Adrian, Crump and Moench model, 256
affirmative conditions, 462
bond pricing formula, 248, 273, 294, 303, 444
completely affine, 445
convexity, 246
corporate bonds, 553
drift, 248
essentially affine, 241, 259, 260, 295, 445
expectations, 244, 259
mean reversion, 244
Gaussian models, 248, 295, 446
general classification, 248
jump-diffusion, 553, 555, 556
latent variables, 254
linear regressions, 255
market price of risk, 249, 251, 253, 255, 257–259, 295, 445
modern, 256
Monte Carlo simulations, 461
discretization procedure, 462
Affine models
and Nelson and Siegel model, 257, 463
no arbitrage, 247
principal components, 249, 256
risk premia, 244, 259, 295
traditional, 254, 256
volatility, 248
yields, 249, 273
Affine models, 102
Arbitrage-free Nelson–Siegel model, 463
Asset allocation, 143, 148, 149, 313
optimal, 143, 144
Asset-backed commercial paper, 27–29, 35
and the Commercial Paper Funding Facility, 95
and the shadow banking sector, 34
spreads, 28
Asset-backed securities, 95, 211, 562
and the ECB’s Purchase Program (ABSPP), 99
and the ECB’s Quantitative Easing, 99
and the Term Asset-Backed Securities Loan Facility (TALF), 95, 211
Asset-Liability Management, 119, 120, 127, 147–149, 151
backtesting, 141
Cash Flow Matching, 120, 128, 129, 141, 144, 147
Duration Matching, 130, 144
dynamic, 143, 148, 155, 161
dynamic with additional financial contributions, 163
dynamic with VaR constraints, 161
Factor Duration Matching, 120, 137, 141, 145
immunization, 120, 130, 141, 147
investment problem, 155
Asset-Liability Management
Key Rate Duration Matching, 120, 133, 141, 144
and Liability-Driven Investing (LDI), 148
nature of liabilities, 127
Asset-Liability Management
optimal asset allocation, 148
for pension plans, 148, 158
and portfolio choice, 150
with portfolio constraints, 142, 148, 154, 156
strategies, 120
Surplus, 128
Asset-Liability management
for insurance companies, 127
for pension plans, 127
Autoregressive Gamma models, 301, 302
term-structure models, 303

© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Autoregressive gamma models, 449, 451
dermal order zero, 451

Bank of England, 93
Bankruptcy costs, 549, 550

Binomial trees, 389
Black, Derman and Toy model, 395, 400
calibration to the data, 395
Ho and Lee model, 395
Hull and White model, 405
multi-step, 392
one-step, 389
risk-neutral pricing, 389
Black and Cox model, 550, 564
Black and Karasinski model, 152, 406, 413, 568
Black and Scholes delta, 389
Black and Scholes formula, 476
Black and Scholes model, 516, 529, 547
default risk, 547
extensions to margin and funding costs with credit risk, 527
extensions to symmetric funding costs, 529
Black model, 220, 430
caps and floors, 431
futures options, 220
implied volatility, 484, 486–488
option pricing formula, 221, 430, 431, 433, 483, 484, 494, 510
swaptions, 433, 484
Black shadow rate model, 303, 306, 451, 465
Black, Derman and Toy model, 243, 395–402
Black, Scholes and Merton model, 514, 520
Bloomberg Swap DataRepository (BSDR), 335
Bootstrap procedure, 18
Break-even inflation rates, 43, 45, 86, 87, 176
vs. inflation swap rates, 47
and risk-neutral expected inflation, 43
Breakeven inflation rates, 87, 193
and liquidity, 198, 199, 201
liquidity adjusted, 196
inflation expectation vs. risk premium, 194
and predictability of bond returns, 192
synthetic vs. cash spreads, 195–197
British Bankers’ Association, 37, 471

Callable bonds, 397
Bermudan style, 401
binomial tree pricing, 401, 402
pricing by Monte Carlo simulations, 456, 457, 460
trinomial tree pricing, 410
European style, 455
binomial tree pricing, 397–399
pricing by Monte Carlo simulations, 452, 453, 455, 456
Caps and floors, 430, 478
pricing, 431, 484
Cash Flow Matching, 120, 128, 129
Central counterparty (CCP), 329, 344, 369, 373, 514
clearing, 330–332, 335, 336, 351, 361, 371, 514, 516
E.U., 333
U.S., 332
clearing members, 336–338
default, 338
credit risk, 332, 336
cross-margining, 370
default fund, 381, 384
default guarantee fund, 339
default resolution plans, 338
exchange-designated, 336
margins, 336, 338, 371, 536
mark-to-market, 338, 371
