5, is the scaled version of \(F_j(\eta)\) by \(\Gamma(j+1)\).

\(62\) Named after *Albert Einstein*.

\(63\) In Appendix 1.B, we will show how a more sophisticated version of this relationship is also valid without these conditions.
According to the drift–diffusion formalism, the total electron and hole current density terms can be written as

\[
J_n = qn\mu_n E + qD_n \frac{dn}{dx}
\]
(1.76)

\[
J_p = qp\mu_p E - qD_p \frac{dp}{dx}.
\]
(1.77)

Through applying the definitions of quasi-Fermi levels to a nondegenerate semiconductor, we can combine the drift- and diffusion-current terms in one equation:

\[
J_n = n\mu_n \frac{dE_n}{dx}.
\]
(1.78)

Likewise we can write

\[
J_p = p\mu_p \frac{dE_p}{dx}.
\]
(1.79)

The diffusion process, in addition to being instigated by the presence of a finite gradient in dopant and charge-carrier concentration, can also be provoked by the existence of a temperature gradient. This can be clearly seen through the temperature dependence of the quasi-Fermi levels presented in Equations (1.43) and (1.44).

With explicit indication of transport due to a temperature gradient, drift–diffusion transport of electrons can be formulated as

\[
J = nq\mu E + qDn + qST,
\]
(1.80)

where \(S \) is referred to as Soret coefficient.64

Although we have already provided the drift–diffusion formalism in a unified form, it is worth emphasizing again that, especially due to the restrictions of Pauli’s exclusion principle, for degenerate semiconductors, one cannot assume that drift and diffusion are independent processes.

Example

Along the length of a slab of \(n \)-doped germanium with a peak dopant concentration of \(10^{15} \) cm\(^{-3} \), a constant electric field of 100 V/cm is applied. The length of the slab is 1 \(\mu \)m. Assuming that at room temperature along this sample a current of 10 A/cm\(^2\) is flowing in the direction of the electric field, determine the spatial distribution profile of the dopants. Room-temperature values of electron and hole mobility everywhere along the length of this sample are taken equal to 1000 and 800 cm\(^2\)/V s, respectively.

64 Soret coefficient is defined as \(S_n = \mu_n (k/q)n \), and it is named after Charles Soret.
Since the sample is \textit{n-doped}, we start with assuming that the current is being carried by electrons only. Taking the electric field to be in the +x direction, in terms of (1.76),

\[J_n = qn\mu_n E + qD_n \frac{dn}{dx} = +10 \text{ A/cm}^2. \]

Since \(\mu_n = 1000 \text{ cm}^2/\text{V s} \), according to \textit{mass action law},

\[\frac{D_n}{\mu_n} = \frac{kT}{q} \Rightarrow D_n \approx 25.8 \text{ cm}^2/\text{s}, \]

Based on these values,

\[1.6 \times 10^{-19} \left[n(x) \times 1000 \times 100 + 25.8 \frac{dn}{dx} \right] = 10, \]

which yields

\[n(x) = A \exp(-3.88 \times 10^3 x) + 6.25 \times 10^{14} \text{ cm}^{-3}. \]

We assume first that \(N_d \approx n(x) \) and then evaluate the validity of this assumption.

Since the peak of the \textit{donor} concentration is \(10^{15} \text{ cm}^{-3} \), \(n(x=0) \) is set to this value. Accordingly,

\[N_d(x) = 3.75 \times 10^{14} \exp(-3.88 \times 10^3 x) + 6.25 \times 10^{14} \text{ cm}^{-3}. \]

Based on this distribution profile, along the length of the sample stretching from \(x = 0 \) to \(x = 10^{-4} \text{ cm} \), \textit{dopant} concentration changes from \(10^{15} \) to \(8.79 \times 10^{14} \text{ cm}^{-3} \).

Within this range everywhere \(N_d \) is at least an order of magnitude greater than \(n_i (T = 300 \text{ K}) = 2.4 \times 10^{13} \text{ cm}^{-3} \), which validates our earlier assumption of \(N_d(x) \approx n(x) \).

We still have to validate another assumption (i.e., if electrons are the predominant charge carriers). Based on the electron concentration profile, the \textit{hole} concentration profile is evaluated as

\[p(x) = \frac{(2.4 \times 10^{13})^2}{3.75 \times 10^{14} \exp(-3.88 \times 10^3 x) + 6.25 \times 10^{14}}. \]

According to which,

\[J_p = qp\mu_p E - qD_p \frac{dp}{dx}, \]

where \(\mu_p = 800 \text{ cm}^2/\text{V s} \) and \(D_p = 800 \times 25.8 \times 10^{-3} \approx 20.64 \text{ cm}^2/\text{s} \).
Based on these, since both \(n \ll p \) and \((\partial p/\partial x) \ll (\partial n/\partial x) \), \(J_p \) would be much smaller than \(J_n \), which sets electrons as the predominant charge carriers.

1.4.3 Characterization of Low Electric-Field Transport Parameters

Hall measurement is one of the most capable tools in characterizing semiconductors. This tool can be used not only to measure the carrier mobility in a semiconductor but also to reveal the type of its majority carriers and their concentration. Figure 1.21 illustrates a Hall measurement setup. In this setup in presence of both an electric field (which is induced due to the application of bias \(V \)) and the permanent magnetic field, while charge carriers are traversing along, or opposite to, the direction of the electric field (i.e., for the holes and electrons, respectively), they are deflected to the same transverse side of the semiconducting slab. In this deflection, charge neutrality will be imbalanced, which results in induction of a second electric field normal to the first. The balancing act between the Lorentz force imposed on the moving charge carriers by the magnetic field and the force exerted by this secondary electric field (which is referred to as *Hall* field) renders an equilibrium state. Through measuring the polarity and the magnitude of \(V_H \), one can gain insight into the majority carrier type, mobility, and concentration. For example, for an n-type sample the balance of forces yields

\[
E_H = -\frac{J_n}{qn}B. \tag{1.81}
\]

FIGURE 1.21 Schematic depiction of a simple Hall measurement setup. A uniform magnetic field with flux density \(\vec{B} \) is applied perpendicular to the \(x-y \) plane. According to the polarity of the connections to the power supply, a current in the positive \(x \)-direction is fed normal to the \(y-z \) plane of the slab with contact area indicated as \(W \times t \). Based on the indicated directions of deflection for electrons and holes, in the case of p- and n-doped semiconductor, a positive or a negative Hall potential (i.e., \(V_H \)) will be observed on the voltmeter, respectively. Accordingly, the direction of the resulting Hall electric field \(E_H \) defined along the \(y \)-axis will depend on whether the semiconductor is n- or p-type doped.
Likewise, in a p-type sample we have

\[E_H = \frac{J_p}{q\sigma} B. \]

(1.82)

Clearly \(V_H \), which is equal to \(E_H \cdot W \), is positive in a p-type sample and negative in an n-type sample. \(E_H \) is often expressed as \(R_H \cdot J \cdot B \).

In the analysis of Hall measurement data, we have to pay attention to the inherent assumptions of drift-current transport. According to this first-order approximation expressed in (1.81) and (1.82), we have assumed that all carriers have the same mean scattering time. In reality, however, a proper averaging of mean scattering time must be adopted. Formal analysis by the Boltzmann transport equation, in the case of electrons, results in

\[\mu = \frac{q}{m^*} \cdot \langle \frac{v^2 \tau}{\bar{v}^2} \rangle \]

(1.83)

\[R_H = -\frac{1}{q\hbar} \cdot \langle \frac{v^2 \tau^2}{\bar{v}^2 \tau^2} \rangle \frac{\bar{v}^2}{\tau^2}. \]

(1.84)

The symbol \(<\cdot>\) represents the averaging process over the Boltzmann distribution of carriers. As a result, the product of \(R_H \) and conductivity (i.e., \(\sigma \) in units of \(\Omega^{-1} \text{ cm}^{-1} \)) is different from the low-field mobility (i.e., drift mobility) that we have talked about in this section. This product is referred to as Hall mobility.

As a result of these relationships, the ratio of Hall mobility (i.e., \(\mu_H \)) versus drift mobility (i.e., \(\mu \)) can be written as

\[\frac{\mu_H}{\mu} = \frac{R_H \cdot \sigma}{\langle \frac{v^2 \tau^2}{\bar{v}^2 \tau^2} \rangle \frac{\bar{v}^2}{\tau^2}}. \]

(1.85)

This ratio, although not equal to 1, is generally close to 1. Nonuniformity in the distribution of current, temperature nonuniformity across the sample, and lack of an ideal Ohmic contact\(^{65} \) to the semiconductor sample are often the other sources of ambiguity in Hall measurement data.

1.4.4 High Electric-Field Drift Transport

As identified earlier, under high electric fields the semilinear relationship between the drift velocity and the electric field vanishes (i.e., (1.61) and (1.62)). Throughout

\(^{65}\) As shown in Figure 1.21 and more clearly explored in Chapter 2, a metal–semiconductor contact between the outside world (in this case power supply) and the semiconductor is required. The main characters of such a contact are that it presents very little potential drop at the contact-site and behaviorally it follows Ohm’s law (hence the name Ohmic contact).
this section we have already named a few culprits, which we now intend to summarize.

The increase in the amount of excess kinetic energy gained by the average electron (or hole) from the electric field results in further drift of the charge carrier into the conduction band (or valence band). Consequently, the effective mass of the charge carrier and its mobility change. In addition, in some semiconductors, this can cause the migration of electrons from lower valleys to higher valleys of conduction band. At the same time, the increase in energy of the charge carriers plays an important role in modifying the scattering rates and also in activating scattering processes that were not present in the case of lower carrier energies. This excess of energy under high electric-field conditions is often expressed in terms of a quantity referred to as electron temperature (i.e., T_e). This definition is in analogy with the statistical mechanics, notion of kT (where T is the lattice temperature) as a representation of average thermal energy of an electron. In this discussion, one should be careful to distinguish between the notions of lattice temperature and that of electron temperature.

1.4.4.1 Electron Temperature versus Lattice Temperature

In order to understand the development of electron temperature beyond lattice temperature at high electric fields, we shall start with a review of our understanding of thermal equilibrium. Under thermal equilibrium, the equality of charge carriers’ emission and absorption of energy results in a zero-sum gain of energy. This equality is maintained through equality of emission and absorption rates of phonons, which are quantum particles representative of lattice vibrations. Under this condition, the energy distribution is Maxwellian. However, applying an electric field across a semiconductor removes the system from the state of thermal equilibrium (as now charge carriers begin to gain additional energy from the electric field while still emitting some of it through the phonon emission process). As a result, not only for high electric fields but also for low-to-moderate values of electric field, electrons will become more energized than they were under thermal equilibrium. This excess of energy beyond thermal equilibrium is what is explained through the notion of electron temperature. In connection to this excess energy, it must be indicated that even under moderate electric-field conditions, the increase in energy is less than the amount predicted by the laws of electrostatics. This is because the emission rate of phonons is now also on the rise, which will eventually reach steady state for a given electric field by matching the absorption rate. This description partially explains the bowing in the drift velocity versus electric-field characteristics (also known as v_d–E characteristics) at medium values of electric field (Fig. 1.22).

Figure 1.22, in addition to demonstrating the bowing of v_d–E characteristics, shows two other important phenomena: (i) saturation of drift velocity at high electric fields and (ii) peaking of the v_d–E and evolution of a negative differential mobility region.

66 Also referred to as satellite valley.
67 Differential mobility is defined unlike the linear mobility and is calculated around a given value of electric field as $\Delta v/\Delta E$.
in the intermediate range of electric field only for electrons (and not holes) in some semiconductors.

While for small electric fields the low-field carrier mobility remains descriptive of the achievable carrier drift velocity. Figure 1.23 behaviorally presents the dependence of this parameter on temperature under the dominance of a number of scattering processes (which will be dealt with especially in Section 1.7).

FIGURE 1.22 A behavioral depiction of v_d–E characteristic for electrons and holes in different semiconductors. Scales are linear.

FIGURE 1.23 Correlation between the typically observed temperature dependences of low-field carrier mobility in semiconductors and the dominance of scattering processes. Scales are linear.
For moderate values of electric field, which do not result in transfer of electrons from one valley to the next, we can equate the rates of emission and absorption of energy at a given electric field in order to quantify the *electron temperature*. For the relatively simpler cases of Ge and Si, which are semiconductors with no *intervalley* electron transfer, balancing the rate equations results in the following definition for the ratio of *electron temperature* to *lattice temperature*:

\[
\frac{T_e}{T} = \frac{1}{2} \left[1 + \sqrt{1 + \frac{3\pi}{8} \left(\frac{\mu_n E}{c_s} \right)^2} \right].
\]

(1.86)

In terms of which,

\[
v_{dn} = -\mu_n E \sqrt{\frac{T}{T_e}}.
\]

(1.87)

In these equations, \(\mu_n\) is the low-field electron *mobility* and \(c_s\) represents the velocity of sound. As shown in (1.86) and (1.87), for moderate fields (i.e., when the linearly calculated *drift velocity* is comparable to the sound velocity), the *electron temperature* increases beyond the *lattice temperature*. As a result, *drift velocity* will become smaller than the linearly predicted value of \(\mu_n E\).

Other more general frameworks have also been developed for determining the *electron temperature*. With certain approximations, it can still be proven that the distribution function of electrons under conditions far from *thermal equilibrium* follows the form of *Maxwell–Boltzmann* statistics. The major difference is that the *lattice temperature* (i.e., \(T\)) should be replaced by the *electron temperature* (i.e., \(T_e\)), where approximately

\[
T_e \approx T \left(1 + \frac{E^2}{E_C^2} \right).
\]

(1.88)

In (1.88) \(E\) is the electric field and \(E_C\) is called the *critical electric field* (which for the case of electrons in *silicon* is about \(10^4\) V/cm). At this *critical* electric field, \(T_e\) is approximately equal to \(2T\). \(3/2kT_e\) is a measure of average energy of electron. This can result from the *Boltzmann transport equation*, assumption of \(E-k\) diagram, and *scattering* in terms of the *Fermi golden rule*.

In the aforementioned derivation of the *Einstein relationship* in Section 1.4.2.3, it has been assumed that the first-order Taylor series representation of electron concentration is sufficient. However, in certain situations, such as under high electric fields, this picture is not necessarily acceptable. Obviously, the aforementioned derivation was performed from a *thermal-equilibrium* perspective in which it was assumed that kinetic energy is equal to thermal energy. Such an assumption, which ignores *drift energy*, is not permissible under high electric fields. However, under high electric fields, one can establish a relationship close to the *Einstein relationship* by...
simply replacing the lattice temperature with the electron temperature (i.e.,
\(D/\mu = (kT_e/q)\)). This is valid only for nondegenerate (i.e., Maxwellian) semiconductors.

The electric fields encountered in a transistor can be very well in excess of \(E_C\). As a result, electron temperature can be much higher than lattice temperature. However, we should avoid confusing the electron temperature with the actual device temperature. A transistor with thousands of degrees of electron temperature is still cool to the touch. For electrons to leave the crystal and have their temperature felt, they have to overcome a work function. This work function itself is typically several electron volts, which interestingly enough corresponds to thousands of degrees Kelvin (i.e., just like the \(T_e\)). It should also be mentioned that the earlier formalism loses validity at extremely high fields (i.e., \(E \sim 10^6\) V/cm). At such high electric fields (and as a result high energies), the density of states function becomes extremely nonlinear. However, in the derivation of the above, a DOS function such as (1.14) has been employed. For those high electric-field cases, numerical techniques such as the Monte Carlo method should be used to calculate the electron temperature.

As a result of the discussions on electron temperature, it should be indicated that in the definition of quasi-Fermi levels, these energy levels are functions of \(T_e\) and not the lattice temperature.

1.4.4.2 Steady-State Velocity Overshoot and Saturation At higher electric fields, increase in the carrier energy (and carrier temperature) triggers the interaction of carriers with other sources of scattering known as optical phonons. This is an interaction that is, however, not incorporated into the balance equations employed in the derivation of (1.86) and (1.87). The optical-phonon emission process, being a very efficient process of removing excess energy (beyond that of optical phonons) from carriers, results in a drift velocity quite independent of electric field (i.e., saturation of \(v_d - E\)). For all semiconductors, such a field-independent saturation of drift velocity is observed for both electrons and holes at high electric fields (Fig. 1.22). The onset of this saturating behavior is determined by the optical-phonon emission energy of the given semiconductor.

