Contents

About the IFST Advances in Food Science Book Series xv
List of Contributors xvii
Preface xxi

1 Introduction to Tropical Roots and Tubers 1

Harish K. Sharma and Pragati Kaushal

1.1 Introduction 1
1.2 Roots and Tubers 3
 1.2.1 Roots 3
 1.2.2 Tubers 3
1.3 Requirements for the Higher Productivity of Tropical Roots and Tubers 3
 1.3.1 Farming Systems 3
 1.3.2 Pest and Pathogen Systems 5
 1.3.3 Genetic Systems and Strategies for Genetic Improvement 6
 1.3.4 Marketing Strategy 6
 1.3.5 The Properties of the Product and Constituents 7
1.4 World Production and Consumption 7
1.5 Constraints in Tropical Root and Tuber Production 11
1.6 Classification and Salient Features of Major Tropical Roots and Tubers 12
1.7 Composition and Nutritional Value 12
1.8 Characteristics of Tropical Roots and Tubers 16
1.9 Anti-nutritional Factors in Roots and Tubers 16
 1.9.1 Cassava 21
 1.9.2 Sweet Potato 21
 1.9.3 Taro 22
 1.9.4 Yam 23
 1.9.5 Elephant Foot Yam 23
1.10 Applications of Tropical Roots and Tubers 23
 1.10.1 Animal Feed 23
 1.10.2 Industrial 24
 1.10.3 Medicinal 24
 1.10.4 Foods 24
1.11 New Frontiers for Tropical Roots and Tubers 26
1.12 Future Aspects 27
References 28
CONTENTS

2 **Taxonomy, Anatomy, Physiology and Nutritional Aspects**
Lochan Singh, Ashutosh Upadhyay, and Ashok K. Dhawan

2.1 Introduction 34
2.2 Taxonomy of Roots and Tuber Crops 38
 2.2.1 Morphological Identification 39
 2.2.2 Cytogenetics 67
 2.2.3 Ecological Study 68
 2.2.4 Chemotaxonomy 69
 2.2.5 Molecular Identification 70
2.3 Anatomy 70
 2.3.1 Root Structure 103
 2.3.2 Changes Concomitant with Lateral Root and Storage Root 103
 2.3.3 Stem Structure 104
 2.3.4 Changes Associative with Stem Tuber 105
 2.3.5 Leaf Structure 106
2.4 Physiology of Root and Tuber Crops 107
 2.4.1 Associative Changes 107
 2.4.2 Influence Parameters 108
 2.4.3 Physiological Age Index and Post-harvest Studies 109
 2.4.4 Techniques Involved in Exploring Physiological Aspects 109
2.5 Nutritional Perspective in Root and Tuber Crops 109
 2.5.1 Proximate Composition 109
 2.5.2 Medicinal Value 110
 2.5.3 Nutraceuticals and Functional Preparations of Tubers and Roots 115
References 127

3 **Tropical Roots and Tubers: Impact on Environment, Biochemical, Molecular Characterization of Different Varieties of Tropical Roots and Tubers**
Chokkappan Mohan, Vidya Prasannakumary, and Aswathy G.H. Nair

3.1 Introduction 138
3.2 Genetic Diversity 139
3.3 Cassava
 3.3.1 Origin of Cassava 140
 3.3.2 Genetic Diversity in Cassava 141
 3.3.3 Genome and Gene Mapping in Cassava 148
3.4 Sweet Potato
 3.4.1 Origin of Sweet Potato 151
 3.4.2 Genetic Diversity in Sweet Potato 153
 3.4.3 Genome and Gene Mapping in Sweet Potato 160
3.5 Taro 160
 3.5.1 Genetic Diversity in Taro 163
 3.5.2 Genome and Gene Mapping in Taro 166
3.6 Yams 166
 3.6.1 Genetic Diversity in Yams 168
 3.6.2 Genome and Gene Mapping in Yams 170
3.7 Future Aspects 171
References 172
Contents