market activity, 351
risk management, 336
safeguards, 332, 338
Chicago Board of Trade (CBOT), 79
Chicago Board Option Exchange (CBOE), 471, 473
Chicago Mercantile Exchange (CME), 31, 335, 470
Christensen, Diebold and Rudebush model, 305, 463, 465–467
shadow rate, 465–467
Close-out netting, 345, 346, 515, 517, 519, 527, 536
Cochrane- Piazzesi factor
linear combination of forward rates, 191
Cochrane–Piazzesi factor, 13, 88, 299
construction, 178
linear combination of forward rates, 172, 243, 252
predictability of bond returns, 11, 12, 89, 172, 181
Cochrane–Piazzesi factor
predictability of GDP growth, 186
and principal components, 89, 90
and risk premia, 88, 252
Collective action clause (CAC), 562
Commercial paper, 27
asset-backed, 28
nonasset backed, 27
Constant Prepayment Rate, 55
Convexity, 122, 241, 242, 245–247, 266, 268, 284
in affine models, 244
and bond returns, 123
of coupon bonds, 122
and monetary policy, 104
of mortgage-backed securities, 58, 59, 286
negative, 58, 59
Taylor approximation, 123
of zero coupon bonds, 122
Corporate bonds, 541
bankruptcy costs, 549, 550
intensity models, 550, 551
approximation, 552
closed-form solutions, 553
portfolios of bonds, 556
risk premia, 554
survival probability, 551, 552
over-the-counter (OTC) trading, 542
reduced-form models, 550
structural models, 546
Black and Cox model, 549
early default, 549
Leland model, 550
Merton model, 546
optimal default, 550
Cox, Ingersoll and Ross model, 88, 224, 242, 243, 266, 268, 270
271, 275, 301, 440, 447–450, 452, 453, 455, 460–462, 466
467, 479, 480, 508, 511
Credit default swap (CDS), 40, 345, 350, 373, 374, 523, 550, 552, 553, 558, 559, 561, 562, 567, 569, 570, 580

data, 558

Credit default swap (CDS)
and European Debt Crisis, 576
European sovereign markets, 576
Greece, 562
market, 575
premia, 557, 558
pricing, 552, 553, 567, 570, 578, 580
 affine model, 568
derivations, 580
 log-normal model, 568
sovereign, 561, 562, 580
spread, 48, 567, 569–574, 576, 577, 579, 580
term structure, 572
triggers, 562

Credit derivatives, 420, 421, 470, 541, 561, 580

 of central counterparty (CCP), 323, 336
 commercial paper, 27
 of counterparties, 343, 372, 378, 515–517, 523, 531, 536
 of Federal Reserve, 96
 interbank, 558
 in interbank rates, 551
 in LIBOR, 418
 in LIBOR–OIS spreads, 29
 market price of, 563
 in money market, 541
 of mortgages, 54, 61
 non-asset-backed commercial paper, 27
 of non-cleared swaps, 345
 in repurchase agreements, 32, 35
 of security dealers, 427
 sovereign, 561, 563, 580
 in swap rates, 558

Credit risk management, 345, 348, 379
Credit risk mitigation, 329, 331, 345
Credit risk modeling, 557, 564, 565
doubly stochastic framework, 565
Credit risk premium, 40, 564, 568, 569, 572, 574, 575, 578, 580
 emerging markets, 572, 575
 European Debt Crisis, 578
 Eurozone, 578, 579
Credit risk sharing, 67
Credit spreads, 128, 380, 421, 536, 541, 545, 546, 548, 550, 555, 558, 559
corporate bonds vs. credit default swaps, 557
expected losses, 545
illiquidity, 557
LIBOR–OIS, 422
Merton model, 547
risk premium, 545
slope, 421–423
sovereign, 561
Credit support annex (CSA), 342, 344, 346, 349, 517, 518, 536

Credit valuation adjustment (CVA), 380, 514–516, 519, 520, 522, 523, 525, 527, 534, 536

D’Amico, Kim and Wei model, 254
Debt valuation adjustment (DVA), 380, 514
Default
CCP’s member default and resolution plans, 338
correlation, 556
first-to-default, 527, 529, 534
Default
government default through inflation, 51
jump-to-, 554, 564, 569, 580
Lehman, 213, 262
in mortgage-related securities, 53, 54, 58, 60
causes, 61
estimation, 62
Single Monthly Mortality, 57
recovery, 544–546, 549, 550, 552, 557, 558
sovereign, 561
collective action clause, 562
definition, 561
political decision, 561, 564
selective default, 562
Default distribution, 529
Default hazard function, 61, 64
Default intensity, 551, 552, 555, 556, 559, 566–569, 574, 580
estimation, 569
first-to-default, 526
risk neutral, 566, 568
stochastic, 555, 565, 568
Default models, 62
Default probability, 546, 548, 557, 566, 568
historical, 563
