Index

A

Accelerating control volume, 9
centripetal acceleration, 11
Coriolis acceleration, 11
Acoustic excitation of Blasius boundary layer, 315
Active control by plasma actuation, 449
Actuation time for the plasma actuator, 469
Adiabatic lapse rate of ISA, 19
Adverse pressure gradient flow instability, 309
Aerodynamic centre, 122, 129, 134
Aerodynamic efficiency, 4, 445, 456, 462
Aerodynamic performance parameter, 442
Aerofoil, 4, 90, 101, 116, 183, 252, 275, 278, 287, 326, 332, 350, 359
GA(W)--1 airfoil, 353, 448, 455
circular arc airfoil, 124
NLF(1)--0414F airfoil, 457
NACA 0012 airfoil, 382
NACA 67-314 airfoil, 357
ONERA D aerofoil, 326
SHM-1 airfoil, 364, 366–7, 371, 382
symmetric flat plate airfoil, 119
camber, 111
centre of pressure, 122–23, 128, 134
cusped trailing edge of aerofoil, 449
with roughness elements, 284
Aerostat, airships, dirigibles, 1
Aircraft speed, 42
air speed indicator, 42
calibrated air speed (CAS), 43
compressibility correction, 44
equivalent air speed (EAS), 43
indicated air speed (IAS), 43
ture air speed (TAS), 43
Amplification rates, 303, 307, 329
spatial and temporal rates, 303
Analytic functions, 78
Armstrong line or limit, 12
Artificial diffusion, 386
Atmospheric Structure, 11, 13
arctic minimum, 15
static instability of atmosphere, 19
Atmospheric gusts, 413
Attachment line flow, 321
attachment line boundary layer, 324
B

Barotropic fluid, 40–1
Beltrami equations, 41, 278
Bernoulli’s equation, 41
applications of Bernoulli’s equation, 42
Bernoulli equation for steady flows, 229
unsteady Bernoulli’s equation, 42
Biot–savart law, 142, 144
Bird/insect flight, 410
Blasius boundary layer, 243, 309, 441
Blasius’ theorem, 90
Body force, 26, 467
Boundary layers, 46, 227
boundary layer equations, 225, 228, 236, 321–22
boundary layer separation, 235
displacement, momentum thicknesses, 47, 231–2, 304, 343, 359, 371, 440
inner solution, 225
outer solution, 225
Boundary layer re-energizer, 364
Boundary regions, 318
Boundary sheets, 318
Bromwich contour integral method, 298
Boyle’s law, 22
Bypass transition, 313–14, 325, 377, 409, 419, 464
by convecting vortex, 325

C
Cabin pressurization, 14
Calorically perfect gas, 58
Cauchy equation, 28
Cauchy’s Integral theorem, 79
Cauchy’s residue theorem, 81
poles and residue, 80, 131
Cauchy–Riemann relations, 78, 101, 103, 278, 331
generalized Cauchy–Riemann transformation, 329
Circulation, 35, 38, 94
Clebsch transform, 35
Cloud details, 13
Coefficient of pressure, 90
Complex potential, 78, 81, 83, 86, 88, 92, 94
Complex velocity, 81, 104
Compressible flows, 34 44, 49, 54–76, 396
Navier-Stokes equations, 34, 55, 383
Compressibility of flow, 22
Conformal mapping or transformation, 101, 104, 278, 350
circular cylinder to a cambered airfoil, 109
circular cylinder to a circular arc, 107
circular cylinder to an ellipse, 105
circular cylinder to a flat plate, 105
circular cylinder to a symmetric airfoil, 106
Conjugate functions, 78
Continuity equation, 24
Control mass system, 5, 47
Control surface (CS) and Control volume (CV), 24, 48
Conservation laws, 4
linear momentum, differential form, 6, 26
linear momentum, Integral form, 25
mass, 5
Convective flux vectors, 383, 385
Crocco’s theorem, 401

D
D’Alembert’s paradox, 95, 223
Delta or triangular wing, 206 364
Direct numerical simulation (DNS), 263, 264, 266, 272, 273, 296, 381
dispersion relation preserving methods, 265, 381, 413
Dirac delta function, 83
Dispersion relation, 261, 263, 302, 330, 388
Doublet, 85–6
doublet in uniform horizontal stream, 88
Downwash, 147, 150, 153
downwash angles, 148
downwash on tailplane, 162
Drag, 2, 457
drag bucket, 350, 352, 449
drag reduction, 297
drag divergence Mach number, 366
drag polar, 350, 353, 367, 455
induced drag, 147, 156, 206, 442, 445, 461
parasitic drag, 445
profile drag, 297, 347, 445, 457
Drooped wing-tip, 462