4 Good Agricultural Practices in Tropical Root and Tuber Crops

Kuttumu Laxminarayana, Sanjibita Mishra, and Sarita Soumya

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>183</td>
</tr>
<tr>
<td>4.2 Cassava</td>
<td>186</td>
</tr>
<tr>
<td>4.2.1 Climate and Soil</td>
<td>187</td>
</tr>
<tr>
<td>4.2.2 Improved Varieties</td>
<td>187</td>
</tr>
<tr>
<td>4.2.3 Planting Season</td>
<td>187</td>
</tr>
<tr>
<td>4.2.4 Methods of Planting</td>
<td>187</td>
</tr>
<tr>
<td>4.2.5 Manures and Fertilizers</td>
<td>189</td>
</tr>
<tr>
<td>4.2.6 Crop Protection</td>
<td>190</td>
</tr>
<tr>
<td>4.2.7 Intercropping</td>
<td>191</td>
</tr>
<tr>
<td>4.2.8 Harvesting</td>
<td>191</td>
</tr>
<tr>
<td>4.3 Sweet Potato</td>
<td>192</td>
</tr>
<tr>
<td>4.3.1 Climate and Soil</td>
<td>193</td>
</tr>
<tr>
<td>4.3.2 Planting Season</td>
<td>193</td>
</tr>
<tr>
<td>4.3.3 Nursery</td>
<td>193</td>
</tr>
<tr>
<td>4.3.4 Field Preparation and Planting</td>
<td>195</td>
</tr>
<tr>
<td>4.3.5 Manures and Fertilizers</td>
<td>195</td>
</tr>
<tr>
<td>4.3.6 Crop Protection</td>
<td>196</td>
</tr>
<tr>
<td>4.3.7 Harvesting</td>
<td>197</td>
</tr>
<tr>
<td>4.4 Yams</td>
<td>197</td>
</tr>
<tr>
<td>4.4.1 Climate and Soil</td>
<td>198</td>
</tr>
<tr>
<td>4.4.2 Improved Varieties</td>
<td>198</td>
</tr>
<tr>
<td>4.4.3 Planting Material</td>
<td>200</td>
</tr>
<tr>
<td>4.4.4 Land Preparation and Planting</td>
<td>200</td>
</tr>
<tr>
<td>4.4.5 Manures and Fertilizers</td>
<td>200</td>
</tr>
<tr>
<td>4.4.6 Management Practices for Intercrop</td>
<td>200</td>
</tr>
<tr>
<td>4.4.7 Trailing</td>
<td>201</td>
</tr>
<tr>
<td>4.4.8 Crop Protection</td>
<td>201</td>
</tr>
<tr>
<td>4.4.9 Harvesting</td>
<td>201</td>
</tr>
<tr>
<td>4.5 Elephant Foot Yam</td>
<td>201</td>
</tr>
<tr>
<td>4.5.1 Climate and Soil</td>
<td>202</td>
</tr>
<tr>
<td>4.5.2 Varieties</td>
<td>202</td>
</tr>
<tr>
<td>4.5.3 Planting</td>
<td>202</td>
</tr>
<tr>
<td>4.5.4 Manures and Fertilizers</td>
<td>203</td>
</tr>
<tr>
<td>4.5.5 Management Practices for Intercrop</td>
<td>203</td>
</tr>
<tr>
<td>4.5.6 Intercultural Operations</td>
<td>203</td>
</tr>
<tr>
<td>4.5.7 Crop Protection</td>
<td>204</td>
</tr>
<tr>
<td>4.5.8 Harvesting</td>
<td>204</td>
</tr>
<tr>
<td>4.6 Taro</td>
<td>204</td>
</tr>
<tr>
<td>4.6.1 Climate and Soil</td>
<td>205</td>
</tr>
<tr>
<td>4.6.2 Production Systems</td>
<td>205</td>
</tr>
<tr>
<td>4.6.3 Planting Material</td>
<td>206</td>
</tr>
<tr>
<td>4.6.4 Land Preparation and Planting</td>
<td>207</td>
</tr>
<tr>
<td>4.6.5 Intercultural Operations</td>
<td>207</td>
</tr>
<tr>
<td>4.6.6 Manures and Fertilizers</td>
<td>208</td>
</tr>
<tr>
<td>4.6.7 Crop Protection</td>
<td>209</td>
</tr>
<tr>
<td>4.6.8 Harvesting</td>
<td>210</td>
</tr>
</tbody>
</table>
CONTENTS