Default probability
instantaneous, 551
and LIBOR, 420
and LIBOR–OIS spread, 39
physical, 546, 548, 568
risk adjusted, 546
risk neutral, 545, 546, 549, 563, 568, 575
Default risk, 29, 37, 566, 568, 580
collateral in repo, 33
collateralization, 427
corporate bonds, 541
counterparty risk, 514
bilateral, 516
close-out netting, 345, 517, 519
collateralization, 517, 527
risk mitigation, 345
unilateral, 516
Default risk
credit risk mitigation, 345
and housing prices, 58
simple model, 544, 564
swap, 346
Default risk models, 564
Black and Cox model, 549
early default, 549
estimation, 569
Merton model, 546
reduced-form, 550, 564, 569
structural, 546, 564
Depository Trust & Clearing Corporation (DTCC),
33, 335
Derivatives, 5, 38, 265, 267, 286, 287, 329, 332, 469
caps and floors, 342, 430, 478
collars, 342
collateralization, 5
cross-currency swaps, 341
economic derivatives, 222
equity and bonds as, 546
Eurodollar futures, 33
Derivatives models, 243, 440, 481
affine, 444
Black, Derman and Toy, 395, 400
Black and Karasinski, 413
Cox, Ingersoll and Ross, 440
Fong and Vasicek, 480
forward-based, 269
Heath, Jarrow and Morton, 482
Ho and Lee, 395, 440, 481
Hull and White, 405, 440, 482
Longstaff and Schwartz, 480
market models, 483
models of the short-term rate, 479
multifactor, 442, 444
no-arbitrage models, 481
quadratic, 446
SABR, 486
Vasicek, 440
Derivatives pricing, 266–269, 273, 397, 414, 433, 437, 474, 451, 473, 474, 479, 482, 484, 515, 517, 523
binomial trees, 389, 390, 394
bonds, 474
forwards, 475
futures, 475
options, 475
caps and floors, 431
Derivatives pricing
classical theory, 514
with collateral margining, 515, 522, 527, 531
with credit risk, 515, 517, 522, 527, 531
discounting, 427
Feynman Kac theorem, 439
Derivatives pricing
fundamental pricing equation, 439
with funding costs, 515, 517, 520–522, 527, 531
interest rate volatility (IRV), 487, 505
LIBOR-based options, 430
Derivatives pricing
with margining cost, 517
Monte Carlo simulations, 446, 467
partial differential equation, 439, 444
risk-neutral pricing, 389, 392, 437, 440, 467, 474, 515, 516
swaptions, 432
time deposits, 476
forwards, 476
trinomial trees, 406
Derivatives replication strategy, 514, 520, 532
Derivatives’ new regulatory framework, 5, 331, 366, 369, 371
Discount curve
double-curve pricing, 426
FRA rates, 428
LIBOR, 426
OIS, 424
Discount factors, 8, 26
and coupon bonds, 17
derivatives pricing, 425
Discount factors
estimation, 18
bootstrap, 18
and illiquidity, 19
Nelson–Siegel model, 18
Discount factors
risk-neutral pricing, 517, 523, 526
and pension liabilities, 150
yield smoothing, 152
subjective, 154
and yields, 9
Discount function, 9
estimation, 18
and LIBOR curve, 426
and Overnight Index Swaps (OIS), 423, 424
risk-neutral pricing, 567
zero-coupon, 9
Discount rates, 9
before and after the crisis, 429, 431
default component, 566
derivatives pricing, 442
and discount factors, 9
equilibrium models, 300
and market segmentation, 106
and pension liabilities, 128, 148
and risk-neutral pricing, 72
semiannually compounded, 26
in trinomial tree pricing, 408
yield smoothing, 148, 150
and zero-coupon bonds, 26
Dodd–Frank Act, 351
Double-curve pricing, 426
Duration, 60, 121, 149, 245–247, 250, 266, 268
 aggregate, 286
 of assets, 130
 and bond returns, 123
 channel of monetary policy, 102, 104, 107, 109, 112
 of coupon bond, 121
 of ECB’s balance sheet, 98
 effective, 59
 of liabilities, 130, 132, 150, 152
 and monetary policy, 100, 104–107
 of mortgage-backed securities, 286
 option-adjusted, 59
 parallel shift of term structure, 121, 130
 of portfolios, 130
 Taylor approximation, 121, 123
 of total stock of Treasury bonds outstanding, 109
 and the yield curve, 284
Duration Matching, 120, 130, 132, 141, 144
Duration risk, 122, 286
 and monetary policy, 111
Efficient Method of Moments (EMM), 271
Electronic execution platform (EEP), 330, 331, 344
Estimation methods, 269
 efficient method of moments, 271
 GMM, 270
 maximum likelihood, 270
 quasi-maximum likelihood, 271
Eurex, 470
EURIBOR futures, 370
Eurodollar, 29
 deposit, 31
 deposit rate vs. LIBOR rate, 31
