Contents

List of Contributors xiii
Foreword xv
Preface xxv

1 Introduction to Lattice Materials 1
A. Srikantha Phani and Mahmoud I. Hussein
1.1 Introduction 1
1.2 Lattice Materials and Structures 2
1.2.1 Material versus Structure 3
1.2.2 Motivation 3
1.2.3 Classification of Lattices and Maxwell’s Rule 4
1.2.4 Manufacturing Methods 6
1.2.5 Applications 7
1.3 Overview of Chapters 8
Acknowledgment 10
References 10

2 Elastostatics of Lattice Materials 19
D. Pasini and S. Arabnejad
2.1 Introduction 19
2.2 The RVE 21
2.3 Surface Average Approach 22
2.4 Volume Average Approach 25
2.5 Force-based Approach 25
2.6 Asymptotic Homogenization Method 26
2.7 Generalized Continuum Theory 29
2.8 Homogenization via Bloch Wave Analysis and the Cauchy–Born Hypothesis 32
2.9 Multiscale Matrix-based Computational Technique 34
2.10 Homogenization based on the Equation of Motion 36
2.11 Case Study: Property Predictions for a Hexagonal Lattice 38
2.12 Conclusions 42
References 43
3 Elastodynamics of Lattice Materials 53
A. Srikantha Phani
3.1 Introduction 53
3.2 One-dimensional Lattices 55
3.2.1 Bloch's Theorem 57
3.2.2 Application of Bloch's Theorem 59
3.2.3 Dispersion Curves and Unit-cell Resonances 59
3.2.4 Continuous Lattices: Local Resonance and sub-Bragg Band Gaps 61
3.2.5 Dispersion Curves of a Beam Lattice 62
3.2.6 Receptance Method 64
3.2.7 Synopsis of 1D Lattices 67
3.3 Two-dimensional Lattice Materials 67
3.3.1 Application of Bloch's Theorem to 2D Lattices 67
3.3.2 Discrete Square Lattice 70
3.4 Lattice Materials 72
3.4.1 Finite Element Modelling of the Unit Cell 75
3.4.2 Band Structure of Lattice Topologies 77
3.4.3 Directionality of Wave Propagation 84
3.5 Tunneling and Evanescent Waves 85
3.6 Concluding Remarks 87
3.7 Acknowledgments 87
References 87

4 Wave Propagation in Damped Lattice Materials 93
Dimitri Krattiger, A. Srikantha Phani and Mahmoud I. Hussein
4.1 Introduction 93
4.2 One-dimensional Mass–Spring–Damper Model 95
4.2.1 1D Model Description 95
4.2.2 Free-wave Solution 96
State-space Wave Calculation 97
Bloch–Rayleigh Perturbation Method 97
4.2.3 Driven-wave Solution 98
4.2.4 1D Damped Band Structures 98
4.3 Two-dimensional Plate–Plate Lattice Model 99
4.3.1 2D Model Description 99
4.3.2 Extension of Driven-wave Calculations to 2D Domains 100
4.3.3 2D Damped Band Structures 101
References 104

5 Wave Propagation in Nonlinear Lattice Materials 107
Kevin L. Manktelow, Massimo Ruzzene and Michael J. Leamy
5.1 Overview 107
5.2 Weakly Nonlinear Dispersion Analysis 108
5.3 Application to a 1D Monoatomic Chain 114
5.3.1 Overview 114
5.3.2 Model Description and Nonlinear Governing Equation 114
10 **Topology Optimization of Lattice Materials** 217
Osama R. Bilal and Mahmoud I. Hussein

10.1 Introduction 217

10.2 Unit-cell Optimization 218

10.2.1 Parametric, Shape, and Topology Optimization 218

10.2.2 Selection of Studies from the Literature 218

10.2.3 Design Search Space 219

10.3 Plate-based Lattice Material Unit Cell 220

10.3.1 Equation of Motion and FE Model 221

10.3.2 Mathematical Formulation 222

10.4 Genetic Algorithm 223

10.4.1 Objective Function 223

10.4.2 Fitness Function 224

10.4.3 Selection 224

10.4.4 Reproduction 224

10.4.5 Initialization and Termination 225

10.4.6 Implementation 225

10.5 Appendix 226

References 228

11 **Dynamics of Locally Resonant and Inertially Amplified Lattice Materials** 233
Cetin Yilmaz and Gregory M. Hulbert

11.1 Introduction 233

11.2 Locally Resonant Lattice Materials 234

11.2.1 1D Locally Resonant Lattices 234

11.2.2 2D Locally Resonant Lattices 241

11.2.3 3D Locally Resonant Lattices 243

11.3 Inertially Amplified Lattice Materials 246

11.3.1 1D Inertially Amplified Lattices 246

11.3.2 2D Inertially Amplified Lattices 248

11.3.3 3D Inertially Amplified Lattices 253

11.4 Conclusions 255

References 256

12 **Dynamics of Nanolattices: Polymer-Nanometal Lattices** 259
Craig A. Steeves, Glenn D. Hibbard, Manan Arya, and Ante T. Lausic

12.1 Introduction 259

12.2 Fabrication 259

12.2.1 Case Study 262

12.3 Lattice Dynamics 263

12.3.1 Lattice Properties 264

Geometries of 3D Lattices 264

Effective Material Properties of Nanometal-coated Polymer Lattices 265

12.3.2 Finite-element Model 266

Displacement Field 266

Kinetic Energy 268
Contents

Strain Potential Energy 269
Collected Equation of Motion 270
12.3.3 Floquet–Bloch Principles 271
Generalized Forces in Bloch Analysis 272
Reduced Equation of Motion 274
12.3.4 Dispersion Curves for the Octet Lattice 275
12.3.5 Lattice Tuning 277
Bandgap Placement 277
Lattice Optimization 277
12.4 Conclusions 278
12.5 Appendix: Shape Functions for a Timoshenko Beam with Six Nodal Degrees of Freedom 279
References 280

Index 283