6.2.3 Pathological Losses 256
6.2.4 Losses due to Pest Infestation 257
6.3 Losses Observed during Various Stages at the Time of Marketing 257
6.4 Methods employed for Storage of Roots and Tubers 261
 6.4.1 Cassava 263
 6.4.2 Sweet Potato 267
 6.4.3 Yam 268
 6.4.4 Taro 268
6.5 Commercialization 269
6.6 Factors affecting Commercialization 269
6.7 Key Products and Final Markets for Commercialization 271
6.8 Trends in Commercialization 272
6.9 Future Research 273
References 273

7 Good Manufacturing Practices for Processing of Tropical Roots and Tubers 281
 Anakalo A. Shitandi and Marion G. Kihumbu-Anakalo

7.1 Introduction 281
7.2 Good Manufacturing Practices (GMP) 282
7.3 Key Importance of GMPs for Roots and Tubers 283
7.4 GMP Components 283
 7.4.1 Quality Management 283
 7.4.2 Quality Control 284
 7.4.3 Good Manufacturing Practices for Tropical Roots and Tubers 285
 7.4.4 Hygiene and Sanitation 287
 7.4.5 Qualification and Validation 289
 7.4.6 Complaints 289
 7.4.7 Contract Production and Analysis 290
 7.4.8 Inspection, Supplier’s Audit and Approval 291
 7.4.9 Personnel and Training 291
 7.4.10 Premises 292
 7.4.11 Equipment 295
 7.4.12 Raw Materials 296
 7.4.13 Documentation 297
7.5 GMPs in Low-income Countries 298
7.6 Conclusions 298
Acknowledgements 299
References 299

8 Controlling Food Safety Hazards in Root and Tuber Processing: An HACCP Approach 301
 Adewale O. Obadina and Ifeoluwa O. Adekoya

8.1 Food Safety 301
8.2 Food Safety Hazards 302
 8.2.1 Biological Safety of Foods 302
 8.2.2 Chemical Safety of Foods 302
 8.2.3 Physical Safety of Foods 303
8.3 Hazard Analysis Critical Control Point (HACCP) 304
 8.3.1 Pre Steps for HACCP 304
 8.3.2 The Seven HACCP Principles 304
8.4 Roots and Tubers 308
8.4.1 Cassava Processing 308
8.4.2 Hazard Analysis and Critical Control Point (HACCP) of Instant Yam Flour 314
8.4.3 Sweet Potato Chips 319
8.5 Summary and Future Research 322
References 322

9 Taro: Technological Interventions 325

9.1 Taro Flour, Achu and Starch 326
Harish K. Sharma, Pragati Kaushal, and Bahadur Singh

9.1.1 Taro 326
9.1.2 Versatility of Taro 327
9.1.3 Processing Constraints 328
9.1.4 Solutions to Resolve Processing Constraints 329
9.1.5 Taro Flour 329
 9.1.5.1 Basic Steps in Production of Taro Flour 330
 9.1.5.2 Methods for Production of Taro Flour 333
 9.1.5.3 Properties of Taro Flour 333
 9.1.5.4 Storage 336
 9.1.5.5 Utilization 337
9.1.6 Achu 338
 9.1.6.1 Production of Achu 338
 9.1.6.2 Quality Requirements 339
 9.1.6.3 Properties 341
 9.1.6.4 Storage 342
9.1.7 Taro Starch 343
 9.1.7.1 Basic Steps of Production 344
 9.1.7.2 Recent Developments for Extraction of Taro Starch 345
 9.1.7.3 Physical and Functional Properties of Taro Starch 345
 9.1.7.4 Morphological Characterisitcs and Crystallinity of Taro Starch 350
 9.1.7.5 Modified Starches 351
 9.1.7.6 Applications 351
 9.1.7.7 Future Aspects 352
References 352