 market, 31
 rate, 31, 79
Eurodollar futures, 31, 84, 219, 336, 337, 341, 360, 370, 426, 476
 monetary policy expectations, 79
Eurodollar futures strips, 360, 361
Eurodollar options, 476, 500
European Central Bank (ECB), 93, 95
European Debt Crisis, 563, 571, 572, 575–577, 580
 credit spreads, 577
European Market Infrastructure Regulation (EMIR), 333
Exchange-traded derivatives, 329, 331, 332, 335, 336, 339–341,
 470, 471
 cash-settled, 336
Exchange-traded derivatives
 and cleared swaps, 369
 clearing, 336
 futures, 335, 339, 473
 margin, 346
 market activity, 339
 mechanics, 336
 options, 339, 473
 options on futures, 335
 physically settled, 336
 swap futures, 361, 370
 trading, 343, 472

volatility, 472
volume, 341
Expectations hypothesis, 7, 13, 14, 17, 171, 210, 232, 244, 261, 282
 constant risk premium, 171, 172, 292
 deviations, 282
 expectation errors, 283
 forward rates as expected future rates, 16, 181
Expectations hypothesis
 and identification of monetary policy shocks, 79
 inflation-protected bonds, 192
 and predictability of bond returns, 291, 300
 and rational expectations, 283, 292
 tests of, 171–173, 176, 178, 181, 287, 291
 U.S. vs. international evidence, 173, 181, 182
 violation, 14, 171–173, 184, 187
 yields vs. survey forecasts, 14, 292
Factor Duration, 123, 126
 of assets and liabilities, 139
 of bond portfolios, 138
 of zero coupon bonds, 126, 137
Factor Duration Matching, 120, 137–140, 142, 145
 advantages and disadvantages, 140, 141
 backtesting, 141
 vs. Immunization Strategy, 140
 vs. Key Rate Duration Matching, 140
Fails
 in outright transactions, 215
 in repos, 215
Fama–Bliss regressions, 178
 predictability of bond returns, 172
Fannie Mae, 33, 53, 54, 211
 C-deals, 53, 67, 73
 credit enhancement, 60
 government conservatorship, 95
Fed model, 316
Federal agencies, 33
Federal debt, 104
Federal funds, 31, 35, 77
 market, 35
Federal funds futures, 79, 80, 84
 monetary policy shocks, 84, 91
Federal funds rate, 4, 27, 28, 35–38, 40, 77–81, 185, 211, 293, 415,
 422
 effective, 35, 79, 422
 and the LIBOR rate, 37
 and overnight indexed swaps (OIS), 38, 421, 422
 monetary policy, 35
 target, 37, 77, 78, 93, 211
Federal Open Market Committee (FOMC), 77, 93, 95, 211, 212, 218
 announcements, 78
 meetings, 80
Federal Reserve, 4, 25, 27, 29, 31, 35, 37, 37, 77, 125, 132, 140, 141,
 155, 211, 212, 236, 301, 336
 large-scale asset purchases, 212
 lender of last resort, 29
 objectives, 99
 regional banks, 35
 share of MBS market, 113
 target rate, 283
 unconventional policies, 94
guarantee, 55
House Price Index, 64
loan-level database, 62
Primary Mortgage Market Survey, 64
STACR deals, 53, 67, 72
Freddie Mae, 3, 33
Funding costs
derivatives desks, 380
derivatives pricing, 514, 516
and inflation risk premium, 41
and swap rates, 471
synthetic vs. cash breakeven inflation, 195
Funding liquidity, 290, 521, 522
factors, 291
shocks
and bond returns, 291
Funding risk, 290
and bond risk premiums, 288
and derivatives pricing, 515, 516, 522, 527, 529, 531
estimate, 289
factor, 289, 290
and future repo spreads, 286
and risk premiums, 290
and trading, 520
Funding valuation adjustment (FVA), 380, 514, 516
Futures
on bonds, 216, 472, 474, 475
cheapest-to-deliver, 472
on bond volatility index, 505
vs. cash market, 231
cash-settled, 336
deliverable swaps, 362, 370, 473
EURIBOR, 370, 473
Eurodollar, 31, 84, 336, 341, 360, 370, 426, 473, 476
mark-to-market, 31
monetary policy expectations, 79
Eurodollar strips, 360, 361
Federal funds, 79, 80, 473
monetary policy shocks, 79, 218
Federal funds rate, 113
vs. forwards, 474
intraday evidence, 224, 226
bid–ask spreads, 228
information asymmetry, 231
order-flow, 229
risk premia, 233
trading volume, 228
and macroeconomic announcements, 220, 225
market activity, 339
on notes, 212, 216
physically-settled, 336
Standards swaps, 362
swapnotes, 362
on swaps, 361, 362, 370
on time deposits, 472, 473, 476
volatility, 212, 219
Futures options, 474, 475
Black model, 220
volatility
and macroeconomic uncertainty, 222
Futurization of swaps, 361, 370