Saturation velocity, being determined by optical-phonon emission scattering, is essentially independent of doping concentration. It is also quite independent of the semiconductor itself. The reason for the similarity of saturation velocity of different semiconductors is that at high energies, corresponding to the high electric fields, the DOS functions of all semiconductors are quite similar. In spite of this, the saturation velocity decreases with increase in temperature, since under these conditions at lower electric fields, electrons acquire a sufficient amount of energy for triggering the optical-phonon emission process.

As pointed out on Figure 1.22, for the case of electrons in only direct-bandgap semiconductors, a more interesting characteristic emerges before velocity saturation takes over. In these semiconductors, due to the migration of the energetic electron

68 We will pay a more in-depth attention to these scatterers, among others, in Section 1.7.3.7.

69 Called also hot electrons, in connection to the notion of electron temperature.
from lower valleys of lower effective mass70 to higher valleys of higher effective mass, a region of negative differential mobility develops. This is because while such a transfer is taking place, electron energy is still insufficient for interaction with optical phonons. To maintain the value of kinetic energy as a consequence of this migration, since electrons are feeling heavier, the drift velocity will become less as the electric field is increasing. This region of negative differential mobility provides fascinating opportunities for designing microwave sources and oscillators in forms such as Gunn diodes. Due to the absence of multiple valleys in the valence band, negative differential mobility is not observed on drift-transport characteristics of holes.

The saturation velocity for the case of Si and Ge, which have a simple saturating v_d–E characteristic, is

$$v_s = \sqrt{\frac{8 E_p}{3\pi m_0}} \approx 10^7 \text{ cm/s}, \quad (1.89)$$

where E_p is the optical-phonon energy (which as indicated in Table 1.4 is 63 meV in the case of Si).

Oftentimes, approximate closed-form analytical models are used to explain the variation of drift velocity versus electric field in the regions of small, medium, and high electric fields. One such an empirical relationship used for Si is

$$v_d = \frac{\mu E}{1 + (\mu E/v_s)^C_2 1/C_2}. \quad (1.90)$$

The constant C_2 is a temperature-dependent fitting parameter, which is in the range of two for electrons and one in the case of holes. Evidently, (1.90) represents the drift velocity as an absolute value.

For the case of the direct-bandgap semiconductor of GaAs, which is the most investigated III–V semiconductor,71 due to the presence of negative differential mobility, the v_d–E characteristic is more complicated (i.e., as suggested in Fig. 1.22). As indicated already, in order to explain the hump in this characteristic, careful knowledge of the E–k diagram and also optical-phonon energy is required. While in the lower valley, which is located at the center of Brillouin zone (i.e., Γ-valley), electron mobilities as high of 8000 cm2/V s can be achieved at room temperature, the satellite valley (located along the $<111>$ axes) offers an electron mobility in the range of 100 cm2/V s. This satellite valley is located 0.3 eV above the lower valley. The electron effective mass in the lower and the satellite valleys are equal to 0.068m_0 and 0.55m_0, respectively.

70That is, the central valley of the Brillouin zone: Γ valley.

71Unlike silicon, which is a monatomic semiconductor, GaAs is a compound semiconductor composed of atoms from groups III and V of the periodic table (hence the name III–V).
1.4.4.3 Nonsteady-State Velocity Over- and Undershoot

With only one exception mentioned in the opening of Section 1.4, all of our discussions are thus far concerned with steady-state drift velocity. In order to arrive at steady state, charge carriers need to go through a sufficient number of scattering events. For devices of shorter length scale than the mean free path, however, such a steady-state condition will not be achieved. Under such circumstances, drift velocity is observed to reach values larger than the steady-state values. This is referred to as velocity overshoot. This condition is instigated by what was called earlier in this section ballistic transport. Under this condition, in analogy to our discussion on low-field mobility, we can say that velocity increases with time and as a result with distance according to $\approx (qEt/m^*)$. However, it should be emphasized that these values, which are higher than the steady-state values, are only attained momentarily, within a limited span of space and time. Besides the phenomenon of velocity overshoot, an undershoot in the nonsteady-state drift velocity is also possible.

Generally speaking, these nonsteady-state phenomena are not just encountered in nanoscale devices. Instead they are encountered when carriers are suddenly exposed to a large variation of electric field. For a Γ-valley electron suddenly exposed to a high electric field, electron energy can very well exceed the intervalley separation, while due to the short time of travel, an electron does not get a chance to scatter to a higher valley. As a result, drift velocity exceeds the value it could obtain under steady state and in the higher valley (i.e., of higher effective mass). This is the case of the velocity overshoot. However, if an electron originally occupying the higher valley (of higher effective mass) is suddenly introduced into a region in which electric field is suddenly reduced, electron velocity remains much lower than the steady-state value that it could obtain from that electric-field strength. This happens because the electron has not received a chance to scatter to the lower valley. This is the case of the velocity undershoot.

1.4.4.4 Summary of Observations on the Choice of Carrier-Transport Formalism

As observed through the so far presented discussions in Section 1.4, charge-carrier transport is a sophisticated problem. In carrier-transport problem, interactions of charge carriers with scattering potential of a variety of sources (e.g., ionized impurities, acoustic phonons, optical phonons, polar optical phonons, piezoelectric polarization, etc.),\(^2\) internally induced and externally applied electric fields are investigated. While in large-size electronic devices, oftentimes phenomenological description of carrier transport in terms of the drift–diffusion formalism is capable of providing sufficient insight into the problem, in smaller-size devices (and also where the electric-field variation is strong), effects such as nonsteady-state velocity overshoot (or undershoot) and ballistic transport are required to be considered.\(^3\)

\(^2\) Only some of which are named prior to this in the text. Section 1.7 will deal with a larger number of these processes at a deeper level.

\(^3\) Later on, where appropriate, we will add more items to this list, such as real-space transfer.
The ongoing trend in the design of transistors of scaled dimensions has rendered the drift–diffusion formalism more and more insufficient. As an intermediate step in incorporation of some of these carrier-transport effects, steady-state models of drift characteristics have been used to incorporate effects such as transferred electron and velocity saturation (which as noticed earlier are due to take over at intermediate to high electric fields). In these models of carrier transport, mobility and diffusion constant are defined as functions of local electric field. Accordingly, even beyond low electric fields, the drift velocity in terms of the instantaneous relationship to electric field is identified using (1.61) and (1.62). On the basis of this high-field linear mobility, Einstein relationship is then employed to produce the high electric-field diffusion constant.

However, as it was mentioned earlier, reduction of the size of the channel along which carriers are to fly (compared to mean free path) renders even these intermediate models insufficient. This is because under these circumstances, the steady-state assumption vanishes. At the same token carrier transit time becomes comparable to energy relaxation and momentum relaxation time constants. Under these conditions, carrier distribution functions determined by the local value of electric field are no longer valid, and carrier transport both in time and in space is nonlocal. As a result, the device’s current characteristics cannot be explained by the continuity equations (i.e., Equations (1.49) and (1.50)).

Now that we have presented some of the limitations of different formalisms of carrier transport in semiconductor devices, it is time to point out that in design and analysis of electronic devices, the first step is the selection of the appropriate transport formalism. This process of selection is done in terms of comparison of device sizes to those characteristic length scales identified in Section 1.4.2 and also the carrier flight time with the relevant timescales. In the case of silicon as the semiconductor medium of carrier transport, this is summarized in Figure 1.24. In this regard, for a rapidly changing potential on scale of the lattice constant, only a full quantum mechanical treatment, and not a semiclassical effective-mass approach, will be sufficient. In this quantum mechanical treatment, the wave equation with incorporation of all potentials (i.e., including scattering, externally applied and internally induced) should be solved.

So far in our discussion, we have invoked a few properties of Si and GaAs. Table 1.5 provides an essential summary of a few of their important carrier-transport properties.

1.4.5 Thermionic and Field Emission

In macroscale devices, not all components of carrier transport are explained through the drift–diffusion formalism. There are two other frequently encountered modes of current conduction in semiconductor devices: thermionic and field emission. Thermionic and field emission modes evolve in association with the presence of a potential barrier.

In the case of the thermionic emission, existence of a potential barrier restricts the movement of majority charge carriers normal to the barrier, especially if the carrier
temperature is low (and as a result the kinetic energy of the charge carrier is less than the barrier height). Nevertheless, energized (i.e., hot) charge carriers can rise over the barrier and move across it. It is due to this temperature dependence that the mechanism of carrier transport is referred to as thermionic emission. In this mode of transport, the critical parameter is the height of the potential barrier and not its shape. An example is provided in Figure 1.25.

TABLE 1.5 A Summary of Important Transport Properties of Si and GaAs

<table>
<thead>
<tr>
<th>Property</th>
<th>Si</th>
<th>GaAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal acoustic velocity (cm/s)</td>
<td>9.04×10^5</td>
<td>5.24×10^5</td>
</tr>
<tr>
<td>Transverse acoustic velocity (cm/s)</td>
<td>5.34×10^5</td>
<td>3.0×10^5</td>
</tr>
<tr>
<td>Electron acoustic deformation potential (eV)</td>
<td>9.5</td>
<td>7.01 (Γ-valley), 9.2 (L-valley), and 9.0 (X-valley)</td>
</tr>
<tr>
<td>Electron optical deformation potential (eV/cm)</td>
<td>—</td>
<td>3.0×10^8 (L-valley)</td>
</tr>
<tr>
<td>Hole acoustic deformation potential (eV)</td>
<td>5.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Hole optical deformation potential (eV/cm)</td>
<td>6.0×10^8</td>
<td>6.48×10^8</td>
</tr>
</tbody>
</table>
Thermionic emission is observed in a variety of semiconductor devices including Schottky barrier diodes. Ideally, for this mechanism to be the controlling mode of transport, the carrier transport in the barrier is supposed to be without scattering. In other words, carriers injected into the barrier should go through this material ballistically (i.e., the barrier width is to be smaller than the mean free path), instead of following the drift–diffusion transport. In addition to this, injected carriers should be moved out of the barrier on the opposite interface (which is often an interface with a metal), without scattering.

In order to quantify the thermionic current, we should remind ourselves of the fact that according to Fermi–Dirac statistics, while the number of carriers with energy values deeper into the conduction and valence band decreases with the separation from E_c and E_v, these carrier concentrations are not equal to 0. In addition, the carrier concentration in the states deeper above E_c or below E_v increases as the carrier temperature increases. As a result, the integrated number of carriers with energy values above the barrier height increases with this temperature. These carriers, which are not confined by the barrier, can now participate in current conduction through the thermionic emission process. The electron current density over a barrier of height $q\phi_B$ can be quantified as

$$J_n = A^* \cdot T^2 \cdot \exp \left(\frac{-q\phi_B}{kT} \right),$$

where A^*, which is often referred to as effective Richardson constant, is defined as

$$A^* \equiv \frac{4\pi q m^* k^2}{\hbar^3}.$$
As suggested earlier, the thermionic emission process is not the only mode of transport through a potential barrier. Transport through such a barrier can be assisted, or even overwhelmed, by another mode of carrier transport, which is rooted in the quantum mechanical tunneling. These modes, which are known as field emission and field-assisted thermionic emission, are illustrated in Figure 1.26. In those cases, A^* will be modified by processes such as reflection and tunneling of the electron wave.

Quantum tunneling is rooted in the wave nature of electrons. According to quantum mechanics, even charge carriers with less energy than the barrier height exhibit a finite probability of tunneling through the barrier. According to the shape of the barrier, at each energy value, the effective thickness of the barrier that carriers need to tunnel through is different. Hence, unlike thermionic emission this mode of transport is quite dependent on the shape of the barrier. The smaller the effective width of the barrier at a certain energy value, the larger is the tunneling probability for charge carriers with that much energy. This is an exponential dependence.

Although the potential barriers often encountered in semiconductor devices do not have a rectangular form, for the sake of simplicity, it is worth considering the simple case of a rectangular barrier of height V_0 and of thickness W to describe the quantum tunneling process. This situation is illustrated in Figure 1.27. According to quantum mechanics, in this one-dimensional scenario, electrons on either side of the potential barrier are expressed in terms of propagating waves. However, at positions within the thickness of the barrier, the time-independent portion of the wave function follows a decaying exponential represented by $\exp(-|kx|)$, where wave number $k = \sqrt{\frac{2m^*(V_0-E)}{\hbar^2}}$. In this case, the energy of the electron (i.e., E) is less than...
the barrier height \(V_0 \). Establishing the boundary conditions (i.e., in terms of continuity, single valuedness, and finiteness of the wave function and its first derivative) results in tunneling probability of

\[
T_t = \left[1 + \frac{V_0^2 \cdot \sinh(|k|W)}{4E(V_0 - E)} \right]^{-1} \approx \frac{16E(V_0 - E)}{V_0^2} \cdot \exp \left(-2\sqrt{\frac{2m^*(V_0 - E)}{\hbar^2}} W \right). \tag{1.93}
\]

In the case of more complicated barrier shapes, WKB\(^{76}\) approximation is employed as a simplification over solution of the Schrödinger equation. This approximation is applicable where potential \(V(x) \) is not varying rapidly with position. In terms of this approximation, according to the schematics of Figure 1.28, the tunneling probability can be calculated by

\[
T_t \approx \exp \left\{ -2 \int_{x_1}^{x_2} |k(x)| dx \right\} = \exp \left\{ -2 \int_{x_1}^{x_2} \sqrt{\frac{2m^*}{\hbar^2} [V(x) - E]} dx \right\}. \tag{1.94}
\]

Knowing the tunneling probability one can calculate the tunneling current density \(J_t \) by integration versus energy over the product of three components: the tunneling probability, the number of carriers at each value of energy at the originating side of the barrier, and the number of empty states at that value of energy on the receiving side of the barrier:

\[
J_t = \frac{qm^*}{2\pi^2\hbar^3} \int F_E \cdot N_E \cdot T_t \cdot (1 - F_R) \cdot N_R dE. \tag{1.95}
\]

\(^{76}\)Named after Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin.
$F_E, F_R, N_E,$ and N_R stand for the Fermi–Dirac distributions and densities of states in the emitting and receiving sides of the barrier, respectively. This framework describes the mode of transport, which is purely explicable in terms of quantum tunneling (i.e., field emission).

Transport through a potential barrier can also take place through a mixture of thermionic- and field emission processes. In this fashion, whereas carriers are thermally raised behind the barrier, depending on the shape of the barrier, they see an effective reduction in the barrier width and as a result an improvement in tunneling probability. As suggested earlier, this mode of carrier transport is known as thermionic field emission or field-assisted thermionic emission.

1.5 BREAKDOWN IN SEMICONDUCTORS

In discussing the high electric-field effects on electrons, the other mechanism that is of interest is impact ionization. Intervalley scattering is not the only outcome of electrons becoming hot (i.e., rise in T_e). As electrons become hot, they also become capable of breaking covalent bonds and producing EHP. This is shown in Figure 1.29. This happens in the form of an avalanche. One hot charge carrier produces two more charge carriers, and if the high electric-field region is large enough, each of these charge carriers will develop a chance for producing an extra EHP. As a result, carrier concentration will multiply itself. Due to this, the other name for this process of EHP generation is avalanche breakdown. The minimum amount of energy needed for a hot carrier to instigate this process should be larger than the bandgap of the semiconductor. Assuming the same effective mass for electrons and holes, this energy can be easily proven to be 50% in excess of the bandgap (i.e., $1.5 \times E_g$).
The avalanche multiplication process is characterized by an ionization rate, which is defined by the number of EHP generated while the electron is traversing a unit of distance. Assuming the electron velocity to be v_n, this rate can be written as

$$\alpha_n = \frac{1}{n} \frac{dn}{dt} = \frac{1}{nv_n} \frac{dn}{dt}.$$ (1.96)

In terms of this ionization rate and a similarly defined rate for holes, the time variation of electron and hole concentrations can be written as

$$\frac{dn}{dt} = \frac{dp}{dt} = \alpha_n n v_n + \alpha_p p v_p = \frac{\alpha_n J_n}{q} + \frac{\alpha_p J_p}{q}.$$ (1.97)

According to the continuity equation, we can also have

$$\frac{dJ_n}{dx} = \alpha_n J_n + \alpha_p J_p,$$ (1.98)

and

$$\frac{dJ_p}{dx} = -\alpha_n J_n - \alpha_p J_p.$$ (1.99)

Based on these, the spatial derivative of $J_n + J_p$ remains 0, resulting in

$$\frac{dJ_n}{dx} = -\frac{dJ_p}{dx}.$$ (1.100)
As expected, the ionization rates have a strong dependence on electric field. The following physical expression represents this dependence:

\[
\alpha(E) = \frac{qE}{\varepsilon_1} \exp \left\{ -\frac{E_1}{E[1+(E/E_P)]+E_T} \right\}
\]

(1.101)

In this equation \(\varepsilon_1 \) is the high-field effective ionization threshold energy. \(E_T \), \(E_P \), and \(E_l \) stand for the electric-field strength needed by carriers to overcome the decelerating effects of thermal, optical phonon, and ionized-impurity scattering, respectively. In the case of silicon, \(\varepsilon_1 \) for electrons and holes is equal to 3.6 and 5 eV, respectively. For a limited range of electric field, the above equation can be replaced by the following simpler equations:

\[
\alpha(E) = \frac{qE}{\varepsilon_1} \exp \left(-\frac{E_1}{E} \right), \text{ if } E_T < E < E_P
\]

(1.102)

or

\[
\alpha(E) = \frac{qE}{\varepsilon_1} \exp \left(-\frac{E_1 \cdot E_P}{E^2} \right), \text{ if } E > E_P \text{ and } E > \sqrt{E_P \cdot E_T}.
\]

(1.103)

Figure 1.30 depicts the experimentally observed ionization rates for Ge, Si, SiC, and GaN.