9.2 Bakery Products and Snacks based on Taro 362
Nicolas Y. Njintang, Joel Scher, and Carl M.F. Mbofung

9.2.1 Introduction 362
9.2.2 Bakeries 363
 9.2.2.1 Bread 363
 9.2.2.2 Cookies and Biscuits 372
 9.2.2.3 Use of Parboiled Taro Flour in Biscuit Preparation: An Original Study 374
 9.2.2.4 Other Recipes of Cookies and Biscuits Formulation 381
 9.2.2.5 Boiling as a Pretreatment to Annihilate Irritation Induced by Calcium Oxalate in Taro Flour 382
 9.2.2.6 Other Bakery Products 384
9.2.3 Snacks 386
 9.2.3.1 Taro Extrudates Snacks 386
 9.2.3.2 Taro Chips or Crisps 388
9.2.4 Conclusion and Future Aspects 390
References 390

9.3 Other Taro-based Products 395
Nicolas Y. Njintang, Joel Scher, and Carl M.F. Mbofung

9.3.1 Introduction 395
9.3.2 Taro Ice Products 395
9.3.3 Frozen Taro 396
9.3.4 Preparation of Fermented Taro Paste 397
9.3.5 Taro Yogurt 398
9.3.6 Taro Noodles 398
9.3.7 Taro-based Baby Food 400
9.3.8 Preparation of Spherical Aggregate from Taro Starch 402
9.3.9 Baking and Boiling of Taro Leaves 404
9.3.10 Taro Flour as a Soup Thickener 404
9.3.11 Pounded Taro (Achu) 404
9.3.12 Production of a Taro-based Spiced Soup: A Case Study 407
9.3.12.1 Introduction 407
9.3.12.2 Sampling and Oxisoup Preparation 407
9.3.12.3 Effects of Spice Concentration on Polyphenols Content, Flavonoids
Content and ABTS+ Free Radical Scavenging of Oxisoup 408
9.3.13 Conclusion and Future Aspects 409
References 411

10 Cassava: Technological Interventions 414

10.1 Cassava Flour and Starch: Processing Technology and Utilization 415
Taofik A. Shittu, Buliyaminu A. Alimi, Bashira Wahab, Lateef O. Sanni, and
Adebayo B. Abass

10.1.1 Introduction 415
10.1.2 Cassava Flours 416
10.1.2.1 Processing Technology 416
10.1.2.2 Cassava Flour Properties 423
10.1.2.3 Utilization of Cassava Flour 427
10.1.3 Cassava Starch 430
10.1.3.1 Cassava Starch Production Technology 430
10.1.3.2 Cassava Starch Productivity and Quality 432
10.1.3.3 Potential Uses 434
References 440

10.2 Other Cassava-based Products 451
Ibok Nsa Oduro

10.2.1 Introduction 451
10.2.2 Snacks 451
10.2.2.1 Fried Grated Cassava 452
10.2.2.2 Baked Cassava Starch 452
10.2.2.3 Abacha 453
10.2.2.4 Fried Cassava Chips 455
10.2.2.5 Peujeum 455
10.2.2.6 Pastries from Cassava Composites 457
10.2.2.7 Cassava Bread 457
10.2.2.8 Pappad 457
10.2.2.9 Akara-akpu 458

10.2.3 Cassava-based Beverages 459
10.2.3.1 Cassareep 459
10.2.3.2 Chicha 459
10.2.3.3 Mingao 459

10.2.4 Major Popular Meals 459
10.2.4.1 Tapioca (Cassava Starch) 459
10.2.4.2 Boiled Cassava Root 460
10.2.4.3 Fufu 461
10.2.4.4 Roasted Cassava Grits 464
10.2.4.5 Kpokpo Gari 466
10.2.4.6 Attieke 466
10.2.4.7 Attoukpou 467
10.2.4.8 Kokonte 468
10.2.4.9 Lafun 469
10.2.4.10 Placali 470
10.2.4.11 Chickwangue 470
10.2.4.12 Kondugbala 471
10.2.4.13 Cassava Dough 471
10.2.4.14 Cassava Leaves 472