Generalized Method of Moments (GMM), 270
Girsanov theorem, 479, 568, 583
Government-sponsored enterprises (GSEs), 33, 53, 211, 397
Heath, Jarrow and Morton framework, 269, 482
High-frequency trading (HFT), 234
and liquidity, volatility and risk premia, 234
and price efficiency, 235
Ho and Lee model, 395, 396, 398–400, 402, 403, 405, 406, 440, 453, 481–483, 505
Hull and White model, 243, 405, 406, 410–412, 440, 481, 482
Illiquidity
corporate bonds, 94, 557
credit spreads, 557
during financial crisis, 94
of inflation-indexed bonds, 196, 203
proxies, 558
and search costs, 557
Treasury bonds, 19
Immunization, 147
Immunization Strategy, 120, 130–132
advantages and disadvantages, 133
backtesting, 141
vs. Factor Duration Matching, 140
vs. Key Rate Duration Matching, 135
in simulations, 132
Inflation
in affine term structure models, 254
break-even rates, 43, 176, 192, 193
CPI index, 194
expectations
and break-even inflation, 198
and the Fed model, 316
and nominal yields, 9, 13, 175, 191, 247, 295, 296
and the stock-bond covariance, 319, 320, 322
expectations proxies, 192, 195, 197
Fama’s proxy hypothesis, 314, 315
and growth, 314
and growth regimes, 315
beliefs, 316
monetary policy, 77, 86, 91
Taylor rule, 35
monetary policy target, 93, 301
quantity theory of money, 77
risk, 9, 283, 318
unspanned by nominal yields, 295
as signal of economic growth
and the Fed model, 318
and stock/bond covariance, 315, 318
survey forecasts, 296, 319
uncertainty, 173, 201, 319, 320
volatility, 191
Inflation derivatives, 42, 195
markets, 42
Inflation derivatives (Continued)
pricing, 43
Inflation factors, 173, 177, 297
predictability of bond returns, 44
Inflation models, 295, 297, 299
regime shifts, 315
Inflation options, 42
caps and floors, 43
Inflation risk premium, 41, 43–45, 49, 173, 175, 192, 197, 205
financial crisis, 206
and inflation hedges, 44
time-varying, 192, 202, 205
Inflation swap rates, 43, 46
vs. break-even inflation rates, 47
and expected inflation, 43
Inflation swaps, 42, 195, 197, 296, 342
and synthetic nominal Treasury bonds, 42
synthetic breakeven inflation rate, 195
Inflation-indexed bonds, 41, 191–193
excess returns, 197, 205
liquidity, 195, 196, 205
liquidity-adjusted yields, 196
predictability of excess bond returns, 192
Treasury Inflation Protected Securities, 41, 42, 192
U.K. gilts, 197
valuation, 42
Inflation-protected securities, 19
Inflation-risk premium, 297
Interbank borrowing
and the 2007 liquidity crisis, 94
Interbank credit risk, 558
Interbank deposit futures, 341
Interbank liabilities
Eurodollar time deposits, 31
Interbank loans, 31, 35, 37, 470
Federal funds, 31, 35
LIBOR, 31, 471
LIBOR market, 37
Interbank market
during the financial crisis, 95, 97
stress
LIBOR-OIS spread, 38
Interbank rates, 35, 38, 39, 340, 471, 541
credit risk, 551
swaps, 39
Interbank yield curve, 38, 39
and swap rates, 39
Intercontinental Exchange (ICE), 335
Intercontinental Exchange Benchmark Administration (IBA), 37, 471
Interest rate models, 389, 394, 440
multifactor, 442, 444
Interest rate swaps, 39, 424, 471, 476, 477
forward starting, 477
swap rates
and forward rates, 39, 425
Interest rate volatility (IRV), 398, 469, 502, 505
vs. equity VIX, 502
Interest rates, 8
compounding frequency, 8
real, 19, 42, 175, 191
International Swaps and Derivatives Association (ISDA), 335
master agreements, 344, 345, 517
Jump-to-default, 554
Key Rate Duration, 123
Taylor approximation, 123
Key Rate Duration Matching, 120, 133, 141, 142
advantages and disadvantages, 135, 137
backtesting, 141
vs. Factor Duration Matching, 140
Law of one price, 523
LCH.Clearnet, 355
Lehman Brothers
bankruptcy, 95, 96
Leland model, 550
Liability hedging, 142
Liability-Driven Investing (LDI), 147, 148
LIBOR, 37, 551
default probability, 420
discount curve, 426, 433
and the Federal funds rate, 37
LIBOR-OIS spread, 38–40, 421
affine model, 39
and the financial crisis, 38
LIBOR-repo spread, 196, 197
proxy for arbitrageurs’ shadow cost of capital, 196
Limits to arbitrage, 290
Liquidity, 283
banks and the interbank market, 35
and central counterparties (CCP), 336