FIGURE 1.30 Approximate variation of ionization rate of electrons versus inverse of the electric field for Ge, Si, SiC, and GaN at room temperature. Adapted from Sze and Ng (2006, p. 41). Copyright 2006, John Wiley and Sons. Reprinted with the permission of the John Wiley and Sons.
In electronic devices, in connection to the process of *avalanching*, we often speak of *avalanche breakdown voltage*. This refers to the voltage difference applied to the terminals of a device that causes the induction of electric fields beyond the onset of an *avalanche* process. Production of large concentrations of *charge carriers* induces heating and either permanent structural damage to the electronic device or temporary malfunction.

As expected from (1.101), for larger *bandgap* materials the *ionization rates* are smaller. As a result, wide *bandgap* semiconductors such as SiC, GaN, AlN, and ZnO are deemed suitable for high electric-field/high-voltage applications. In addition to *bandgap*, *optical-phonon* energy is also an important factor in determining the *breakdown voltage*, which as suggested earlier is the minimum voltage needed to create a rush of current. The higher the *optical-phonon energy*, the higher the chance of *charge carriers* becoming hot, and as a result, the smaller would be the applied voltage causing *breakdown*. GaN, which is a wide *bandgap* material, possesses a large value of *optical-phonon energy*. These two factors promote adversary agenda with regard to the *breakdown voltage*.

With respect to *ionization rates*, it is also important to mention that at a constant electric-field *ionization energy* is a declining function of temperature. This is due to the fact that at high temperatures, *phonon scattering* deteriorates the chance of *carriers* becoming hot.

The other mechanism instigating *breakdown* at high electric fields is Zener77 *breakdown*. In this mechanism, the high electric field directly breaks covalent bonds and produces a large number of *EHPs* needed to create a rush in current.

The *impact ionization* process, unlike the Zener *breakdown* mechanism, is an avalanching process, which is why it requires *carriers* to travel a distance multiple times longer than the *mean free path*. As a result of this requirement, *avalanche breakdown* can only happen in devices that have a relatively long high electric-field region.

1.6 CRYSTALLINITY AND SEMICONDUCTOR MATERIALS

At the beginning of this chapter, it was pointed out that while from the point of view of crystallinity semiconductors can be found in *amorphous*, *polycrystalline*, or *monocrystalline* forms, *monocrystalline* semiconductors are often preferred in electronic applications. An interesting question to address in dealing with semiconductor devices, which is at the root of semiconductor electronics, is: why should we prefer *monocrystalline* semiconductors over *polycrystalline* or *amorphous*?

The reason for this choice is the short wavelength of electrons. As a result of this short wavelength, *charge-carrier transport* is critically dependent on the atomic arrangement in the *solid*. The higher the crystalline order, the better the *transport* properties. As invoked earlier, according to *Bloch* theorem, for a perfect *monocrystalline*

77 Named after Clarence Zener.
solid electrons travel as propagating waves, and the atoms in the crystal essentially pose no cause for scattering of the electron wave. However, in contrast to electrons, photons have a longer wavelength and are not impacted by the mere short-range order of the host material. As a result, noncrystalline materials such as glasses are suitable for optical applications while not so for electronic applications.

An important line of research in the area of semiconductor electronics focuses on crystalline growth of semiconductor materials. Interaction of these crystals with X-rays in the form of diffraction is one of the capable tools for studying the degree of crystallinity of a solid. X-rays are suitable for this purpose because their wavelengths are very close to the lattice constants of the semiconductor crystals.

The structure of an ideal crystal can be explained in terms of copying and pasting of a building block or a so-called unit cell according to a certain translation vector,

$$\vec{r}' = \vec{r} + u_1 \vec{a}_1 + u_2 \vec{a}_2 + u_3 \vec{a}_3,$$ \hspace{1cm} (1.104)

where u_1, u_2, and u_3 are the three arbitrary integers, \vec{r} is the position of an arbitrary point in the building block, and \vec{a}_1, \vec{a}_2, and \vec{a}_3 are referred to as the translation vectors. This is schematically presented in Figure 1.31.

![Figure 1.31](image-url)
1.6.1 Bravais Lattices

In the representation of (1.104), considering all possible integer values taken by \(u_1, u_2, \) and \(u_3 \), an infinite three-dimensional space has to be completely filled (i.e., with no voids). This requirement imposes certain restrictions on the degree of symmetry of the unit cells of a crystal. For example, while one, two, three, four, or sixfold rotational symmetry is allowed, five and seven are inadmissible (see Fig. 1.32). The degrees of symmetry for a given semiconducting crystal have considerable importance in its carrier-transport properties.

These building blocks are often explained in terms of a lattice and a basis. While lattice is the abstract arrangement of points in space representing a block, basis refers to the atoms assigned to these points. An infinite number of building blocks can be proposed for constructing a crystal. This is shown in Figure 1.33. The smallest of all these building blocks (or unit cells) is referred to as a primitive cell. While the number of atoms assigned to a primitive cell and its volume (which is identified by the translation vectors as \(a_1 \times a_2 \times a_3 \)) are unique, the vectors representing the primitive cell are by no means unique. An easy way to envision a primitive cell is through following the Wigner–Seitz procedure. In the Wigner–Seitz procedure, the boundaries of the primitive cell are determined by the intersection of imagined planes normal to the lines connecting a given lattice point to all its neighboring points. In the case of a two-dimensional lattice, this is illustrated in Figure 1.34.

Generally speaking, different lattice types, which are explained in terms of lattice and basis, are referred to as Bravais lattices. In the case of three-dimensional

![FIGURE 1.32](image)

Schematic demonstration of inability of fivefold symmetry in filling of an infinite space.

78 The primitive cells produced according to this procedure, after Eugene Wigner and Frederick Seitz, are referred to as Wigner–Seitz cells.

79 Named after Auguste Bravais.
FIGURE 1.33 A schematic depiction of lattice and basis on a two-dimensional *Bravais lattice*. Atoms are represented by the dark circles. While as examples the parallelograms represented by a pair of vector \mathbf{a}_1^n and \mathbf{a}_2^n for $n = 1–4$ represent various primitive cells for this 2-D crystal, the parallelogram represented by \mathbf{a}_1^5 and \mathbf{a}_2^5 owing to its twice as large the area does not represent a primitive cell.

FIGURE 1.34 Drawing of the Wigner–Seitz primitive cell for a two-dimensional lattice. In this case, instead of envisioning a volume defined by the intersection of normal planes passing through the middle of the lines connecting neighboring atoms of the crystal, a primitive cell is formed by the intersection of normal lines passing through these points on the plane of the 2-D crystal. This plane is marked in gray, where atoms are presented by the dark circles.
lattices, the number of lattice types is restricted to 14. This is due to the limitations posed by the point symmetry groups. These lattice types are indicated in Table 1.6. Out of these 14 lattice types, only two (which belong to cubic and hexagonal systems) are of interest in solid-state electronics and optoelectronics.

1.6.1.1 Hexagonal Crystals

In the hexagonal system, the unit cell is in the form of a right prism. Figure 1.35a illustrates this right hexagonal prism through indication of 14 atoms, 7 arranged on each of the two basal hexagons. The separation between the two basal hexagons is referred to as c (which clearly denotes the height of the hexagonal prism). In order to clearly imagine this structure, envision seven identical atoms on a plane, six of which are centered at the six corners of a hexagon and one sitting right in the middle. If we imagine the atoms as hard spheres, in the so-called hexagonal close-packed (or hcp) structure, these spheres are supposed to tangentially touch each other. Now looking from above normal to this plane, we see cavities among the spheres. Obviously in the right prism, from this angle the seven atoms of the top basal hexagon will also have their centers coincide with those of the bottom basal hexagon.

The unit cells of many important semiconductors are formed through interpenetration of two of these hexagonal prisms according to a certain translation vector. As a result of this interpenetration, a second layer of atoms will also appear between the two basal hexagons of the first prism. As suggested in Figure 1.35b, the centers of these atoms coincide with the identified set of cavities. In terms of the vectors identified in Figure 1.35a, the second hexagonal prism is displaced by $2\mathbf{a}_1^* / 3 + \mathbf{a}_2^* / 3 + \mathbf{a}_3^* / 2$. As shown in this figure, \mathbf{a}_3^* has a magnitude equal to c and is identified normal to the basal hexagon. \mathbf{a}_1^* and \mathbf{a}_2^* defined in the basal plane have an

Table 1.6 The Fourteen 3-D Lattice Types

<table>
<thead>
<tr>
<th>Crystalline System</th>
<th>Number of Admissible Lattices</th>
<th>Relationships between the Sizes of the Axes of the Cell (a_1, a_2, a_3) and the Angles Defined Sequentially between These Axes (α, β, and γ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>1</td>
<td>$a_1 \neq a_2 \neq a_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha \neq \beta \neq \gamma$</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>2</td>
<td>$a_1 \neq a_2 \neq a_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = \gamma = 90^\circ \neq \beta$</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>4</td>
<td>$a_1 \neq a_2 \neq a_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = \beta = \gamma = 90^\circ$</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>2</td>
<td>$a_1 = a_2 \neq a_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = \beta = \gamma = 90^\circ$</td>
</tr>
<tr>
<td>Cubic</td>
<td>3</td>
<td>$a_1 = a_2 = a_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = \beta = \gamma = 90^\circ$</td>
</tr>
<tr>
<td>Trigonal</td>
<td>1</td>
<td>$a_1 = a_2 = a_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = \beta = \gamma < 120^\circ, \neq 90^\circ$</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>1</td>
<td>$a_1 = a_2 \neq a_3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = \beta = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\gamma = 120^\circ$</td>
</tr>
</tbody>
</table>
equal magnitude, which we denote as a, defined at 120° from one another. This crystal structure is known as wurtzite. In order to guarantee maximum sphere packing, c/a should be equal to $\sqrt[3]{8/3}$. This condition identifies an ideal hcp crystal.

1.6.1.2 Cubic Crystals The cubic system can be in the forms of simple cubic, body-centered cubic (or BCC), and face-centered cubic (or FCC). Shared between these three lattice types is a cube with edge length a (which is known as the lattice constant). While in a unit cell of simple cubic crystals only eight atoms are present (each centered at one of the eight corners of the cube), in BCC an extra atom is added to the middle of the cube. In FCC, six extra atoms are centered in the middle of the six faces of the cube. The atomic arrangements of these cubic lattice types are illustrated in Figure 1.36. A number of important characteristics of cubic lattices are summarized in Table 1.7.

Named after Charles-Adolphe Wurtz.
Among the cubic crystals, FCC Bravais lattice is the lattice type that explains the largest number of semiconductors of interest in optoelectronics and electronics (e.g., Si, Ge, GaAs, AlAs, InP, etc.). However, as suggested already, not all semiconductors of interest are explained by the FCC Bravais lattices. Many semiconductors, and also metals, crystallize in form of hcp structures (e.g., BN, AlN, GaN, SiC, etc.).

Some semiconductors such as GaN can be grown in both cubic and hexagonal forms.
Silicon, which is the most popular semiconductor, has a lattice type that results from interpenetration of two identical FCC lattices. Each of these FCC lattices is referred to as a sublattice. The translation vector between the two FCC sublattices, in terms of the lattice constant a, is $(a/4, a/4, a/4)$. The crystal structure of silicon, which is constructed in this fashion, is referred to as diamond (since this is also the crystal structure of diamond). This is illustrated in Figure 1.37. Germanium also crystallizes in this form, although with a different lattice constant.

Whereas other important semiconductors such as GaAs and InP are also formed through interpenetration of two FCC sublattices, in their cases the two sublattices are not identical. In these cases, one sublattice has metallic atoms from group III of the periodic table (e.g., Ga and In) as its bases, while the other one has group V atoms (hence the name III–V semiconductors). These crystals are referred to as zinc blende.\footnote{Named after the mineral zinc blende (sphalerite).}

In contrast to silicon and germanium, which are known as elemental semiconductors, those semiconductors in which more than one atom is present in their undoped structures are referred to compound semiconductors. There are compound semiconductors that are cubic and those that are hexagonal. There are those such as GaAs that are III–V and those such as ZnO that are II–VI. There are those such as InP that are...
binaries and those such as $Ga_{x}In_{1-x}P$ (i.e., x part Ga, $1-x$ part In) that are ternaries.83

Example

Calculate the volume density of the atoms in a diamond crystal of lattice constant a.

Since according to Figure 1.37 in a diamond crystal out of the 18 atoms associated with the cubic unit cell of volume a^3 only four completely reside within this volume while eight atoms share only 1/8th of their volume with the cube and the other six share half of their volume, the volume density is expressed as $\frac{4 + \frac{8}{8} + \frac{6}{2}}{a^3} = \frac{8}{a^3}$.

In this evaluation we have taken the atoms as hard spheres.

1.6.1.3 *Miller Indexing System*
Due to differences in atomic arrangement along different directions of a lattice, carrier transport will be dependent on the alignment of the designed channel of the device with the crystalline axes. For that reason, it is important to use an indexing system to distinguish between different directions in a crystal. This system is known as the *Miller index*.84 This indexing system is used to denote different planes and directions in a crystal.

To identify the *Miller indices* for a plane in a cubic crystal, the following procedure is used:

- Choose a *Cartesian* coordinate.
- Find the intersection of the given plane with the three axes of the coordinate.
- Construct a vector composed of the inverses of the intersections with x-, y-, and z-axis.
- Multiply this vector by the smallest common denominator.
- The resulting vector, which is often referred to as (hkl), refers to the aforementioned plane.

In a cubic crystal direction normal to the plane (hkl) is denoted by $[hkl]$. This is not generally extendable to all crystalline types. This procedure is shown schematically in Figure 1.38a.

In this procedure, the choice of the *Cartesian* coordinate was an arbitrary one. Due to this and the existing degrees of *symmetry* among different crystals, there are a number of equivalent planes and directions in a crystal. The existence of these equivalencies is a source for *degeneracy* in crystals, with which we have already made an acquaintance in Section 1.2.1. As a result of this *degeneracy*, (hkl) refers to a group of identical planes, and $\langle hkl \rangle$ denotes a group of identical directions.

Since many semiconductors crystallize in the hexagonal form, it is also of interest to indicate how the planes and directions in the *hexagonal unit cells* are indexed. The adopted indexing system in these cases is represented in terms of four digit indices known as *Miller–Bravais* indices. In dealing with *hexagonal* crystals, instead of orthogonal

83 We can equally well have more than three atoms in a *compound.

84 Named after *William Miller*.

Note: The above text is a transcription of the given image content, focusing on the key points and ensuring readability. Further detailed explanations may be necessary for a complete understanding of the context. The references to figures and further details are indicated where applicable.
coordinates, three nonorthogonal basis vectors (i.e., \vec{a}_1, \vec{a}_2, and \vec{a}_3) in the basal plane of the hexagonal unit cell and one height vector (i.e., \vec{c}) along the height of this hexagon are chosen. Directions of these vectors are identified in Figure 1.38b. In terms of the previously mentioned procedure identified for evaluation of Miller indices in cubic crystals, Miller–Bravais indices of hexagonal crystals are identified by finding out the intersection of a plane with these four vectors. Following that procedure, designations for a plane and the direction perpendicular to that plane are identified by (hkl) and $[hkl]$, respectively. In evaluating these, care should be taken that the amplitude of unit vector \vec{c} is different from that of the three other vectors. As an example, the plane parallel to the base of the unit cell has Miller–Bravais indices of (0001), while a face plane on the side that intersects \vec{a}_1, \vec{a}_2, \vec{a}_3, and \vec{c}, at 1, ∞, -1, and ∞ (which are scaled with the amplitudes of these vectors), is called $(10\overline{1}0)$. Orientations identified in Figure 1.38b for \vec{a}_1, \vec{a}_2, and \vec{a}_3 indicate that $h+k+i$ is always equal to 0.