10.2.5 Recent Findings and On-going Studies 473
10.2.6 Summary and Future Research 473
Acknowledgements 473
References 473

11 Sweet Potato: Technological Interventions 478

11.1 Sweet Potato Flour and Starch 479
Maninder Kaur and Kawaljit Singh Sandhu

11.1.1 Introduction 479
11.1.2 Sweet Potato Flour 480
11.1.3 Basic Steps in Production of Sweet Potato Flour 480
11.1.4 Methods for Production of Sweet Potato Flour 482
11.1.5 Properties of Sweet Potato Flour 482
11.1.5.1 Storage 484
11.1.5.2 Utilization 484
11.1.6 Starch 485
11.1.7 Basic Steps of Production 486
11.1.7.1 Selection of Raw Materials 486
11.1.7.2 Washing of Raw Materials 486
11.1.7.3 Extraction 486
11.1.8 Recent Developments for Extraction of Sweet Potato Starch 487
11.1.9 Physicochemical Properties of Sweet Potato Starch 487
11.1.10 Pasting Properties of Sweet Potato Starch 490
11.1.11 Rheological Properties 491
11.1.12 Morphological Properties 493
11.1.13 Modified Starches 493
11.1.13.1 Hydrothermal Treatment 494
11.1.13.2 Chemical Modification 495
11.1.13.3 Enzymatic Modification 496
11.2 Bakery Products and Snacks based on Sweet Potato

Tai-Hua Mu, Peng-Gao Li, and Hong-Nan Sun

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1 Introduction</td>
<td>507</td>
</tr>
<tr>
<td>11.2.2 Sweet Potato Bread</td>
<td>507</td>
</tr>
<tr>
<td>11.2.3 Sweet Potato Cookies</td>
<td>509</td>
</tr>
<tr>
<td>11.2.4 Purple Sweet Potato Cakes</td>
<td>511</td>
</tr>
<tr>
<td>11.2.5 Instant Nutritious Sweet Potato Chips</td>
<td>515</td>
</tr>
<tr>
<td>11.2.6 Puffed Sweet Potato Food</td>
<td>516</td>
</tr>
<tr>
<td>11.2.7 Airflow Puffed Sweet Potato Chips</td>
<td>520</td>
</tr>
<tr>
<td>11.2.8 Aromatic and Crispy Sweet Potato Chips</td>
<td>523</td>
</tr>
<tr>
<td>11.2.9 Low Temperature Vacuum Fried Sweet Potato Chips</td>
<td>523</td>
</tr>
<tr>
<td>11.2.10 Vacuum Microwave Drying Sweet Potato Chips</td>
<td>527</td>
</tr>
<tr>
<td>11.2.11 Sun Dried Sweet Potato Slices</td>
<td>529</td>
</tr>
<tr>
<td>11.2.12 Summary and Future Research</td>
<td>531</td>
</tr>
<tr>
<td>References</td>
<td>531</td>
</tr>
</tbody>
</table>