and clientele effects, 285
commercial paper, 27
estimated time series, 201
Eurodollar futures, 31
financial crisis, 29, 35, 94, 212, 213
backup liquidity, 95
central bank liquidity swaps, 95
Eurozone, 97, 99
U.K., 96
flight-to-liquidity, 195, 197, 199, 290
and funding risk, 289
and high-frequency trading (HFT), 234, 235
in options, 472, 502
inflation-indexed vs. nominal bonds, 192, 195, 196
estimation, 194, 197
and information asymmetry, 231
informational effects, 229
and LIBOR-OIS spread, 421
liquidity consumers
in U.S. Treasuries, 229
liquidity providers
in OTC derivatives markets, 344
liquidity provision
compensation for, 229, 231
and repo markets, 290
and macroeconomic news, 229
market-microstructure effects, 228
and no-arbitrage, 282
off-the-run bonds, 287
and order flow, 230
and the shadow banking sector, 34
and short-selling costs, 284
and specialness, 286
and volatility, 471
Liquidity factors, 39, 40, 201, 285, 289
and the stock/bond covariance, 314
Liquidity fragmentation in non-dollar swaps, 366, 367
bifurcation across U.S. and E.U. markets, 366
Liquidity preference, 285, 288–290
Liquidity premium
and break-even inflation rate, 176
estimates, 194, 196, 201
in inflation-indexed bonds, 192–196, 199
over time, 201
and predictability of bond returns, 205
in TIPS, 197, 201, 206
Liquidity proxies, 192, 195–197, 214, 229
and break-even inflation, 198, 200
bid–ask spread, 231
cost of funding, 195
effective vs. adverse-selection component of the spread, 229
market depth, 231
off-the-run/on-the-run spread, 40, 195, 213
price impact, 214
trading volume, 195, 214, 231
Liquidity risk, 192, 289
and asset-liability management, 147
in bonds, 232, 233
in corporate bonds, 544
and emerging markets, 570
in LIBOR, 515
and liquidity level, 232, 233
vs. information risk, 233
in rehypothecation, 518
Liquidity risk premium, 196, 205, 233
time-varying, 202, 206
Liquidity shocks
and bond price jumps, 231
and bond risk premia, 234
Liquidity valuation adjustment (LVA), 514, 525
Longstaff and Schwartz model, 480, 510
Loss-given-default, 529, 567
Market models, 483
Market price of risk, 109, 191, 242, 245, 267, 441
affine, 249, 255, 257–259, 445, 446
binomial trees, 393, 394
estimation and interpretation, 393
risk-neutral vs. physical (true) probabilities, 394
constant, 245, 246, 249–251
default risk models, 565, 568, 582, 583
Market price of risk
essentially affine, 260, 445
and forward rates, 243
implied vs. estimated, 257
and investors’ behavior, 247
mean-reverting models, 245
of risk factors, 245, 444
risk-neutral vs. physical (probability) measure, 250
risk-neutral vs. physical (true) probabilities, 441, 442
state dependent, 250, 251, 254, 256, 262
principal components, 257
structural models, 243
Market price of risk
and term premia, 246
time-varying, 247, 252
Vasicek model, 245
Maximum likelihood, 270, 272
in credit risk models, 569
expansion of the transition density, 275
latent state variables, 273
observed state variables, 272
quasi-maximum likelihood, 271
affine models, 271
traditional, 271
Merton model, 546, 564
Monetary policy, 77
and expected inflation, 91
and the term structure of interest rates, 4, 78, 86, 218
Monetary policy, 77
Bank of England, 96
and expected inflation, 91
during the financial crisis, 22, 94, 95, 185
European Central Bank
Quantitative Easing (QE), 97, 99
Federal funds target rate, 35, 37, 77, 86
FOMC decisions, 87, 218
real vs. nominal yields, 86, 87
risk premia, 88–90
forward guidance, 106
learning, 79
monetary policy shocks identification, 113
open market operations, 25, 218
policy shocks identification, 78, 79, 218, 219
target vs. path shocks, 84, 85
risk premia, 87, 173
stock-bond covariance, 315
target vs. path shocks, 84, 85, 103
Monetary policy
Taylor rule, 35
and the term structure of interest rates, 4, 78, 86, 218
unconventional, 37, 93, 94, 115
Commercial Paper Funding Facility (CPFF), 95
empirical evidence, 104
Maturity Extension Program, 96
Quantitative Easing (QE), 93, 96
Term Asset-Backed Securities Loan Facility (TALF), 95, 211
Term Auction Facility (TAF), 94
theoretical framework, 101