1.6.2 Strain and Techniques of Epitaxy

Originally, epitaxial crystal growth techniques such as MOCVD\(^{85}\) and MBE\(^{86}\) were developed for growing planar crystals on a substrate. More recently, there has been

\(^{85}\) Which, as identified earlier, stands for metal organic chemical vapor deposition.

\(^{86}\) Also indicated earlier to stand for molecular beam epitaxy.
an increasing interest in selective overgrowth (i.e., growth over the windows opened through a masking material). For local overgrowth applications, an advantage of epitaxial crystal growth techniques relying on chemical reactions (e.g., vapor deposition epitaxial process of MOCVD) over MBE is that they can take advantage of lateral temperature control for realizing local area growth. Based on this principle, for some materials laser-assisted local area growth has been proven possible.

Over the past three decades, techniques of epitaxy, either through realizing local area or planar crystal growth, have contributed significantly to realization of new opportunities in the FET technologies.

1.6.2.1 Ordered and Random Mixing of Semiconductors Whereas fundamentals such as free-energy minimization dictate the natural choice of the growth mode and lattice constant of crystals, the advances made with crystal growth techniques have made it possible to grow artificial crystals with structures other than those that can be found based on natural laws. Such a possibility is the outcome of the availability of techniques that enable atomic placement with exact precision.

With this degree of precision, the so-called superlattice structures have been grown. Realization of superlattices takes place in the form of epitaxial growth of alternating layers of different crystalline materials. While in each of these layers the crystalline structure is defined according to the laws of nature, control over the pitch and the period of these alternating layers helps in realizing an arbitrary degree of periodicity along the direction normal to the interface. This is schematically presented in Figure 1.39.

As the periodicity of the crystal impacts the carrier-transport properties, realization of superlattices provides a new dimension in engineering the carrier transport. These structures have been used in a variety of applications such as realization of...
drain and source Ohmic contacts in a few FET technologies such as AlGaN/GaN HFET technology87 or production of high-frequency signals.

One of the important contributions of crystal growth techniques is that they provide the possibility of randomly mixing semiconductors to create semiconductor alloys. Whereas ordered structuring of a number of semiconductors can be of interest in forms such as superlattices (i.e., in realizing artificial crystals), random alloying of semiconductors provides the opportunity for tuning parameters such as lattice constant, bandgap, and effective carrier mass between the elements of the alloyed semiconductor. The lattice constant of such a semiconductor alloy is often provided in terms of a linear weighted average between those of the parent semiconductors. This approximation is referred to as Vegard’s law. We will deal with this law in further detail shortly.

1.6.2.2 Coherent and Incoherent Growth of Heterojunctions

In epitaxy, crystal growth is performed over a crystalline template. An epitaxial junction formed between two different semiconductors is referred to as a heterojunction. This is in contrast to homojunctions, which are formed between two pieces of one semiconductor that are, for example, merely doped differently. The terms heterostructure, heterointerface, and heteroepitaxy are also used in this context. Depending on the matching of the lateral lattice constant of the template (which is often the substrate) and the freestanding lateral lattice constant of the overgrowing crystal, one can either have a lattice matched or a lattice mismatched mode of crystal growth. Figure 1.40 offers a schematic representation of these two modes of epitaxial growth. Lattice-matched (also known as coherent) growth, which is the result of the similarity of the two lattice constants, produces the highest-quality heterojunction between the two crystals. On the other hand, the presence of lattice mismatch results in formation of a large number of dangling bonds at the heterointerface and also crystal faults in the overgrown layer.

While only a few of the known semiconductors are lattice matched to one another, there is a strong demand for realization of heterojunctions between a variety of lattice-mismatched semiconductors. In order to avoid the unwanted effects of lattice-mismatched growth, techniques of strained epitaxy have been developed in a large number of semiconductor families. Through engineering the lateral lattice constant of the overgrowing crystals to match that of the template (i.e., often substrate), these techniques realize the so-called pseudomorphic mode of epitaxy.

1.6.2.2.1 Strain Calculation

Depending on the sign of the algebraic difference between the lateral lattice constant of the substrate and that of the freestanding overgrown material, a built-in strain in either tensile or compressive form is induced at the pseudomorphically grown heterointerface. The presence of this strain, if tensile, limits the maximum thickness of the overgrown material. This is because the increasing of the thickness of the overlayer builds up strain energy, eventually surpassing the bonding energy of this film. Consequently, if not instantaneously, overtime cracks will appear in the film. In contrast, compressive strain poses no limit of this kind.

87 To be dealt with in detail in Chapter 5.

88 That is, when grown as bulk and not in contact with another crystal.
on film thickness. A film grown under compressive strain, however, eventually relaxes to its own freestanding lattice constant as its thickness grows beyond a critical value. Figure 1.41 provides schematics for these growth modes.

One of the recent developments in the area of semiconductor devices has taken shape in the form of engineering this heteroepitaxial strain for realizing different levels of charge concentration in the vicinity of the pseudomorphically grown heterojunctions. This property has been used especially in polar III-Nitride technology, which enjoys large piezoelectric coefficients in all its binaries (i.e., AlN, GaN, and InN) and their alloys.

Another recent development in this area is the realization of compliant substrates. In these substrates, it is not just the overgrown material whose lattice constant is being modified. Researches on development of compliant substrates, which contribute to decoupling the strain induced at the wafer substrate interface from the heterojunctions, and also development of substrates for heterostructures such as AlGaN/GaN, which traditionally lack a viable freestanding lattice-matched substrate, are some of the major activities in this area. Such modes of epitaxy are also seen as major hopes

89 We will provide an in-depth analysis of this situation in Chapter 5.
for integration of devices and circuits of different semiconductor technologies on the same chip.

In order to explain the outcomes of lattice-mismatched epitaxy, it is worth acquainting ourselves with its language of the strain tensor. In a planar epitaxial growth, the overgrown layer is biaxially strained in the plane of substrate (indicated by ϵ_\parallel) while uniaxially strained in a direction normal to the substrate (indicated by ϵ_\perp). For a thick noncompliant substrate, the amount of strain in terms of lateral lattice constant of the substrate (i.e., a_S) and that of the freestanding overgrowing crystal (i.e., a_L) is calculated as

$$\epsilon_\parallel = \frac{a_S}{a_L} - 1 = \epsilon. \quad (1.105)$$

Since there is only in-plane stress, the amount of perpendicular strain ϵ_\perp will be calculated in terms of in-plane strain and Poisson’s ratio (i.e., σ),

$$\epsilon_\perp = -\frac{\epsilon_\parallel}{\sigma}. \quad (1.106)$$

According to this situation of zero stress along the growth direction, for a strained growth over a (001) substrate of FCC type, it can be shown that

90. Within a more general context, the notion of strain tensor is presented in Appendix 1.C.
91. Named after Siméon Poisson.
\[\sigma = \frac{c_{11}}{2c_{12}} \]
\[\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{zz} = \frac{2c_{12} - 4c_{44}}{c_{11}} \varepsilon \mathrm{||} \]
\[\varepsilon_{xy} = 0 \]
\[\varepsilon_{yz} = 0 \]
\[\varepsilon_{zx} = 0 \]

\(c_{ij} \)'s present in (1.107) and the rest of this discussion are the elastic constants. Such relationships are obviously developed on the basis of the knowledge of the plane over which growth is taking place. As another example in case of growth over a (111) FCC substrate, we have

\[\sigma = \frac{c_{11} + 2c_{12} + 4c_{44}}{2c_{11} + 4c_{12} - 4c_{44}} \]
\[\varepsilon_{xx} = \frac{2}{3} - \frac{1}{3} \left(\frac{2c_{11} + 4c_{12} - 4c_{44}}{c_{11} + 2c_{12} + 4c_{44}} \right) \varepsilon \mathrm{||} \]
\[\varepsilon_{yy} = \varepsilon_{xx} \]
\[\varepsilon_{zz} = \varepsilon_{xx} \]
\[\varepsilon_{xy} = -\frac{1}{3} - \frac{1}{3} \left(\frac{2c_{11} + 4c_{12} - 4c_{44}}{c_{11} + 2c_{12} + 4c_{44}} \right) \varepsilon \mathrm{||} \]
\[\varepsilon_{yz} = \varepsilon_{xy} \]
\[\varepsilon_{zx} = \varepsilon_{yz} \]

It can be observed from (1.107) and (1.108) that while in (001) growth the strain tensor is diagonal, in (111) growth (among a few other directions) the strain tensor has nondiagonal terms. The distortion caused by strained epitaxy to the cubic lattice, depending on the growth orientation, can produce a reduced degree of crystal symmetry. The nondiagonal terms introduced into the strain tensor by the reduced crystal symmetry are often used in production of built-in polarization fields in the heterostructure. Since we have already made a connection between the degree of symmetry and transport-related properties such as the presence of degeneracies at the band edges, we can expect the strained epitaxy to be capable of extending opportunities for engineering these properties. We will deal with these aspects in further details later in Chapter 4.

As we have already mentioned, due to the possession of large piezoelectric coefficients, strained growth has even more important impacts on electronic devices realized in hcp pseudomorphic heterostructures of III-Nitride semiconductors. These heterostructures are often realized in the form of Al\(_x\)Ga\(_{1-x}\)N or In\(_x\)Ga\(_{1-x}\)N alloyed ternaries on a thick relaxed GaN layer, grown along c-axis of the hexagonal prism. In this case, the strain tensor is given by

\(92\) As an example, alloyed ternary of Al\(_x\)Ga\(_{1-x}\)N is created by random mixing of AlN and GaN binaries in proportions identified by \(x(\text{AlN}) + (1-x)\text{GaN}\).
\[\epsilon_{xx} = \epsilon_{yy} = \frac{a_S}{a_L} - 1 \]
\[\epsilon_{zz} = \frac{2c_{13}}{c_{33}} \epsilon_{xx} \]

(1.109)

In Chapter 5, we will establish a connection between this component of strain and problem of charge induction into the heterostructure's quantum well formed at the heterointerface. Recently, a growing degree of interest is also observed on a-axis growth in this family. This endeavor has been developing with the goal of reducing the amount of polarization-induced charge.

1.6.2.2.2 Band Diagram Engineering The band structure of a semiconductor, which is naturally defined through its chemical composition and crystalline structure, can be engineered through a number of different ways including:

- Alloying two or more semiconductors
- Implementing quantum confinement in heterostructures
- Implementing built-in strain in pseudomorphically grown heterojunctions

BAND ENGINEERING THROUGH ALLOYING In the discussion of alloyed epitaxy, we have already indicated that a weighted averaging law can produce a first-order approximation for the properties of the semiconductor alloy. In regard to the application of this law (i.e., Vegard’s law), it should be emphasized that this law of weighted averaging is applicable only when the alloy is random and the components in the alloy have the same crystalline structures. This law is not extendable to phase-separated alloys, which are alloys in which components of the alloy are separated into regions. Obviously, this need not be a superlattice for which case we have already hinted that Vegard’s law is not applicable.

Most of the alloys used in semiconductor electronics are random alloys. In these alloys, in the absence of periodicity in the background crystal potential, the description of the electron wave in terms of a traveling wave (i.e., defined by Bloch theorem) is not possible. Instead, the wave function and the probability density function are position dependent. As will be discussed later in this chapter, this is a cause for scattering and degradation of carrier mobility in alloyed crystals.

In the application of Vegard’s law, which is motivated by weighted averaging of the virtual crystal approximation, it should be appreciated that in most alloys bowing effects (i.e., in excess of linear averaging) arise from the increasing disorder due to alloying. This bowing is usually modeled through adding a parabolic term to Vegard’s linear weighted average. In the virtual crystal approximation, the effective carrier mass is defined in terms of the effective carrier masses in the parent semiconductors (i.e., A and B) of the alloy \(A_x B_{1-x} \).

93 That is, \(x \) part A and \(1 - x \) part B.
This is because in terms of the Vegard’s law,

\[
E_{\text{alloy}}(k) = \frac{\hbar^2 k^2}{2m^*_\text{alloy}} = x \frac{\hbar^2 k^2}{2m^*_A} + (1-x) \frac{\hbar^2 k^2}{2m^*_B}.
\]

Based on (1.111), the law of weighted averaging used to determine the electron affinity and bandgap of a direct-bandgap alloy is formulated as

\[
q\chi_{\text{alloy}} = xq\chi_A + (1-x)q\chi_B \quad (1.112)
\]

\[
E_g-\text{alloy} = xE_{g-A} + (1-x)E_{g-B}. \quad (1.113)
\]

The lattice constant also approximately follows the same relationship.

As mentioned, Equation (1.113) can only be used when parent semiconductors are both direct. Otherwise, (1.111) should be used to evaluate the bottom of the conduction band for all values of \(k\) and then to identify the bandgap as the smallest energy gap between the conduction and valence band.

BAND ENGINEERING THROUGH QUANTUM CONFINEMENT AND STRAIN

As indicated earlier in this section, the implementation of carrier confinement is another way for altering the density of states functions and the semiconductor band structure. Nowadays, with an increased intensity, a combination of crystal growth (i.e., MOCVD and MBE) and processing techniques are being explored for realizing 2-D, 1-D, and 0-D confined carriers in semiconductor heterostructures. Implementation of heterostructures in different material systems has created a variety of new possibilities for the design of electronic and optoelectronic devices. Differences between the size of the bandgap and the electron affinity of different semiconductors provide three different forms of band lineup between the crystals from which a heterostructure can be created (i.e., nested bandgap: Type-I, staggered bandgap: Type-II, and offset bandgap: Type-III). The three types of band lineup are depicted in Figure 1.42. The various possibilities for band lineup are among the determining factors for the choice of materials in designs involving carrier confinement.

Among the types of band lineup, Type-I is the one that is most studied for electronic applications. Especially in Chapter 5, an in-depth analysis of Type-I band lineup with respect to FETs is provided.

Type-II band lineup, because of its small effective bandgap,\(^{94}\) is of considerable interest in the design of long wavelength optoelectronic devices. An important observation of Type-II band lineup is the small spatial separation of electrons and holes.

\(^{94}\)Which is essentially formed between the conduction-band edge of one semiconductor and the valence-band edge of the other.
In this case as demonstrated in Figure 1.42b, electrons and holes are accumulated on the opposite sides of the heterojunction. This can be very important in the design of infrared detectors when it comes to the consideration of instantaneous EHP recombination.

One should also be aware that, while oftentimes the definition of electron affinity is employed in envisioning the type of band lineup in a heterostructure, this definition is often not so accurate when two different semiconductors form a heterostructure. This is due to the presence of charge sharing across the heterointerface atoms. Although a few theoretical techniques have been developed to decide the type of band lineup, due to the complexity of these techniques, experiments are often used to shed light on the type of band lineup.

According to our discussions in Section 1.1.3 in terms of subband energy levels, the density of states functions in a quantum well is formulated as

\[
N(E) = \sum_i \frac{m^*_{i}}{\pi \hbar^2} U(E - E_i) \quad \text{for conduction band} \quad (1.114)
\]

\[
N(E) = \sum_j \sum_{j=1}^{2} \frac{m^*_{j}}{\pi \hbar^2} U(E_{ij} - E) \quad \text{for valence band,} \quad (1.115)
\]

where \(U \) is the Heaviside step function and \(E_i \) is the subband energy level. The presence of double subscripts in Equation (1.115) points to the lift in degeneracy of heavy- and light-hole subbands even in the absence of strain.

Often in simple descriptions of quantum wells, the conduction-band states are seen as pure s-type states and a simple effective-mass theory like the one suggested in (1.13) is employed. For a more accurate description, a full band structure, which is referred to as an eight-band model, is employed. As a result of this more sophisticated calculation, it is observed that while the conduction-band states in unstrained heterostructures are not affected by the incorporation of this fuller mode, in highly strained...
heterostructures the more complicated calculation is definitely required. An example of this would be the case of so-called self-assembled quantum dots. These are 3-D quantum wells that are created as the result of large lattice mismatch between the substrate and the freestanding lattice constant of the overgrown material. Excessive tensile strain induces a 3-D mode of growth instead of a planar growth. The density of these islands of 3-D growth is determined by the material properties and lattice mismatch. These self-assembled quantum dots have been realized between AlAs and a GaAs substrate.