E
Eigenvalue analysis, 302
Energy equation, 50
convective form, 54
Energy spectrum, 265
Enthalpy, 58
Entropy, 56
Envelope curve method, 309, 313, 332
Equation of motion, 10
in inertial and non-inertial frames, 413
centripetal, Coriolis, Euler acceleration, 11, 413
Equation of state, 21
Euler’s equation, 35, 41, 223, 225, 463
Eulerian description, 23
Expansion of supersonic flows, 74

F
Falkner–Skan transform, 239, 242, 322, 325, 372
Falkner–Skan parameter, 242, 372
Falkner–Skan–cooke profile, 325, 337
Favourable pressure gradient flow, 296
First hover or water-treading mode, 410
Fjørtoft’s theorem, 301
Flapping motion, 409, 410
Index

489

Flaps, 451
 Fowler flap, 454–5
 Krueger flap, 450
 location for the pivot point, 451
 overlap of Fowler flap, 455
Flap rotation angle, 451
Flat plate wake at zero angle of attack, 245
Flow acceleration, 9
 convective acceleration, 25
 local acceleration, 25
Flow control, 445
 by plasma actuation, 465
 separation and transition, 465
Flow on the attachment line, 461
Flow instability, 296
Flow past a translating and rotating cylinder, 94
Formation–flight of birds, 163
Free stream excitation, 315
Free stream turbulence (FST), 313, 378, 429
Fuselage, 2
Fuselage drag, 464

G

General thin airfoil theory, 129
Glauert’s integral, 130, 169
Goertler vortices, 328
Green’s theorem, 36, 190, 417
Grid generation algorithm, 279
Grid–shocks, 284, 290
Group velocity, 262, 265, 304, 330

H

Half–saddle points, 97
Heat conduction terms in energy equation, 384
Helmholtz’s theorems of vortex motion, 138
Hienenz or stagnation point flow, 309
High lift device, 466
Hoerner tips, 462
Holomorphic function, 78
Horizontal stabilizer, 2
Horse–shoe vortex, 142
Hot–film arrays, 464
Hovering flight, 409
Hyperbolic grid generation, 384

I

Impulse excitation, 315

Impulse response of boundary layer, 315
 local and asymptotic solution, 315
Incompressible flows, 35
Induced drag, 147, 156, 206, 442, 445, 461
 induced drag coefficient, 151, 156
 induced drag reduction, 463
 induced drag for elliptic loading, 151
Infinite swept wing flow, 320, 333
Infinite vortex, 145
Inflection point, 301, 319, 326, 328, 335, 351
Inflectional velocity profile, 298
Instabilities, 298
 convective instability, 298
 cross flow instabilities, 298, 326, 332–33, 461
 of equilibrium flow, 299
 of flow over nacelle, 465
 of three–dimensional flows, 325
 mixed convections, adiabatic and isothermal condition, 301
Instability and receptivity, 315
 Nonlinear instability theory, 297
 primary instability, 298
Intermittency factor, 306
International standard atmosphere (ISA), 13, 43
Inertial subrange, 265
Inviscid instability analysis, 299
 parallel flow approximation, 299
 instability theorems, 299, 326
Inviscid temporal instabilities, 301
Irrotational flow past oval, 88

J

Jet stream, 410
Jukowski airfoil, 111, 114–5
Jukowski transformation, 104, 107

K

Kelvin’s cat’s eye, 328
Kelvin’s theorem, 40, 47, 77
Kinetic energy preserving scheme, 381
Kelvin–Helmholtz instability, 419
Kolmogorov scale, 264
Kutta condition, 113, 124, 182
Kutta–Jukowski theorem, 93, 96, 113, 117, 147