Troubled Asset Relief Program (TARP), 96
Monetary Policy Report, 93, 224
Monetary policy, 93
Money markets, 25
commercial paper, 27
discount window, 29
Eurodollars, 29
interbank loans, 35
repurchase agreements (repos), 32
shadow banking, 34
Money markets (Continued)
 Treasury bills, 26
Monte Carlo integration, 275
Monte Carlo simulations, 437, 461
American option pricing, 456
 least-square regression method, 457, 464
Bermudan bond pricing, 460
Bermudan option pricing, 456
 bond pricing, 273, 304, 452
 callable bond pricing, 455
 derivatives pricing, 437
European callable bond pricing, 455
 least-square methods, 457, 515, 523, 527, 529, 536
 multidimensional, 464
 multifactor models, 461
 callable bonds, 465
 callable securities, 462
 option pricing, 455
 risk-neutral pricing, 58, 72, 437, 446, 451, 467, 485
 option-adjusted spread, 58
 swaption pricing, 484
Mortgage rates
 and Federal Reserve’s Quantitative Easing, 114
Mortgage-backed securities, 28, 53, 54, 562
 agency guarantee, 61
 duration risk, 286
 financial crisis, 94, 96, 211
Mortgage-backed securities
 market, 3, 113
 and monetary policy, 4, 96
 quantitative easing (QE), 96
 negative convexity, 59, 286
 participation certificates (PC), 55
 pass-through, 55
 repos, 33
Mortgage-related securities, 53, 54
 borrower default, 54, 60
 causes, 61
Credit Event Rates, 57
 Single Monthly Mortality (SMM), 55, 57
Freddie Mac’s STACR, 62, 67
 negative convexity, 58, 59
 option-adjusted duration (OAD), 59
 option-adjusted spread (OAS), 58, 59
 prepayment speed
Constant Prepayment Rate (CPR), 55
 PSA standard, 55
 prepayment-default models, 53, 58, 60–62, 64
 prepayments, 55, 60
 causes, 60
 valuation, 57
Mortgages, 54
 Freddie Mac loan-level database, 62
 pooling, 54
 pools’ cash flows, 55
Nelson–Siegel model, 9, 18, 173, 243, 256, 257, 291, 305, 463
 extended, 18, 19
 no-arbitrage, 463
No arbitrage, 243, 247
 pricing, 580
Nonasset-backed commercial paper, 27
Nonlinearity valuation adjustment (NVA), 515, 533
NYSE LIFFE, 470
Off-the-run/on-the-run spread, 195, 197, 284, 286
 and breakeven inflation, 199
 during the financial crisis, 211, 213, 216
 liquidity proxy, 40, 195
Option-adjusted duration, 59
Option-adjusted spread, 58
Options
 American, 400, 474
 binomial tree pricing, 400
 pricing by Monte Carlo simulations, 456
 Bermudan, 400, 401
 binomial tree pricing, 400
 pricing by Monte Carlo simulations, 456
 binomial tree pricing, 397
 on bond forwards, 475
 on bonds, 472, 475
 Eurodollar, 476
 European, 397, 474
 on forwards, 475
 on futures, 475
 pricing by Monte Carlo simulations, 455
 on time deposits, 472, 473, 476
Over-the-counter (OTC) derivatives, 329, 514
 bilateral execution, 342
 bilateral vs. SEF execution, 363
 cleared, 330–332, 354–356
 collateralization, 427
 electronic execution platforms (EEP), 344
 liquidity fragmentation in nondollar swaps, 366
 non-cleared, 331, 341, 351, 352, 370
 and end-users, 370
 reporting, 331, 333, 334, 355
 standardized, 329, 331
 swap execution facility (SEF), 333, 345, 364, 365
 trading, 470
Overnight index swaps (OIS), 38, 341, 421, 422
 discount curve, 424, 431
 LIBOR-OIS spread, 38, 421, 514
Pension plans, 119, 147
 additional financial contributions (AFC), 155, 158
 Asset-Liability Management, 127, 148
 funding ratio, 153
 liabilities, 127
 underfunding, 147, 155, 163
Physical probabilities, 442, 564, 565, 568
Portfolio optimization, 143
Predictability of excess bond returns, 171, 172, 187, 191, 192, 201, 205
 behavioral expectational errors, 172, 292
 Cochrane–Piazzesi factor, 11, 12, 89, 172, 179, 181
 Predictability of excess bond returns, 171, 172, 187, 191, 192, 201, 205
 and the expectations hypothesis, 172, 182, 291
 Fama–Bliss regressions, 172, 178
 and the financial crisis, 185
 funding risk factor, 289, 290
in inflation-indexed bonds, 192
liquidity, 192
international evidence, 171
intraday evidence, 233
learning, 300
nominal vs. inflation-indexed bonds, 192
predictive regressions, 89, 171, 178
real rates, inflation expectations and liquidity, 201, 206, 207
time-varying risk premia, 171