The description provided in (1.115) of subbands for valence-band states is only approximately valid. While heavy-hole and light-hole states are pure states at $k = 0$, they strongly mix away from $k = 0$.

Built-in strain has been successfully used to lift degeneracies in the band edges, change the character of band-edge wave functions, and engineer the density of states at the band edges.

In direct-bandgap semiconductors, with regard to the conduction band, strain only moves the position of the band edge and has a very limited impact on the carrier mass. Because the bottom of conduction band is not degenerate, this shifting of the band edge does not result in lifting any degeneracy or change in the DOS and effective mass. However, while the valence-band edge of semiconductors are degenerate, strain causes lifting of that degeneracy. The amount of lift in degeneracy caused by quantum confinement is usually about 10–15 meV and is less than the amount of shift due to strain. Compressive biaxial strain raises the band edge and lifts the degeneracy on the order of 100 meV. In this case, the HH band is lifted above LH band. Under tensile biaxial strain this order is reversed. This is depicted in Figure 1.43.

In indirect-bandgap semiconductors, due to the presence of degeneracy in the conduction-band edge, the role of strain in modifying the conduction-band characteristics
is much different. Whereas the bottom of conduction band of a direct semiconductor is in the Γ-valley (which has no degeneracy), for the case of the indirect semiconductor Si, this is located close to the X-valley. According to the form of the unit cell of the diamond crystal of Si and Ge, there are six equivalent faces (or, consistently, six equivalent X-valleys in their Brillouin zone or E–k diagram).

As a result, in contrast to the direct-bandgap semiconductors, the conduction band of indirect alloy of Si$_x$Ge$_{1-x}$ is significantly altered by the strain imposed through pseudomorphic growth on Si substrate. In the case of (001) growth, strain lifts in the degeneracy between the six equivalent valleys of the conduction band. This biaxial compressive strain causes breaking of the sixfold degeneracy into a fourfold (in-plane) and a twofold (out of plane) degeneracy, where the fourfold degeneracy is lower in energy. The resulting reduction of DOS at the bottom of the conduction band helps with reducing the effective electron mass. An additional result of this lift in degeneracy is a rapid reduction of the size of the bandgap of SiGe alloy with the Ge mole fraction (i.e., 1 – x). In the context of improving the carrier-transport properties of the channel of the modern FET technologies, this concept will be heavily dealt with in Chapter 4.

Despite the differences in the conduction-band structures, due to the similarity of the valence bands of direct and indirect semiconductors, the aforementioned discussion on the impact of strain on the conduction band of direct semiconductors is readily extendible to indirect semiconductors.

In the valence band, lift in degeneracy is also accompanied by large changes in the band curvature. In the edge states of this band, strain can cause the DOS effective mass to be scaled down by as large as a factor of three.

We have already talked about the consequences of the formation of the bottom of the conduction band of Si near the X-valley. In this case, constant-energy surfaces for electrons form six ellipsoids along the <100> directions. The ellipsoidal form is expressed in terms of two values of effective mass. For an x–y surface, whereas the two ellipsoids in the z-direction have an effective mass (referred to as longitudinal), which is equal to $m_l = 0.98m_0$, the other four ellipsoids’ electron effective mass is the transverse effective mass (given by $m_t = 0.19m_0$). Among these, in determining the subband energies, the effective mass in the direction of the confining potential is employed.

In calculating the DOS function, it is easy to incorporate ellipsoidal shape of the constant-energy surfaces. In the case of silicon, m^* must be replaced by $\left(\frac{m^*}{m_l^*}\right)^{1/3}$. Multiplying this by 6 takes care of the sixfold degeneracy inside the Brillouin zone of silicon. In the case of germanium, because the conduction band is defined at the L-valley, an eightfold degeneracy is present. Hence, rather than six degenerate ellipsoids, eight are present. However, since only one-half of each ellipsoid falls inside the Brillouin zone, the overall degeneracy will be only fourfold. Instead of multiplying the mass by 6 (as is the case with silicon), it should only be multiplied by 4.

95 In the calculation of conductivity in silicon, however, $\frac{1}{m^*} = \frac{1}{3}\left(\frac{1}{m_l} + \frac{2}{m_t}\right)$.

1.7 QUANTUM TRANSPORT PHENOMENA AND SCATTERING MECHANISMS IN SEMICONDUCTORS

Whereas scattering processes are of interest to physicists in studying the electron–electron and electron–matter interactions at a fundamental level, electrical engineers need to know how these processes contribute to the problem of charge-carrier transport in a semiconductor. In evaluation of the conductivity of semiconductors, accurate understanding of the motion of electrons in the solid (i.e., including the scattering events) is required. It is only in the presence of scattering events (i.e., imperfections) that the known notion of conductivity in terms of Ohm’s law is extendible to semiconductors. Without these imperfections, as mentioned earlier, ballistic transport and a number of other important modes of persistent current or oscillations will prevail.

In order to establish the connection between conductivity and scattering, the velocity–field relationships of different semiconductors are studied. These relationships, as encountered in Section 1.4, are often illustrated in terms of the drift process of charge carriers under steady-state conditions. According to those discussions, in the description of the steady-state drift-transport characteristics, three regions are identified:

1. When the electric field is low and drift velocity changes as a linear function of the electric field: \(v_d = \mu E \). Under this condition, the Boltzmann transport equation yields an analytical form.

2. When the electric field takes on moderate values (usually larger than 1 kV/cm). Under this regime, \(v_d - E \) does not follow a linear trend. Numerical methods are often used in evaluation of carrier transport under this regime. Interpolation of an analytical relationship between the drift velocity and electric field is often used to produce an analytical basis for evaluation of carrier transport.

3. When the electric field exceeds the breakdown field of the semiconductor (usually larger than \(10^5 \) kV/cm). Under this regime, either due to impact ionization or electron tunneling from band to band (i.e., Zener breakdown), the semiconductor breaks down.

As mentioned in Section 1.4, in order to reach steady state, an electron needs to undergo several tens of collisions. Considering the collision times on the order of picoseconds and assuming electrons to travel at velocities as high as \(10^7 \) cm/s, the traveling distance to reach steady state will amount to micron-size distances. As a result, in small submicron devices the steady-state transport formalism becomes less and less applicable.

It has been already indicated in this chapter that electrons can be scattered through a variety of elastic and inelastic scattering processes. Two major categories of these processes are ionized-impurity scattering and lattice-vibration (or phonon) scattering. It should also be mentioned that lattice vibrations themselves (i.e., phonons) are also scattered by elastic scatterers such as ionized and neutral impurities, the presence of different atomic isotopes, and surfaces. This is the cause for the slow propagation of heat in a semiconductor, which is identified in terms of heat resistivity. While ideally
in a solid heat should propagate with the velocity of sound, these scattering mechanisms cause the heat transfer to become much slower.

1.7.1 Quantum Phenomena in Carrier Transport: A Snapshot

We already know that in the presence of scattering events, such as lattice vibrations (which result in inelastic scattering), a few of the important predictions of quantum mechanics are not realizable. Among these is the Bloch oscillation. This mode of oscillation originates from reflection of electron waves at the boundaries of the Brillouin zone. According to Bloch theorem, electrons in a perfectly periodic crystal follow the bands to the edges of the Brillouin zone and then return. This situation for an arbitrary E–k diagram is depicted in Figure 1.44. Considering the small size of the Brillouin zone, these oscillators are expected to operate at very high frequencies.

However, in the presence of phonon scattering, due to the inelastic nature of the scattering process, electrons do not get a chance to reach the boundaries of the Brillouin zone. As a result all attempts to realize a Bloch oscillator have remained unsuccessful.

Another mode of oscillation envisioned for perfect semiconductors is referred to as Esaki–Tsu oscillation. Although these oscillations are also never realized in practice, the theoretical drive behind them prompted major advances in epitaxial growth of superlattices. As shown later, quantum mechanics predicts that the application of a constant DC electric field to a periodic structure (i.e., with periodic E–k diagram) results in very high-frequency oscillations. The frequency of these oscillations is determined proportional to the lattice constant of the periodic structure. These oscillators in theory are capable of generating very high-frequency tunable signals.

![FIGURE 1.44 Trajectory of movement of an electron in an arbitrary band. In a perfect crystal, electron after climbing up the band tail, reflects upon reaching the zone edge. This reflection looks like scattering by a reciprocal lattice vector. The numbers are supposed to provide a snapshot of the position of electron in sequential instances of time.](image-url)
In order to gain a first-order mathematical insight into the Esaki–Tsu oscillators, we will consider the band structure of a one-dimensional crystal. This $E-k$ diagram similarly applies to a simple cubic three-dimensional crystal,

$$E(k) = E_0 (1 - \cos ka).$$ (1.116)

As suggested in (1.12), for electrons in the conduction band, we can calculate their group velocity as

$$v = \frac{1}{\hbar} \nabla_k E(k) = \frac{1}{\hbar} \frac{dE}{dk} = \frac{E_0 a}{\hbar} \sin (ka).$$ (1.117)

In addition, in terms of the definition of momentum in quantum mechanics, we know that $\hbar (dk/dt) = -qE$. This equality results in

$$k = -qE \frac{t}{\hbar} + k_0.$$ (1.118)

Assuming that the electron starts at zero momentum at $t=0$, we will have

$$v = -\frac{E_0 a}{\hbar} \sin \left(qEa \frac{t}{\hbar} \right).$$ (1.119)

According to (1.119), the current density created by the constant electric field E is a sinusoidal signal of angular frequency: $(qEa)/\hbar$. Clearly this angular frequency can be tuned by changing the period of the structure of the crystal and its lattice constant: a. As a result, realization of a superlattice with a very large period is expected to result in materialization of a very high-frequency oscillation.

1.7.2 Drude’s Model: A Close-UP

Due to the presence of a large number of interfering factors (including dependence of scattering on the momentum of electrons and phonons, presence of many electrons and as a result importance of consideration of many-body interactions, requirement for statistical evaluation of electron propagation, and the role played by the band structure in transport), the theory of carrier transport is quite complicated. However, as long as the electric field is weak to moderate, instead of a detailed description of all these intricacies, simpler models are usually adopted.

1.7.2.1 Boltzmann Transport Theory

The Boltzmann transport equation (i.e., BTE) is the foundation of these simpler formalisms, through which the mean scattering time constant needed in calculation of low-field mobility is evaluated (see (1.64) and (1.65)). According to this equation, upon application of an external perturbation to a system under thermal equilibrium, the distribution functions of charge carriers can still be represented in terms of the Fermi–Dirac distribution function (i.e.,
thermal-equilibrium distribution). As we took note in Section 1.3.1, such a distribution function shows the spread of electrons in energy space (and as result momentum space). According to BTE, this distribution function is then used to evaluate all of the transport properties of charge carriers.

Assuming \(f_{\vec{k}}(\vec{r}) \) as the local occupation function of electron in momentum state \(\vec{k} \) and in position \(\vec{r} \), the first step in Boltzmann transport theory is to study the time evolution of this function. This time evolution is prompted by the thermal motion of the electrons, the drift of electrons due to an external force, or due to scattering between different momentum states. For these three different causes, we can explain the time evolution of \(f_{\vec{k}}(\vec{r}) \) in terms of the following equations:

1. **Thermal motion** of the electrons

\[
\left. \frac{\partial f_{\vec{k}}}{\partial t} \right|_{\text{diff}} = -\frac{\partial f_{\vec{k}}}{\partial \vec{r}} \cdot \vec{v}_{\vec{k}},
\]

where \(\vec{v}_{\vec{k}} \) is the velocity of a carrier in the state \(\vec{k} \).

2. **Drift** of electrons due to an external electromagnetic force

\[
\left. \frac{\partial f_{\vec{k}}}{\partial t} \right|_{\text{external force}} = -\frac{q}{\hbar} \left[\vec{E} + \vec{v} \times \vec{B} \right] \cdot \frac{\partial f_{\vec{k}}}{\partial \vec{k}}
\]

3. **Scattering** between different momentum states

\[
\left. \frac{\partial f_{\vec{k}}}{\partial t} \right|_{\text{scattering}} = \left[f_{\vec{k}'} (1-f_{\vec{k}}) W(k',k) - f_{\vec{k}} (1-f_{\vec{k}'}) W(k,k') \right] \frac{d^3k'}{(2\pi)^3},
\]

where \(W(k, k') \) represents the rate of scattering from momentum state \(k \) to \(k' \).

According to the process of microscopic reversibility, the scattering rates between the before and after momentum states, as long as scattering is elastic, are equal:

\[
W(k, k') = W(k', k).
\]

The inclusion of the scattering rate in BTE is rooted in the wave nature of electrons. The role of time constant \(\tau \) in Boltzmann transport theory is to model the time constant for relaxation of the aforementioned perturbations. This is based on the so-called relaxation time approximation. As suggested earlier, this time constant can be calculated according to the scattering rate of different scattering processes. Under steady-state conditions, the time evolutions created by the aforementioned sources cancel one another out.

In formulation of the scattering rate, attention should be given to the nature of the collision processes, which cause the scattering. For example, alloy scattering (which
is present in semiconductor alloys, due to their deficient periodicity) and impurity scattering are results of collisions in which electron’s energy remains unchanged (i.e., elastic collisions). However, many scattering processes are inelastic. For example, phonon scattering due to the change caused in the electron energy is an inelastic scattering process. Instigated by the domination of different scattering processes in carrier transport and a number of other complications listed in Section 1.4.3, Hall mobility can be quite different from drift mobility (see (1.85)).

In the case of elastic scattering processes in parabolic bands, the calculation of relaxation time is quite trivial. However, many of the scattering processes are not so lenient.

As long as the energy gained from the electric field is smaller than the thermal energy, carrier transport stays under the linear regime expressed in terms of the low-field mobility. However, with further increase of energy, the simple approximations used in solving the Boltzmann transport equation will become insufficient. As mentioned earlier in this section, under this regime complex numerical techniques such as the balance equation and Monte Carlo method are often used. The continuity equations, (1.49) and (1.50), are two of these so-called balance equations. Monte Carlo method treats electrons as particles whose scattering events between Bloch states are described probabilistically through the so-called Fermi golden rule. In this numerical technique, carrier transport is seen as periods of free flight and instantaneous scattering events, which are accurately described in terms of the probability of the involved scattering processes.

Monte Carlo has been proven to be a versatile technique in addressing a variety of transport-related problems, such as evaluation of steady-state drift-transport characteristic, electron temperature, valley occupation, distribution in k-space, noise, ballistic transport, transit time, carrier injection/thermalization process, and impact ionization.

1.7.2.2 Drude’s Model

Drude’s model of conduction, which is devised on the basis of the Boltzmann transport equation, is the model that we have so far adopted in this volume (i.e., in the definition of low-field diffusion constant and mobility). Now that we are further acquainted with the foundations of this model, before getting too involved in a rigorous discussion of scattering rates of different scattering processes, it seems quite instructive to pay a closer visit to this model. As implicitly suggested in Section 1.4, Drude’s model is built on the following assumptions:

1. All electrons move with the same velocity v, which in terms of applied force F_0 is identified as $\hbar k = mv = F_0 t$.
2. Instead of taking the whole band structure into account, the effective-mass notion (i.e., m^*) has been introduced to take the position of the mass of an electron.

96 Thermalization of electrons refers to the process of electrons losing energy and coming back to the bottom of conduction band through emitting phonons.
3. *Scattering* processes are envisioned as a friction force in the above equation of motion (i.e., F_f), which is defined in terms of the relaxation time constant of the friction force: $F_f \approx (mv)/\tau$. In terms of the *Boltzmann transport equation*, the presence of this friction force is presented through the modified electron distribution function: $f_k(\vec{r}) = f_{k+\frac{qE}{\hbar}}(\vec{r})$.

As a result of these assumptions, the total equation of motion is given by

$$m^* \frac{dv}{dt} = F_0 - F_f = F_0 - \frac{m^*v}{\tau}, \quad (1.124)$$

where in the absence of an applied force (i.e., F_0),

$$m^* \frac{dv}{dt} = -\frac{m^*v}{\tau} \quad (1.125)$$

and

$$\dot{v} \propto \exp\left(-\frac{t}{\tau}\right). \quad (1.126)$$

As a result, τ will also be the time constant in decaying \ddot{v}. The current density is then evaluated by multiplying this velocity by the charge of an electron and the electron concentration.