L

Laminar flow airfoils, 350
Laminar mixing layer, 350
Laplace’s equation, 39, 78, 171, 223
Laplace’s equation, 39, 78, 171, 223
Lapse rate, 15, 17
Large aspect ratio wings, 197
L/D ratio, 442, 451
Leading edge contamination, 298, 332–3, 366,
461
Lift, 2, 96, 111, 114
Lift coefficient, 128, 132, 155
maximum $C_{l,max}$, 458
Lift curve slope, 115, 159, 205, 363
effect of aspect ratio, 159
reduction of lift curve slope, 458
Lift and drag coefficients, 288
Lift on flat plate, 121
Lifting surface theory, 189
Line source distribution, 172
Line vortex, 81, 83
Linear instability analysis, 298
Linear viscous stability theory, 328
Loading distribution, 120
elliptic distribution, 149
modified elliptic loading, 152–3
symmetric load distribution, 140
Local and total amplification of disturbances,
306
Localized time-harmonic excitation, 315
Lorentz forces, 467
Low Reynolds number flows, 409
computations by monotone implicit large eddy
simulation (MILES), 418
Multi-objective optimization, 349
multi-constrained optimization, 349
multi-point optimization, 354
N
NACA six-series airfoil, 350, 353
Natural laminar flow (NLF) airfoil, 284, 298,
347, 349, 353, 387, 447
Neutral stability, 19
Navier–Stokes equation, 224, 281, 287, 295–6,
315, 318, 370, 456, 466
Reynolds averaged Navier–Stokes equation
(RANS), 381
conservation or divergence form, 55
for compressible flows, 34
Neutral curve, 305, 307, 332
branch I and II, 305
absolute neutral curve for 3D instability,
332
see also zarf method
Natural transition, 306
Newtonian fluids, 26
NLF nacelle, 465
Nondimensional VTE, 415
Non–lifting potential solution, 172
Nonlinear universal instability, 299
Nonplanar wing, 463
Normal mode stability analysis, 302
Normal (η) momentum equation, 415
Normal shock, 62, 67
density jump across a normal shock, 67
entropy change across a normal shock, 67
temperature ratio across a normal shock, 67
Numerical method, 266
Crank-Nicolson method, 269
error propagation equation, 270
numerical amplification factor, 266
numerical dispersion relation, 270
numerical phase speed, 269
Runge–Kutta method, 269
O
Oblique or dragonfly mode, 410
One–dimensional convection equation, 261
One–dimensional steady flow, 61
Optimum angle of attack, 135
Optimum lift coefficient or Theodorsen
condition, 135
Optimized upwind compact schemes, 267, 381
- \textit{OCTRK}_3 scheme, 273
- OUCS3-RK4 scheme, 388
Orthogonal curvilinear coordinate systems, 329
Orthogonal grid generation, 275, 279
Orr–Sommerfeld equation, 297–98, 303, 304, 315, 329, 335
- \(e^\theta \) method, 311–12
Orr–Sommerfeld operators, 308
Ozonosphere, 13

\textbf{P}
Panel method due to Hess and Smith, 176
calculation of influence coefficients, 180
Parallel compact scheme, 429
domain decomposition technique, 385
Pathline, 24
Permittivity of the medium, 470
Phase speed, 265
Pitching moment, 3, 117, 133
Pitching moment coefficient, 121, 455, 457
Pitot static probe, 42
plasma actuation, 468
Single-dielectric barrier discharge (SDBD)
- mechanism, 465
- characteristic length, Debye thickness, 470
- charge density, electric field, 470
- charge distribution, 468
- Coanda effect, 465
electro-hydrodynamic force, 469
equation for charge density, 471
Plasma actuator for turbulent flow drag
- reduction, 467
Plasma model, 466
- spatio-temporal lumped-element circuit model, 470
- Dependence on frequency, 466
Plow and vortex generator, 457
Plunging and pitching motion, 410
Pohlhausen’s method, 254
Point of inflection, 237, 247
Polar coordinate system, 37, 82
Positive feedback, 297
Potential flow, 171
- past pair of source and sink, 84
- past source/sink, 81
- past source–sink pair, 87
- past spinning cylinder, 94
- past vortex in uniform flow, 92
Pressure Poisson Equation (PPE), 411, 415
Prandtl’s lifting line equation, 167
Prandtl-Meyer expansion, 74
Prandtl number, 382
Predicting transition by Wazzan et al.’s method, 311
Pressure distribution on spinning and translating
cylinder, 98
Pressure recovery, 353
Preventing cross flow and three-dimensionality, 461
Propagation of a wave-packet, 274
Proper orthogonal decomposition, 299

\textbf{Q}
Quasi-parallel flow, 299
q-waves, 396

\textbf{R}
Raked wing-tip, 463
Rayleigh-Fjørtoft theorem, 237, 328, 351
Rayleigh’s inflection point theorem, 301
Rayleigh’s stability equation, 300
Receptivity, 298
Receptivity to ambient FST, 464
Regional transport aircraft, 349
Remotely piloted vehicle, 354
Reynolds number, 47, 264, 296, 302, 382
critical Reynolds number, 305
Reynolds transport theorem (RTT), 4, 48–9
- application of RTT, 9
- Rigid body rotation, 31
- Rivet-lines, 464
- Rolling moment \((L_R)\), 3, 157
- Rotational effects, 396
- Rotationality, 35
- Roughness element, 457