11.3 Other Sweet Potato-based Products

Tai-Hua Mu, Hong-Nan Sun, and Peng-Gao Li

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.1 Introduction</td>
<td>532</td>
</tr>
<tr>
<td>11.3.2 Sweet Potato Jelly</td>
<td>532</td>
</tr>
<tr>
<td>11.3.3 Instant Sweet Potato Noodles</td>
<td>535</td>
</tr>
<tr>
<td>11.3.4 Quick-frozen Sweet Potato Product</td>
<td>536</td>
</tr>
<tr>
<td>11.3.5 Sweet Potato Healthcare Tea</td>
<td>537</td>
</tr>
<tr>
<td>11.3.6 Sweet Potato Shoot-tip Canning</td>
<td>538</td>
</tr>
<tr>
<td>11.3.7 Sweet Potato Beer</td>
<td>539</td>
</tr>
<tr>
<td>11.3.8 Purple Sweet Potato Juice</td>
<td>540</td>
</tr>
<tr>
<td>11.3.9 Sweet Potato Whole Flour</td>
<td>542</td>
</tr>
<tr>
<td>11.3.10 Sweet Potato Healthcare Food</td>
<td>545</td>
</tr>
<tr>
<td>11.3.10.1 Sweet Potato Protein</td>
<td>545</td>
</tr>
<tr>
<td>11.3.10.2 Sweet Potato Dietary Fiber</td>
<td>547</td>
</tr>
<tr>
<td>11.3.10.3 Sweet Potato Pectin</td>
<td>550</td>
</tr>
<tr>
<td>11.3.10.4 Sweet Potato Anthocyanins</td>
<td>550</td>
</tr>
<tr>
<td>11.3.10.5 Sweet Potato Polyphenols</td>
<td>553</td>
</tr>
<tr>
<td>11.3.11 Sweet Potato Leaf Powder</td>
<td>554</td>
</tr>
<tr>
<td>References</td>
<td>555</td>
</tr>
</tbody>
</table>

12 Yam: Technological Interventions

Rahman Akinoso and Olufunmilola A. Abiodun

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>558</td>
</tr>
<tr>
<td>12.2 Importance of Yam in Tropical Regions</td>
<td>559</td>
</tr>
<tr>
<td>12.3 Yam Production</td>
<td>559</td>
</tr>
<tr>
<td>12.4 Consumption of Yam</td>
<td>560</td>
</tr>
<tr>
<td>12.5 Composition of Yam</td>
<td>562</td>
</tr>
</tbody>
</table>
12.6 Yam Processing and Utilization 563
 12.6.1 Boiled and Roasted Yam 563
 12.6.2 Yam Porridge 563
 12.6.3 Pounded Yam 564
 12.6.4 Yam Chips 565
 12.6.5 Fried Yam Products 566
 12.6.6 Paste/Stiff Dough 567
 12.6.7 Instant Yam Flour 568
 12.6.8 Yam Flakes 570
 12.6.9 Extruded Products 570
 12.6.10 Composite Flours 571
 12.6.11 Starch 571
12.7 Effects of Processing on the Quality of Yam 575
12.8 Technological Application to Yam Processing 576
 12.8.1 Major Equipments used in Yam Processing 577
12.9 Summary and Future Research 579
References 580

13 Amorphophallus: Technological Interventions 591
 Ramesh C. Ray and Sudhanshu S. Behera

13.1 Introduction 591
13.2 Habit, Habitat and Distribution 592
13.3 Nutritional and Anti-nutritional Factors 593
 13.3.1 Nutritional Factors 593
 13.3.2 Anti-nutritional Factors (Acridity) 593
13.4 Traditional Processing and Value Addition of EFY 594
 13.4.1 EFY as Food 595
 13.4.2 Flour and Starch 596
 13.4.3 Indigenous Medicines 597
13.5 EFY Processing with Technological Interventions 597
 13.5.1 Resistant Starch 598
 13.5.2 Processing EFY (Konjac) Flour for Gum and Gel 598
13.6 A. konjac K. Koch as Industrial Crop 599
 13.6.1 Extraction and Purification of KGM 600
 13.6.2 Konjac Glucomannan (KGM)-based Food Products 601
 13.6.3 KGM in Bio-film Production 601
 13.6.4 Other Uses of KGM 601
13.7 Processing as Pharmaceutical Supplements 603
 13.7.1 Obesity and Weight Loss 604
 13.7.2 Diabetes Management 604
 13.7.3 Probiotic Properties 604
 13.7.4 Effects on Immune System 604
 13.7.5 Processing for Drug Delivery 605
 13.7.6 Other Activities 605
13.8 Summary and Future Perspectives 605
References 606

Index 613