In this framework, in the presence of a number of independent scattering processes, the total scattering rate can be calculated in terms of mean scattering times of individual scattering processes

$$\frac{1}{\tau_{\text{tot}}} = \sum \frac{1}{\tau_i} \quad (1.127)$$

Only when the various scattering rates follow the same energy dependence (i.e., the same effective mass), the above equation results in an overall low-field mobility that follows *Matthiessen’s rule*:

$$\frac{1}{\mu_{\text{tot}}} = \sum \frac{1}{\mu_i} \quad (1.128)$$

However, the above condition is usually not satisfied. In spite of this, Matthiessen’s rule has been widely used and found to be reasonably accurate.

97 As suggested in (1.121), magnetic force can be easily incorporated into this equation (i.e., $m^* \frac{dv}{dt} = -q(\vec{E} + \vec{V} \times \vec{B}) - \frac{m^*v}{\tau}$).

98 Named after Augustus Matthiessen.
As examples for the application of Drude’s theory, in the presence of only an electric field, it is instructive to apply (1.124) to the following two special cases:

1. When the electric field is finite but time independent.

 Due to lack of time dependence in the external source of energy, this case refers to a steady-state situation where \(\frac{dv}{dt} = 0 \) and \(m^* \vec{v} = -q \vec{E} \tau \). This relationship results in a DC current of

 \[
 J = -qnv = \frac{q^2 \tau n}{m^*} E
 \]

 with no chance of persistent current and oscillation (since in Drude’s model the full \(E-k \) diagram has been overlooked by the notion of the effective mass). This special case refers to the case that we have investigated earlier in our discussions in Section 1.4. In this case, the conductivity \(\sigma \) is observed to be a scalar value given by \(\sigma = qn \mu \), where \(\mu = q \tau / m^* \).

2. When the electric field is a low-frequency field.

 The definition of the “low frequency” is given in relation to the energy relaxation time. In this case, \(E \equiv E_{ac} \exp(j\omega t) + E_{ac} \exp(-j\omega t) \). In solving for \(v \), the velocity vector is written as \(\vec{v} = v_0 \exp(j\omega t) + v_0 \exp(-j\omega t) \), which results in

 \[
 m^* j \omega v_0 e^{j\omega t} = -qE_{ac} \exp(j\omega t) - m^* v_0 \frac{\exp(j\omega t)}{\tau}.
 \]

 Accordingly,

 \[
 -v_0 = \frac{qE_{ac}}{jm^* \omega + (m^* / \tau)} = \frac{\mu E_{ac}}{1 + j\omega \tau}.
 \]

 This result indicates that the drift velocity is equal to the DC velocity divided by \(1 + j\omega \). As a result, at frequencies comparable to \(1/\tau \) (usually greater than 10 GHz), the semiconductor instead of a purely resistive behavior expresses a resistive–inductive behavior. The imaginary part can be seen as a contribution of free electrons to the dielectric constant of the semiconductor. The other interesting point to mention is that the real part is inversely proportional to the relaxation time at very high frequencies, meaning that for this frequency range, the conductivity is 0 even in the absence of scattering.

1.7.3 Major Scattering Processes

According to Boltzmann transport theory, scattering rates between different states of momentum space are to be evaluated for a range of important scattering processes. Before embarking any deeper into this discussion, it is worth pointing out that
momentum space (which is also referred to as k-space) is really a Fourier space. In this analogy, it should be emphasized that in treating a scattering problem, a scattering matrix should be established between each initial state and a range of final states of an electron. These initial and final states are plane wave states that can be calculated by taking the Fourier transform of the potential (i.e., solving the Schrödinger equation for carrier wave function). Analogous to the role of Fourier series, the transformation from almost periodic real space to k-space sometimes greatly simplifies the equations. As a simple example, the Poisson equation according to this transformation will be simplified as

\[\nabla^2 \phi = -\frac{\rho}{\epsilon} \rightarrow \phi = \frac{\rho}{\epsilon k^2}. \] (1.132)

At this point in our discussion, without getting into details, we present a few important facts such as scattering rates to explain different scattering processes that are encountered by electrons in semiconductors. A few of these processes, such as ionized-impurity scattering and phonon scattering, have been introduced in Section 1.4. In addressing ionized-impurity scattering and the Coulombic potential imposed by these impurities on charge carriers, one needs to pay attention to the issue of charge screening. As an example, we can consider the case of a positive charge placed in an electron gas. Movement of electrons around this charge can essentially screen off its potential. As will be seen in this section, in the case of ionized-impurity scattering and also carrier–carrier scattering, screening can be dealt with by replacing the Coulombic potential of a point charge by a screened Coulombic potential.

1.7.3.1 Ionized-Impurity Scattering In this case, the scattering rate given by the Fermi golden rule in terms of Dirac’s delta function is represented by

\[W(k, k') = \frac{2\pi}{\hbar} \left(\frac{Zq^3}{4V\epsilon} \right) \frac{\delta(E_k - E_{k'})}{(4k^2\sin^2(\theta/2) + \lambda^2)^2}, \] (1.133)

where \(Zq, V, \) and \(\theta \) represent the charge of the impurity, volume, and polar scattering angle, respectively. \(\epsilon \) is the semiconductor’s permittivity. In this equation, \(\lambda \) is defined as

\[\lambda = \sqrt{\frac{n_0q^2}{ekT}}, \] (1.134)

where \(n_0 \) is the mean background carrier concentration.

In the presence of a large free carrier concentration, a screened Coulombic potential has been used in this framework:

\[\phi(r) = \frac{q}{4\pi\epsilon r} \exp(-\lambda r). \] (1.135)

\(^{99}\) Named after Joseph Fourier.
For the situations without screening (i.e., low free carrier concentration), the rate equation is evaluated when λ tends toward 0, for which case

$$W(k,k') \propto \frac{1}{16k^4 \sin^4(\theta/2)}.$$

(1.136)

However, under strong screening $\lambda \to \infty$ and

$$W(k,k') \propto \frac{1}{\lambda^4}.$$

(1.137)

On this basis, one can see that while forward scattering is dominant in the case of weak screening, for strong screening angular dependence is not present. As a result, because forward scattering does not imply carrier mobility reduction, the ionized-impurity scattering in presence of weak screening is less important.

In the formalism presented in (1.133), ionized impurities are treated independent of one another (i.e., the average distance >10 nm). This assumption is not extendable to heavily doped semiconductors (i.e., $>10^{18}$ cm$^{-3}$) for which case the ionized-impurity scattering is more complex. For a degenerate semiconductor, the screening parameter λ should be changed to

$$\lambda = \sqrt{\frac{3n_0q^2}{2cE_F}},$$

(1.138)

where E_F refers to the Fermi energy level measured from the band edge.

The Equation (1.138) results in a faster drop in mobility with the concentration of ionized impurities. This is due to the effect of multi-impurity scattering.

In ionized-impurity scattering,

$$\mu \propto (Z^2N_i)^{-1}$$

(1.139)

where N_i is the concentration of ionized impurities and Z, as indicated earlier, is the charge of the donor. The presence of Z in this relationship explains one of the reasons why impurities that can offer more than one electron from each atom are not used as proper dopants. In order to explain this further, we can imagine dopant atoms that offer two electrons instead of one. In this case, to achieve the same electron concentration, Z^2 will become four times larger, whereas N_i will be only divided by a factor of 2. As a result, according to this change of dopants, mobility will be reduced by 50%.

As indicated in Section 1.4.2.1, carrier mobility as a function of temperature follows an improving characteristic (which is of the form $\mu \propto T^{3/2}$), when ionized-impurity scattering is dominant. This is a distinguishing feature of this process of scattering.

1.7.3.2 Alloy Scattering

We have already suggested that the root of this scattering mechanism is the presence of disorder in the crystal’s potential. According to the hard sphere model, the scattering potential is represented by
\[\Delta V(r) = \begin{cases} V_0 & \text{for } |r| \leq r_0 \\ 0 & \text{for } |r| > r_0 \end{cases} \] \hspace{1cm} (1.140)

in which \(r_0 \) and \(V_0 \) refer to interatomic distance and the maximum potential difference between any two points in the solid, respectively. Using the Fermi golden rule, the scattering rate of an alloy scattering process is represented by

\[W(k) = \frac{2\pi}{\hbar} \sum_{k'} |M_{kk'}|^2 \delta(E_k - E_{k'}) \] \hspace{1cm} (1.141)

where matrix elements are given by

\[M_{kk'} = \exp \left[j \left(\mathbf{k} - \mathbf{k}' \right) \cdot \mathbf{r} \right] \Delta V(r) d^3 r. \] \hspace{1cm} (1.142)

Using the fact that scattering potential extends only to a unit cell, the exponential term in the above equation tends toward one. As a result, in alloy scattering there is no angular dependence because there is no \(k \) and \(k' \) dependence on the matrix elements. Hence, for an isotropic density of states function, there will be no angular dependence of scattering rate. After performing a proper ensemble averaging, relaxation time of alloy scattering results in

\[\frac{1}{\langle\langle \tau \rangle \rangle} = \frac{3\pi^3}{8\hbar} V_{\text{unit}} V_0^2 x (1 - x) m^{3/2} (kT)^{1/2} \left(\frac{1}{\sqrt{2}\pi^2 \hbar^3} \right)^{0.75} \] \hspace{1cm} (1.143)

where \(V_{\text{unit}} \) is the volume of the unit cell.

This equation shows that the carrier mobility in terms of alloy scattering degrades with temperature as

\[\mu \propto T^{-1/2}. \] \hspace{1cm} (1.144)

In Equation (1.143), \(V_0 \) is on the order of 0.5 eV. The assumptions behind these equations are that there are no clusters formed in the alloy and that the smallest region over which a disorder is present is a unit cell.

1.7.3.3 Neutral Impurity Scattering

The presence of neutral impurities and defects is another reason for carrier scattering in semiconductors. This presence can be caused by substitutional impurities and dopants that are not activated. Scattering by neutral impurities can be seen in the same light as alloy scattering (i.e., in the form of a disturbance to the periodicity of the crystal potential seen by Bloch states). The resulting scattering rate, not unlike the case of alloy scattering, is given by

\[W(k) = \frac{2\pi}{\hbar} \left(\frac{4\pi}{3} r_0^3 V_0 \right)^2 N(E_k) \] \hspace{1cm} (1.145)
in which V_0 denotes the scattering potential and r_0 stands for the radius of the hard sphere representing the defect. Accordingly, the scattering time constant is given by

$$\frac{1}{\langle \tau \rangle} = N_{\text{imp}} \frac{2\pi}{\hbar} \left(\frac{4\pi}{3} r_0^3 V_0 \right)^{2} \frac{m^{3/2}}{\sqrt{2\pi^2 h^3}} \frac{(kT)^{1/2}}{0.75}$$

where N_{imp} stands for the concentration of neutral impurities.

Only in the presence of a very large concentration of these types of impurities ($>10^{18}$ cm$^{-3}$) is the neutral impurity scattering mechanism worthy of consideration.

1.7.3.4 Interface Roughness Scattering The channel of the majority of FETs is formed in the vicinity of an interface (i.e., of either two semiconductors, the interface of a semiconductor and a metal or the interface of a semiconductor and an insulator). As a result, a scattering process often encountered in the channel of these transistors is the interface-roughness scattering. The degree of roughness at these interfaces is dependent on fabrication technology. Roughness at these interfaces imposes an element of disturbance on the potential felt by Bloch states. This is in addition to the role played by the surface states (as either neutral or charged states), which were discussed in Section 1.1.6. The scattering rate caused by these interface potential bumps in an inversion MOSFET channel to be explored in Chapter 3 is formulated as

$$W(k) = \frac{1}{A} \frac{2\pi}{\hbar} \frac{1}{4\pi^2} \int_{-\pi}^{0} d\theta \int_{0}^{\infty} dq |M(k,k')|^2 \delta(E_k - E_{k'})$$

where A is the area and $q = 2k \sin(\theta/2)$.

In this equation, it is assumed that half of the electric field drops across the insulator.

1.7.3.5 Carrier–Carrier Scattering Whereas the scattering sources so far discussed in this section are fixed in time and in space, not all scattering sources operate in this way. Carrier–carrier scattering is one of the scattering processes that belongs to this latter group. Scattering processes that are fixed in time and in space result in elastic scattering (i.e., zero change in carrier energy), which is due to the large mass of scatterers in those processes. This is not the case in carrier–carrier scattering. Carrier–carrier scattering can be in the form of electron–hole scattering or electron–electron scattering (which is analogous to hole–hole scattering in the valence band). Due to the Fermionic nature of electrons, scattering of two identical carriers is a more complex process. Carrier–carrier scattering gains significant importance only when carrier concentration exceeds 10^{18} cm$^{-3}$.

As an approximation, assuming that the effective mass of a hole is much larger than that of an electron, we can envision the role of electron–hole scattering on electrons in a p-type semiconductor (minority-carrier scattering) by multiplying the scattering rate due to ionized acceptor impurities by a factor of 2.
1.7.3.6 Auger Processes and Impact-Ionization Scattering An important characteristic of these two scattering processes is that they result in a change in carrier concentration in the conduction and valence band. While in Auger100 process, scattering results in recombination of an electron and a hole (and as a result reduction of carrier concentration in both conduction and valence band), impact ionization results in an increase in carrier concentration in both bands (i.e., through EHP generation). We have already visited the process of impact ionization while addressing the breakdown processes in Section 1.5.

Auger is the inverse process of impact ionization. This is a nonradiative recombination process and is detested in optoelectronic photon generators. According to this process, even in direct-bandgap semiconductors, an electron and a hole can recombine without generation of a photon. This is possible since in this interaction the energy is being transferred to another carrier or to a phonon. These processes can be assisted by Coulombic interactions (i.e., electron–electron scattering), by phonons, or by trap states. Only in high-purity direct-bandgap semiconductors is the photon generation dominant.

In impact-ionization process, as noted in Section 1.5, carriers gain energies in excess of the size of the bandgap (from sources such as the electric field). This can cause a high-energy electron in the conduction band to scatter an electron from the valence band (i.e., to break a covalent bond and produce an EHP). Each of these three carriers can then go through the same process and as a result instigate an avalanche in the number of carriers in both bands.

As a result of the requirement for the conservation of momentum and energy, rates of Auger and impact-ionization process are obviously dependent both on the size of the bandgap and temperature. Reduction of the size of the bandgap among different semiconductors results in an exponential increase in the rate of both processes. The rate of Auger process increases with the number of carriers and likewise with temperature. The impact ionization rate, however, reduces with increasing temperature. This is because of the increase in the rates of other inelastic scattering processes and the subsequent increased difficulty for carriers to gain energy from the electric field. In semiconductors with bandgaps larger than 1.5 eV, Auger process has a limited presence.

Complete calculation of the rate of impact-ionization process requires knowledge from the entire band structure. In the case of Auger process, the threshold value of energy can be approximated by

\[E_1 = \frac{1 + 2\mu}{1 + \mu} E_g, \]
where \(\mu = \frac{m_n^*}{m_p^*} \). \hspace{1cm} (1.148)

However, due to the anisotropic nature of the bands, at higher energies this threshold has a strong angular dependence.

100 Named after Pierre-Victor Auger.
In the case of parabolic bands, Ridley has successfully formulated the impact-ionization rate in terms of a simple closed-form expression:

\[
W_{\text{impurity}} = 4.139 \times 10^{10} \times \left\{ \frac{\sqrt{m^* m_p}}{m_0} \left(\frac{m^*_n}{m_0} + \mu \right) \left(\frac{e_0}{e} \right)^2 \left[\frac{E_1}{E_g} - (1 + \mu) \right] \right\}.
\] (1.149)

1.7.3.7 Lattice Vibration or Phonon Scattering

Vibration of the crystal lattice can be seen as a hindrance on the periodicity of the lattice and, as a result, a source of scattering between the Bloch states.

As indicated before, crystallization in a particular crystalline form is the result of the tendency of a system to achieve minimum energy. Due to this tendency, as the atoms start to move about their lattice points, for example, due to exertion of thermal energy, a restoring force will be developed. This combination results in lattice vibrations. Depending on the similarity, or lack thereof, of atoms in sublattices of the crystal, their charge status, and the direction of the movement of these sublattices, lattice vibrations can have a few different modes (e.g., acoustic, optical, polar, piezoelectric). As indicated earlier in this chapter, lattice vibrations are expressed in terms of quantum particles known as phonons.