\textbf{S}
Saddle point, 97, 330
Saddle point method, 331
Scale factors, 278
Scalar potential \((\Phi)\), 470
Second hover mode, 411
Second law of thermodynamics, 56
Second hover or degenerate figure-of-eight
- mode, 410
Secondary flow of the first kind, 319
Semi-infinite vortex, 145
Separation bubble, 310, 412
Shape factor, 232, 309, 341, 359, 440, 441
S-shaped profile, 319, 328
Shock, normal and oblique, 67, 69
strong shock entropy gradient, 401
shock created entropy, 396
Similarity analysis, 238
Simplified horse shoe vortex, 161
Skew-induced secondary flow, 319
Slat, 450
Slender wing body theory, 201, 218
conical flows, 206
Solenoidality condition, 77
Space–time resolution, 263
Spanwise wing loading, 205
Spatial amplification theory, 303
Spatial and temporal amplification relation, 304
Spatial instability, 298, 330
Spatial scales in turbulent flows, 264
Spatio–temporal growth, 303, 349
Spatio–temporal wave–front (STWF), 298–9, 308, 312, 315
growth of STWF, 318
upstream induction of STWF, 318
nonlinear distortion of STWF, 316, 318
Speed of sound, 383
Spoilers, 451
Stability equations, 329
Stagnation points, 88, 94
Starting vortex system, 137, 140
Steady flow energy equation, 51
Stokes’ hypothesis, 33, 383
Stokes’ theorem, 36, 79
Strain rate and tensor, 28, 29, 31
symmetric and antisymmetric part, 29
Stratosphere, 12, 15
Streakline, 24
Stream function, 37, 78, 173
Stream function–vorticity–formulation, 281, 370
Streamline and streamtube, 24
Streamwise and cross flow instabilities, 464
Streamwise instability, 332–33
Streamwise transition criterion, 341
Stress tensor, 27, 31
Strong conservation, 55
Strong shock, 401
Sublimating naphthalene technique, 464
Substantive derivative, 25
Supercritical airfoils, 447
Supercritical circulation, 97
Sutherland’s viscosity law, 383
Sweepback selection, 326
Swept wing flow, 319–20
created by a bump, 326
cross flow, 298, 318–19, 328
cross flow pressure gradient, 322
cross flow profile, 322, 335
T
Temporal amplification theory, 303
Temporal inviscid instability, 328
Temporal instability, 298, 329
Theodorson’s method, 350
Thermally perfect gas, 58
Theodorsen condition, 134
Thermosphere, 12
Thermal conductivity, 383
Thermodynamic equilibrium, 19
Time scales, 468–9
Time scales with different fluid flow structures, 469
Thin airfoil theory, 116
Thin shear layer approximation, 225
Third mode, 410
Three–dimensional flows, 329–30
external streamline fixed coordinate system (ESFCS), 334
Throat, 61
Thwaites’ method, 257
Tollmien–Schlichting waves, 297, 349, 369
Total pressure, 62
Trailing vortex element, 141
Trailing vortex system, 137
Transition, 419
delay, 297, 466
effects of FST, 314, 442
effects of noise on nacelle, 465
effects of propeller rotation direction, 464
fixing transition location, 363
Transitional flow, 340
Transition in three–dimensional flows, 318
streamwise instability, C1 and C2 Criterion, 341
cross flow transition criteria, 341
effects of sweep back, 326
leading edge contamination criterion, 343
stationary waves over swept geometries, 326, 340
Transonic flows, 381, 447
computing strong shock cases, 396
Transport jet, 347
Tropopause, 13, 15
Troposphere, 11, 15
TS wave–packet, 315, 349
Turbulence, 17
Turbulent or chaotic flow, 295
Types of vortex breakdown, 216
Two–dimensional laminar Jet, 247

U
Uniform horizontal stream, 87
Unmanned aerial vehicle, 409
Unsteady aerodynamics of MAV, 411
Unsteady potential flow, 42
Unsteady separation, 441
Unsteady separation bubbles, 431
Unsteady Navier-Stokes equation with appropriate plasma models, 467

V
Vanes and flaps, 456
Vector potential, 37, 77, 323, 413
Velocity potential, 36, 78, 173
Vibrating ribbon experiments, 297
Viscous drag, 224
Viscous flux vectors, 383
Viscous shear stress, 384
Viscous sublayer, 264
Volumetric dilatation, 30
Von Kármán Line, 11
Von Neumann analysis, 270
Vortex breakdown, 214–5
Vortex bursting, 461
Vortex generators, 364, 457, 458
Vortex lift, 207
Vortex lift coefficient, 209
Vortex shedding, 431
Vortex street, 410
Vortex elements, 139
bound vortex, 140
starting vortex, 140
trailing vortex, 141
Vortical disturbances, 298
Vorticity, 77, 401
Vorticity vector, 29

W
Wall mode, 115
Wall jet, 465
Wave drag, 298, 447
Wave drag characteristics, 464
Weak conservation forms, 55
Weak oblique shock, 71
Weaken tip vortices, 462
Wing fixed coordinate system, 320
Winglets, 462
Wings of small aspect ratio, 199
Wing-in-ground effect, 165
Wing-tip devices, 462
raked wing-tip, 463
Work due to viscous stresses, 50

Y
Yawing moment (N), 3, 159

Z
Zarf method, 332
Zero lift angle, 133