1.7.3.7.1 Optical and Acoustic Vibrations

As a result of lattice vibrations, the position of atoms within the crystal can then be expressed as traveling waves. Solving the force equations for these traveling waves yields certain dispersion characteristics (i.e., \(\omega \) or \(E \) vs. \(k \) dependence, where \(k \) is the wave number). An example is depicted in Figure 1.45. In this figure, \(a \) is the equilibrium distance between identical atoms along the direction of vibration.

In Figure 1.45, two branches of vibration can be identified. In the lower-frequency branch, known as the acoustic phonon branch, the frequency of vibration tends toward 0 as the wave number reduces to 0. This is the result of the movement of the two sublattices of the crystal along the same direction with equal velocity at any given time. However, if keeping the condition on velocity we reverse the direction of the movement of one sublattice versus the other, a high-frequency oscillation results (i.e., at \(k \) equal to 0). The branch identifying with this high-frequency mode is known as the optical-phonon branch (due to its higher frequency). This branch even for \(k \) equal to 0 is not producing 0 in its dispersion characteristic.

The acoustical branch represents the propagation of sound waves in a crystal. Using the dispersion characteristic of this branch, sound velocity is given by

\[
v_s = \frac{d\omega}{dk} = \sqrt{\frac{C}{M_{av}}} a
\] (1.150)

where \(M_{av} \), \(a \), and \(C \) stand for the average mass of the two atoms, minimum separation between identical planes in the crystal, and spring constant of the vibratory system, respectively.
Whereas in Figure 1.45 we envisioned the vibrations in a one-dimensional lattice, in the case of three-dimensional lattices, a few other branches also appear on the dispersion characteristic. In reality, for a three-dimensional crystal, for each wave vector one longitudinal and two transverse modes of vibration will be present. This is true in the case of both optical and acoustical branches. Due to the difference in arrangement of atoms along different directions of most crystals, frequencies of vibration differ between the longitudinal and transverse branches.

DEFORMATION POTENTIAL AND BANDGAP VARIATION The distorting effect of phonons on the crystal, among a number of other appearances, takes the form of inducing a deformation potential. This deformation potential can be envisioned through the variation of the semiconductor bandgap (as the lattice deformation is causing the interatomic distance to change). According to this description, the displacement of the lattice by an amount u results in changing the energy of the conduction or valence bands in the form

$$\Delta E_{c,v} = E_{c,v}(a) - E_{c,v}(a + du)$$

Here a is the lattice constant, which in the description of (1.151) has been assumed to be smaller than the wavelength of the phonon (i.e., phonon wavelength spans over many lattice constants, so that the displacement of the lattice can be taken for the expansion and contraction of the whole crystal). Through Taylor series expansion, (1.151) results in

$$|\Delta E_{c,v}| = \frac{dE_{c,v}}{da} du \frac{1}{dx}$$

FIGURE 1.45 Schematic depiction of the dispersion diagram of a 1-D diatomic lattice, expressing the optical- and acoustic-phonon branches.
WAVE-FUNCTION SYMMETRY AND CRYSTAL VIBRATIONS In a 3-D lattice the volumetric changes induced by acoustic and optical phonons are fundamentally different. Therefore, optical-phonon scattering has been shown to be very sensitive to the symmetry of the band structure (i.e., in the range relevant to carrier scattering). This has very important implications on carrier mobility. As a result of this sensitivity, if an electron is scattered close to the Γ-valley minimum (e.g., in GaAs) or near the X-valley minima and has a spherically symmetric wave function, optical deformation potential scattering is forbidden. The existence of this symmetry at the conduction band minimum of GaAs and lack thereof in Si result in superior electron mobility in GaAs.

However, while for both GaAs and Si the top of the valence band happens at the Γ-point, for these cases the hole wave function does not have spherical symmetry (i.e., they possess sp rather than s-orbital nature). Therefore, the optical deformation potential is present for holes in both semiconductors, which results in low hole mobility for both cases.

POLAR OPTICAL AND PIEZOELECTRIC VIBRATIONS In ionic crystals, in which the atoms of the two sublattices are different (e.g., in the zinc blende crystal of GaAs), optical vibrations also induce vibrating polarization fields. This is due to the vibration of cation and anion sublattices in opposite directions to one another. Presence of these vibrating fields is important in longitudinal vibrations but not in transverse vibrations. Hence, in the case of longitudinal vibration, there is an additional restoring force due to the long-range polarization. As an example, Figure 1.46 shows the dispersion relationship of GaAs, in which the frequency of the longitudinal optical mode is higher than the transverse optical mode.

![Figure 1.46](image.png)

FIGURE 1.46 Approximate representation of phonon dispersion characteristics in GaAs. Adapted from Singh (2003, p. 228). Copyright 2003, Cambridge University Press. Reprinted with the permission of the Cambridge University Press.
These vibrating polarization fields are indicated by the presence of polar optical phonons. While polar optical phonons are not present in group IV semiconductors, in III–V semiconductors they play a very important role. This is why in group IV semiconductors there is no split between the transverse and longitudinal optical branches of the dispersion characteristic. Figure 1.47 illustrates this situation.

Optical phonons (especially transverse optical phonons) are much less dispersive than acoustic phonons. This is especially true at low k values. As shown in Figure 1.47, longitudinal optical and longitudinal acoustic dispersions tend toward the same value of angular frequency as k increases. However, this is not the case with transverse modes.

So far, we have only spoken of the role of optical phonons in inducing polar vibrations. Acoustic vibrations also cause polar vibrations, which are referred to as piezoelectric effects. Piezoelectric scattering, while much weaker than polar optical-phonon scattering, only becomes important in very high-purity samples at low temperatures.

1.7.3.7.2 Phonon Distribution Function Although we have already mentioned that phonons are quantum particles, at this point in our discussion, it is worthwhile to explain the quantum nature of these particles a little further. According to quantum mechanics, oscillation energy of crystal vibrations is not continuous. The quantum oscillator has a minimum energy of $\hbar\omega/2$, while the energy changes only in $\hbar\omega$ quanta, referred to as a phonon. With regard to this quanta, quantum number n refers to the occupation number of phonons in the system. Just like electrons, in order to evaluate the number of phonons in a given mode ω_k and at a given temperature T,
a distribution function is required. However, because phonons do not obey Pauli’s exclusion principle, they do not follow Fermi–Dirac statistics. Instead, the proper distribution function for them is defined in terms of Bose–Einstein statistics. Hence, phonons, rather than being Fermions, are referred to as Bosons. Because phonons are Bosons, their occupation number at thermal equilibrium, which is denoted as

$$\langle n_\omega \rangle = \frac{1}{\exp \frac{\hbar \omega}{kT} - 1},$$

is not a probability of occupation unlike the case of Fermions.

As expressed by this distribution function, the number of phonons increases with the temperature, since vibration also becomes stronger at higher temperatures.

Obviously, at low temperatures the occupancy of the optical phonons will be very small. This is due to the fact that for any value of k, the energy of an optical phonon is large unlike that of the acoustic phonon. As a result, acoustic-phonon scattering is present even at low temperatures. For optical-phonon scattering, temperature or energy of the carriers must be beyond a certain value. This threshold of energy is determined by the band structure of the crystal.\(^\text{101}\)

1.7.3.7.3 Quantum Mechanical Foundations of Phonon Scattering

Electrons and phonons are treated similarly by solving the Schrödinger equation in a periodic potential. However, there is a qualitative difference between the two cases, which results from the difference in their de Broglie wavelength. In the case of electrons, only when the dimensions of the quantum well approach the de Broglie wavelength of the electron (i.e., ~10 nm) the band offsets at semiconductor heterostructures render the heterostructure effects important. However, the equivalent length scale in the case of phonons is about a few monolayers. This difference results in the development of phonon modes, associated with interfaces and superlattices of small periods.

As an example of the similarity between electrons and phonons, we can take a look at interface between AlAs and GaAs. This structure has a Type-I band lineup, which restricts the movement of carriers normal to the heterointerface. It also restricts the movement of the optical phonons from one material to the next. This is because the optical branches of the dispersion characteristics of GaAs and AlAs do not overlap. This is a fact that we will appreciate more after covering the materials in Chapter 2, where we get ourselves further acquainted with junctions and interfaces.

Phonons, lattice vibrations, and band structure are, to a first-order approximation, separated from one another. This treatment overlooks the obvious variations of the band diagram depicted in Figure 1.48, which are expressed in equations such as (1.151) and (1.152). As a result of this approximation, scattering by phonons is treated merely as a perturbation. Frequencies of lattice vibrations (i.e., phonons) are in the range of terahertz. Yet, in dealing with this electronic system, even in presence of phonons, it has been proven possible to imagine a band structure defined by a

\(^{101}\) Previously in Section 1.4.4.2, we talked about optical phonons in relation to saturation of drift velocity.
time-independent periodic potential. Due to the much smaller mass of electrons than atoms, which gives them a de Broglie wavelength on the order of 10 nm, this is a valid approximation.

As a result of the small wavelength, the electron frequency will be in the order of \(10^{16}\) Hz (i.e., \(c/\lambda = 3 \times 10^8 / 10^{-8} = 3 \times 10^{16}\) Hz). This is about four orders of magnitude higher than the phonon frequency, which renders the Hamiltonian describing the system almost stationary. This approximation is referred to as adiabatic approximation.

In the adiabatic approximation, electrons see the impact of phonon-caused energy fluctuations in terms of scattering between existing states. These interactions are seen as processes of emission and absorption of phonons, depending on whether a loss or a gain in electron energy results. The scattering rate is deduced based on the Fermi golden rule.

Through phonon scattering, both the energy and momentum of charge carriers are changed. While the wave vectors of electrons and phonons are similar, the energy of an electron is much larger (i.e., due to larger frequency). These are very consequential points in establishing the energy and momentum conservation.

As a result of the small energy of phonons, under low electric fields, interband scattering of holes (and not electrons) is probable. This will be in the form of scattering between the two degenerate heavy- and light-hole bands. However, due to the small amount of energy of phonons, even interband scattering to the split-off band, which is only separated by several hundred meV, is not possible. For interband scattering to occur to the split-off band, the electric field should be much stronger. However, because of the much smaller difference between the degenerate bands and split-off band at the top of the valence band of silicon (i.e., 44 meV), this semiconductor is an exception. This is one of the contributing factors to the deterioration of hole transport in silicon.
In III–V semiconductors, while at low temperatures and low electric fields polar optical-phonon scattering is not important, at room temperature and also in the presence of high electric fields (even at low temperatures), the process of emission of polar optical phonons becomes the dominant scattering mechanism. As an example see Figure 1.49 for an approximate depiction of the rates of acoustic and polar optical-phonon scattering processes in GaAs at room temperature.

The processes of phonon emission and absorption in intervalley scattering are illustrated in Figure 1.50. As mentioned in Section 1.4.2.2, the intervalley scattering process plays a very important role in manifesting negative differential mobility in some semiconductors.
Now that we have visited a number of important scattering mechanisms, it is time to point out that there are important differences between ionized-impurity scattering and phonon scattering. The first important difference is that in regard to phonon scattering, we have both absorption and emission processes, which result in variation of the wave functions of both the phonon and the electron. The second important difference between the phonon scattering and ionized-impurity scattering is rooted in the formation of a scattering potential. As we have seen already in this section, the distorting effect of phonons on the crystal lattice can take a number of different forms (i.e., deformation potential, piezoelectric potential, and polar optical potential). Due to these differences, dealing with ionized-impurity scattering is much less complicated.

1.7.3.8 Carrier Scattering in Lower-Dimensional Systems So far in our discussions, we have maintained a focus on carrier transport in three-dimensional systems. In lower-dimensional systems, in addition to the aforementioned processes of scattering, due to the differences in DOS functions, a few additional scattering mechanisms become important.

As a special case, we have already identified interface-roughness scattering as a scattering process important only to two-dimensional carrier transport. Such a scattering mechanism is also sometimes present when carrier transport is confined to a one-dimensional channel (i.e., a quantum wire). In such lower-dimensional systems, due to the development of energy subbands (i.e., which are expressed by the modification in the 2-D DOS presented in (1.114) and (1.115) and also the so-called minibands in smaller lower-dimensional systems), both intra- and intersubband scattering are present. In a 2-D system, the larger the energy difference between the subbands, the less probable would be the intersubband scattering.

The DOS in 1-D systems (such as quantum wires) is qualitatively different from 3-D and 2-D systems, which results in very important implications on carrier transport. As illustrated in Figure 1.51, in the case of a 1-D system, intrasubband scattering is very restricted, while elastic scattering is considered. As depicted in this figure, in elastic scattering electron can scatter only to a state with the same or opposite momentum (i.e., k and $-k$). While the former results in no change on transport, the latter event requires a very short-ranged potential to conserve momentum. This requirement severely limits the scattering. Consequently, mobilities as high as 10^7 cm2/Vs are predicted for quantum wires. However, due to fabrication and crystal growth difficulties, this has not been experimentally observed yet.

![FIGURE 1.51](image)

FIGURE 1.51 In the event of elastic scattering in a 1-D semiconductor, the equal energy surface has only two viable k-states. In the case of 2-D or a 3-D system, this equal energy surface evolves into the surface of a circle or a sphere, respectively, of radius k_{initial} containing many more k-states available to scattering. Adapted from Singh (2003, p. 228). Copyright 2003, Cambridge University Press. Reprinted with the permission of the Cambridge University Press.
FURTHER READING

Following references have been used in preparation of the materials presented in this chapter. They are also suggested as sources for further reading.

SOLID-STATE THEORY

PHYSICS OF SEMICONDUCTOR DEVICES

SEMICONDUCTOR MATERIALS AND HETEROSTRUCTURES

1.1 Using the time-independent 3-D Schrödinger equation, prove that for an electron in a 3-D infinite potential well described by
\[U(x,y,z) = \begin{cases} 0 & \text{for } 0 \leq x \leq W, 0 \leq y \leq W, 0 \leq z \leq W \\ \infty & \text{elsewhere} \end{cases} \]
the allowed energy levels are expressed by
\[E = \frac{\hbar^2 \pi^2}{2m^*W^2} \left(n^2 + m^2 + p^2\right) \]
where \(n, m, \) and \(p \) are integers.
Wave function and its first spatial derivative are continuous, single-valued functions.

1.2 Demonstrate that the Fermi level of an intrinsic semiconductor instead of residing in the middle of the bandgap has a slight offset from this position, which is determined by the following expression:
\[\frac{3}{4} kT \ln \left(\frac{m_p^*}{m_n^*} \right) \].

1.3 According to (1.21) calculate the average thermal energy of Maxwellian particles having a single degree of freedom. What is the thermal energy if the particles were allowed to move in the 2-D or the 3-D space?

1.4 Calculate the effective density of states at the lower edge of the conduction-band \(N_c \), for silicon at room temperature. Notice the difference in the definitions of transport and DOS effective masses and take the transverse and longitudinal effective mass to be equal to 0.19\(m_0 \) and 0.98\(m_0 \), respectively.

1.5 Prove Equation (1.32).

1.6 For a silicon sample doped with arsenic, only a quarter of the impurities are ionized at room temperature. Elaborate on the cause(s) of the observation and describe how the electron concentration is calculated in this case.

1.7 Prove Equations (1.78) and (1.79).

1.8 Formulate the Hall effect when the semiconductor is behaving semi-intrinsically. Presentation of the Section 1.4.3 was provided with the assumption of a significant extrinsic characteristic.

1.9 Perform a literature survey on the values of the magnetic flux density often used in Hall effect measurements and indicate why Hall measurements are not performed under high magnetic fields.

1.10 Employing WKB approximation, calculate the tunneling probability of an electron of energy 1 eV across a rectangular barrier of height 5 eV and width 1 nm. Repeat this problem for a triangular barrier of the same height and also the same width at the energy level of the electron.

1.11 Prove that assuming the same effective mass for electrons and holes, an electron requires 50% more kinetic energy than the size of the bandgap to instigate impact ionization.
1.12 Prove that to guarantee maximum sphere packing, the \(c/a \) ratio of the hexagonal prism of a wurtzite crystal should be equal to \(\sqrt{8}/3 \).

1.13 Calculate the entries of Table 1.7.

1.14 Indicate the plane \(\overline{1}100 \) on a hexagonal unit cell.

1.15 Perform a literature survey to determine the type of the band lineup between the following pairs:
 a. \(\text{InP/InGaAs} \)
 b. \(\text{AlGaN/GaN} \)
 c. \(\text{GaSb/InAs} \)

1.16 Perform a literature survey to determine which material system is more suitable for solar cell applications:
 a. \(\text{AlInGaAs} \)
 b. \(\text{AlInGaN} \)

 Determine the energy coverage of the bandgap of each compound and compare to solar spectrum.

1.17 In strained epitaxy we often simplistically define the critical thickness of the overlayer causing the generation of dislocations within this film as \(\frac{a_s}{2|c|} \). Considering the pseudomorphic growth of \(\text{In}_{0.2}\text{Ga}_{0.8}\text{As} \) over a thick relaxed layer of \(\text{GaAs} \), determine the critical thickness of \(\text{InGaAs} \). Perform the calculations at room temperature for which \(a_{\text{InAs}} = 6.058 \ \text{Å} \) and \(a_{\text{GaAs}} = 5.653 \ \text{Å} \).

1.18 Through producing schematic depictions of a 1-D lattice, demonstrate why the dispersion diagram of the acoustic-phonon branch tends toward 0 at small values of wave number while for the optical-phonon branch the energy remains sizable (see Fig. 1.45).

APPENDIX 1.A DERIVATION OF FERMI–DIRAC STATISTICS

The key point in the derivation of Fermi–Dirac statistics is to acknowledge that Fermions (electrons included) are indistinguishable particles obeying Pauli’s exclusion principle. According to this definition, the total number of ways that \(N_i \) Fermions can be arranged among \(g_i \) states corresponding to \(i \)th energy level (which are determined in terms of density of states function) is given by

\[
P_i = \frac{g_i!}{N_i!(g_i-N_i)!}.
\]

(1A.1)

According to Pauli’s exclusion principle, \(g_i \) is greater than or equal to \(N_i \). Since the density of states function is a double-density function (i.e., representing the number of states per unit energy per unit volume), in studying the thermal-equilibrium
distribution of Fermions among these states, we should not only consider the states corresponding to the ith energy level but also all those other states assigned to other values of energy. Accordingly, considering a total of N electrons, where N_i of which take the ith energy level, we will have

$$N = \sum_{i=1}^{n} N_i$$ \hspace{1cm} \text{(1A.2)}$$

where n is the number of energy-wise distinguishable levels.

In terms of this distribution, the total energy is given by

$$E = \sum_{i=1}^{n} N_i E_i$$ \hspace{1cm} \text{(1A.3)}$$

where E_i is the energy of the ith level.

As a result of (1A.2), the total number of ways of arranging $N_1, N_2, \ldots N_n$ indistinguishable particles among n energy levels would be

$$P = \prod_{i=1}^{n} P_i = \prod_{i=1}^{n} \frac{g_i!}{N_i!(g_i-N_i)!}.$$ \hspace{1cm} \text{(1A.4)}$$

On the basis of (1A.2) and (1A.3), in order to identify the distribution function presenting the least amount of systemic energy (i.e., representative of thermal equilibrium), the most likely distribution function should be selected. Toward that end N_i’s should be arranged so that P is maximized (i.e., representing the most plausible distribution) for a fixed N.

According to the discussions of Section 1.3.5, N_i can be replaced by $g_i f_i$. This substitution results in

$$P = \prod_{i=1}^{n} \frac{g_i!}{(g_i f_i)!(g_i-g_i f_i)!}.$$ \hspace{1cm} \text{(1A.5)}$$

Using Stirling’s approximation of factorials and assuming that n is greater than 20,

$$n! \approx \sqrt{2\pi n} n^n \exp \left[-n + \frac{1}{2n} \right],$$ \hspace{1cm} \text{(1A.6)}$$

which gives

$$\ln(n!) \approx n \ln(n) - n + \frac{1}{2} \ln(2\pi n).$$ \hspace{1cm} \text{(1A.7)}$$

Neglecting the third term on the right side of (1A.7), (1A.5) can be rewritten as

$$\ln(P) \approx \sum_{i=1}^{n} \ln(P_i) = \sum_{i=1}^{n} \left[g_i \ln(g_i) - g_i f_i \ln(g_i f_i) - (1-f_i) \ln(g_i - g_i f_i) \right].$$ \hspace{1cm} \text{(1A.8)}$$
This has been proven to be a valid approximation.

To maximize P, according to the Lagrange method of undetermined multipliers and Equations (1A.2) and (1A.3), the following function should be maximized by the appropriate choice of α and β to get P or $\ln(P)$ maximized

$$f(g_i) = \ln(P) - \alpha \sum g_i - \beta \sum E_i g_i.$$

(1A.9)

As a result, the derivative of function $f(g_i)$ versus g_i is set to 0 in order to calculate α and β:

$$\frac{\partial}{\partial (g_i)} [\ln(P) - \alpha \sum g_i - \beta \sum E_i g_i] = 0.$$

(1A.10)

Assuming fixed g_i (which is determined by the density of states function of the semiconductor) and through the following mathematical manipulation, f_i results in

$$-\ln(g_i) + \ln(g_i - f_i g_i) - \alpha - \beta E_i = 0$$

$$\Rightarrow \ln\left(\frac{g_i - f_i g_i}{g_i}\right) = \alpha + \beta E_i \Rightarrow f_i = \frac{1}{1 + \exp(\alpha + \beta E_i)}.$$

(1A.11)

As expressed below, the function f_i is a Fermi–Dirac distribution function with $E_i = -\alpha/\beta$:

$$f_D(E_i) = \frac{1}{1 + \exp\left(\frac{E_i - E_i}{1/\beta}\right)}.$$

(1A.12)

Knowing that $E = \sum_{i=1}^{n} E_i f_i g_i$,

$$dE = \sum_{i=1}^{n} E_i d(f_i g_i) + \sum_{i=1}^{n} f_i g_i d(E_i).$$

(1A.13)

Besides from (1A.10),

$$\frac{1}{\beta} \partial (\ln P) = \sum_{i=1}^{n} E_i d(f_i g_i) + \frac{\alpha}{\beta} \sum_{i=1}^{n} d(f_i g_i)$$

(1A.14)

where $E_i = -\alpha/\beta$ and $\sum_{i=1}^{n} d(f_i g_i) = dN$.

As a result, (1A.14) can be rewritten as

$$dE = \frac{1}{\beta} \partial \ln(P) + E_i dN + \sum_{i=1}^{n} f_i g_i d(E_i).$$

(1A.15)
Through incorporating \(dV \) as a volumetric variation,
\[
dE = \frac{1}{\beta} \partial \ln(P) + E_i dN + \sum_{i=1}^{n} f_i g_i \frac{dE_i}{dV},
\]
(1A.16)

This relationship is similar to thermodynamic identity of \(dE = TdS - PdV + \mu dN \). According to this analogy, \(\beta = 1/kT \), \(S = k \ln P \), and \(\mu \) (the energy of the Fermions) is represented by \(E_i \).

As a result (1A.12) evolves into the familiar form of
\[
f_D(E) = \frac{1}{1 + \exp \left(\frac{E - E_i}{kT} \right)}
\]
(1A.17)

FURTHER READING

APPENDIX 1.B DERIVATION OF EINSTEIN RELATIONSHIP IN DEGENERATE SEMICONDUCTORS

In the case of one-dimensional carrier transport and according to the definition of thermal equilibrium,
\[
J_n = qn \mu_n E + qD_n \frac{dn}{dx} = 0
\]
(1B.1)

where \(E = \frac{1}{q} \frac{dE_i}{dx} \) or equivalently \(E = - \frac{1}{q} \frac{dE_c}{dx} \).

In addition, based on the discussions in Section 1.3.5, \(n = N_c F_{1/2}(\eta_F) \)

where \(\eta_F = \frac{E_i - E_c}{kT} \).

Resulting from the definition of electric field \(E \) and \(n \),
\[
\frac{dn}{dx} = - \frac{1}{kT \eta_F} \frac{dn}{dx} = - \frac{q}{kT \eta_F} E.
\]
(1B.2)

Based on (1B.1) and (1B.2), the following general form of the Einstein relationship results:
\[
\frac{D_n}{\mu_n} = \frac{kT}{q} \frac{n}{(dn/d\eta_F)}
\]
(1B.3)

in which \(n = N_c F_{1/2}(\eta_F) \) and \(F_{1/2}(\eta) = (2/\sqrt{\pi})F_{1/2}(\eta) \) where \(F_{1/2}(\eta) = \int_{0}^{\infty} \frac{\xi^{1/2} d\xi}{(1 + e^{\xi-\eta})} \).
A relationship identical in form to (1B.3) can also be developed for holes. In general,

\[F_j(\eta) \equiv \frac{1}{\Gamma(j+1)} \int_0^\infty \frac{\xi^j d\xi}{(1 + e^{\xi - \eta})} \]

(1B.4)

\[F_j(\eta) \to e^\eta \text{ as } \eta \to -\infty \]

(1B.5)

\[\frac{d}{d\eta} F_j = F_{j-1}(\eta) \]

(1B.6)

\[F_{1/2}(\eta) \cong [e^{-\eta} + \xi(\eta)]^{-1} \]

(1B.7)

where

\[\xi(\eta) = 3 \sqrt{\frac{\pi}{2}} \left[(\eta + 2.13) + \left(|\eta - 2.13|^2 + 9.6 \right)^{5/12} \right]^{-3/2} \]

(1B.8)

with a maximum error of \(\sim \pm 0.5\% \),

\[\eta \cong \frac{\ln(U)}{1 - U^2} + \frac{(3\sqrt{\pi} U/4)^{2/3}}{1 + \left[0.24 + 1.08 (3\sqrt{\pi} U/4)^{2/3} \right]^{-2}} \]

(1B.9)

where \(U \equiv F_{1/2}(\eta) \) with a maximum error of \(\sim \pm 0.5\% \).

A convenient approximation for \((n)/(dn/d\eta_F)\) is presented in Nilsson (1978), in the form of \(F_{1/2}(\eta_F)/F_{-1/2}(\eta_F)\).

In its nondegenerate limit, \(n \) becomes equal to \(N_c \exp(\eta_F) \) and \((n)/(dn/d\eta_F)\) tends toward one. As a result (1B.3) takes on to its familiar form,

\[\frac{D_n}{\mu_n} = \frac{kT}{q} \]

(1B.10)

While this derivation relies on thermal-equilibrium conditions, it can be shown that the Einstein relationship is also valid under nonthermal-equilibrium conditions.

FURTHER READING

APPENDIX 1.C STRAIN TENSOR

Deformations in the crystal structure result in induction of strain. Strain is defined in terms of the relative change in the lattice constants with regard to the freestanding lattice constants of a crystal. Figure 1.C.1 illustrates a simple 2-D lattice under strain. The outcomes of this pictorial insight can be mathematically represented in the 3-D form with the use of the strain tensor.

As illustrated in Figure 1.C.1a, in the 2-D case we can use two unit vectors \(\hat{x} \) and \(\hat{y} \) of the Cartesian coordinate system to represent the unstrained lattice. In a simple lattice, these vectors correspond to the basis vectors of the lattice. A small uniform deformation of the lattice results in distortion of the unit vectors both in magnitude and orientation (see Fig. 1.C.1b). These distortions result in a new set of vectors identified by

\[
\hat{x}' = (1 + \epsilon_{xx}) \hat{x} + \epsilon_{xy} \hat{y} + \epsilon_{xz} \hat{z}
\]

\[
\hat{y}' = \epsilon_{yx} \hat{x} + (1 + \epsilon_{yy}) \hat{y} + \epsilon_{yz} \hat{z}.
\]

In the 3-D case, we also have a distortion with regard to the \(z \)-axis of the coordinate system,

\[
\hat{z}' = \epsilon_{zx} \hat{x} + \epsilon_{zy} \hat{y} + (1 + \epsilon_{zz}) \hat{z}.
\]

Elements \(\epsilon_{ij} \) are referred to as strain coefficients. These coefficients are dimensionless. The \(3 \times 3 \) matrix composed of these elements is referred to as strain tensor:

\[
\epsilon = \begin{bmatrix}
\epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\
\epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\
\epsilon_{zx} & \epsilon_{zy} & \epsilon_{zz}
\end{bmatrix}.
\]

FIGURE 1.C.1 (a) Schematic depiction of a 2-D Bravais lattice. (b) Arbitrary deformation of the lattice drawn in (a).
Generally speaking, tensor is a mathematical notion used to describe a linear relationship between two physical quantities. Depending on the degrees of freedom, a tensor can be a scalar quantity (i.e., zero rank), a vector (i.e., first rank), or as in this case a matrix (i.e., second rank). As an example, we can look into the strain-caused deformation with regard to a lattice point represented by the vector \(\mathbf{r} = x\hat{x} + y\hat{y} + z\hat{z} \). Considering a uniform deformation to evolve this point to \(\mathbf{r}' = x\hat{x}' + y\hat{y}' + z\hat{z}' \) for a general varying strain, the strain tensor is formulated as

\[
e_{ij} = \frac{\partial u_i}{\partial x_j}
\]

where \(u_i = u_x, u_y, u_z \), \(x_j = x, y, z \).

In this definition, \(u_i \) refers to the displacement of the lattice point (e.g., \(\mathbf{r} \)) along \(x_i \). According to this definition, it is obvious that without rotation, the strain tensor is symmetric and

\[
e_{ij} = e_{ji} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).
\]

Oftentimes, instead of the aforementioned set of strain tensor components, the following are used:

\[
\begin{align*}
 e_{xx} &= e_{xx}; e_{yy} = e_{yy}; e_{zz} = e_{zz} \\
 e_{xy} &= x'\hat{y} = e_{xy} + e_{yx} \\
 e_{yx} &= y'\hat{x} = e_{yx} + e_{xy} \\
 e_{yz} &= y'\hat{z} = e_{yz} + e_{zy} \\
 e_{zx} &= z'\hat{x} = e_{zx} + e_{xz}
\end{align*}
\]

As presented in (1C.7), the strain components \(e_{xy}, e_{yz}, \) and \(e_{zx} \) are defined with respect to changes of angle between the basis vectors. This definition is provided with neglecting the terms of order \(e_{ij}^2 \) in the small-strain approximation.

The above six strain coefficients, shown by an array \(e = \{e_{xx}, e_{yy}, e_{zz}, e_{yz}, e_{zx}, e_{xy}\} \), offer a complete definition of strain. This set provides a more convenient way for describing the relationship between the strain and the strain-related physical quantities. The form of presentation expressed in (1C.4), however, gets complicated very quickly. This is because the relationship between two second-rank tensors (i.e., one for the strain tensor and one for the strain-related physical quantity) is representable through a fourth-rank tensor. However, describing each of the two second-rank tensors by a vector only requires dealing with a second-rank tensor for evaluation of the interactions.

\[102\] According to (1C.1)–(1C.3),

\[
\mathbf{r}' = x(1 + e_{xx}) + y(1 + e_{yy}) + z(1 + e_{zz}) \hat{z} + y(1 + e_{xy}) + z(1 + e_{xz}) \hat{y} + x(1 + e_{yx}) + z(1 + e_{yz}) \hat{x}.
\]

Hence, as an example, \(u_x = x(1 + e_{xx}) + y(1 + e_{yx}) + z(1 + e_{xz}) \hat{x} - x \), and as a result \(\partial u_i/\partial x \) would be equal to \(e_{xx} \).
In terms of the first-rank tensor description of (1C.7), the dilation of the unit cell of the crystal can be simply evaluated through calculating the volume of the unit cell by

\[V' = \hat{x}' \cdot \hat{y}' \times \hat{z}' = 1 + e_{xx} + e_{yy} + e_{zz}. \]

Equation (1C.8) shows the dilation \(\delta \) as

\[\delta = \frac{\Delta V}{V} = e_{xx} + e_{yy} + e_{zz}. \]

Interestingly enough, this is the trace of the strain tensor. This dilation is the same as the negative of the hydrostatic pressure.

It is worthwhile indicating that under a hydrostatic pressure \(P \), the shear stress is 0 and the stress along any principal direction is equal to \(-P\),

\[\tau = \begin{bmatrix} -P & 0 & 0 \\ 0 & -P & 0 \\ 0 & 0 & -P \end{bmatrix}. \]

According to this sign convention, the tensile stress is indicated with a positive sign, while the compressive stress is indicated in terms of negative values.

In the case of the uniaxial stress \(T \) along the \([001]\) direction, all stress components but \(\tau_{zz} \) are 0, and \(\tau_{zz} = T \). In other words,

\[\tau = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & T \end{bmatrix}. \]