Preferred habitat theory
and the yield curve, 287
Preferred habitat theory, 104, 173
Principal Component Analysis, 84, 123, 124
in Asset-Liability Management, 137–139
of credit default swaps, 572, 577
of credit risk premia, 574
level, slope and curvature, 120, 125
methodology, 124, 145
of international bonds, 175, 176
and term structure models, 242
Principal components, 248, 252, 308, 309
and bond risk premia, 89, 252
and the CFN/AI index, 85
and the Cochrane–Piazzesi factor, 90
of credit default swaps, 572
of distress risk, 563
and FOCM announcements, 84
and funding liquidity, 290
in inflation swaps, 46
of international bonds, 175, 176, 182
level, slope, and curvature, 120, 462
and the market price of risk, 257
and order flow, 230
of repo spreads, 285
and term structure models, 243, 249, 251, 254, 256–258, 260

Quadratic models, 446, 481
Quantitative Easing (QE), 93, 96
Radon–Nikodym derivative, 475
Real rate risk premium, 192, 205
Real rates, 9, 42, 175, 191
Recovery rate, 545, 546, 549, 550, 552, 557
exogenous, 549, 552
of face value, 552
time dependent, 552
Rehypothecation, 518
of collateral, 349
Repurchase agreements (repos), 32, 35
and the European Central Bank (ECB), 93
and the Federal Reserve, 95
and the financial crisis, 35
haircuts, 35
market, 35
reverse repos, 32
run on the repo, 35
shadow banking sector, 35
triparty, 35
types of collateral, 33
Risk premium, 242, 244, 314
in affine models, 244
of bonds, 205
credit, 564, 568, 575, 578
due to time-varying credit risk, 566
and high-frequency trading (HFT), 234
and inflation risk, 41, 43, 205
intensity-based models of credit risk, 554
and liquidity risk, 205
and real rate risk, 205
subjective, 299
Risk-neutral (probability) measure, 46, 243, 294, 516, 551, 565
and credit risk modeling, 555
derivatives, 243
and inflation swaps, 43
and market price of risk, 249
and mortgage-related securities, 58
vs. physical measure, 242, 250, 565, 568
Risk-neutral default intensity, 565–567, 583
physical vs. risk-neutral dynamics, 568
Risk-neutral parameters
estimation, 266, 569
Risk-neutral pricing, 269, 389, 437, 446, 452, 515–517, 564, 565
Risk-neutral pricing
American/Bermudan securities, 456
binomial trees, 389, 391, 394
defaultable securities, 566
Feynman Kac theorem, 439, 444
Monte Carlo simulations, 58, 437, 446
mortgage-related securities, 57
trinomial trees, 406
valuation under ‘Q’ vs. under ‘P’, 441
Risk-neutral probabilities, 267, 269, 439, 474, 564
binomial trees, 391, 392, 394
of default, 547, 564
derivatives pricing, 474
and forwards, 483
and futures, 474, 475
and investors’ risk aversion, 564
and market price of risk, 394
and martingales, 475
and risk adjustment, 479, 565
vs. physical (true) probabilities, 266, 273, 441, 442, 564, 574
trinomial trees, 407
Risk-neutral process, 58, 440, 444, 452
for housing prices, 58
and Monte Carlo simulations, 446
as a risk-adjusted process, 441, 582
Risky arbitrage, 287
Securitization, 54
credit guarantee (CG) model, 54
credit tranche (CT) model, 54
mortgage-backed securities, 54
Security and Exchange Commission (SEC), 542
Segmented markets, 173, 287, 103, 104
Shadow banking sector, 34, 35
Repo market, 35
Shadow rate model, 303, 306, 451, 465, 466
Sharpe ratio, 148, 233, 316, 546
of international bonds, 176
and market price of risk, 267, 441
and Merton’s model, 546
Short-sale constraints
 in Asset-Liability Management, 154
Single Monthly Mortality (SMM), 55
Sovereign credit risk, 561
emerging markets, 570
European Debt Crisis, 575
Sovereign default
 literature review, 563
 models, 564
 estimation, 569
 reduced-form, 564
risk, 563
Specialness of Treasuries, 195
 and breakeven inflation spread, 195
 and liquidity, 285, 286
 TIPS vs. nominal bonds, 196
Stochastic alpha, beta, rho (SABR) model, 486
 swaption pricing, 487
Stochastic discount factor, 102, 193, 294
equilibrium models, 300
Straddles, 488
 volatility trading, 488
Structural models, 242, 564
default risk, 546
Survival probability, 551
Swap data repository (SDR), 335
Swap execution facility (SEF), 333, 345
 permitted transactions, 345
 required transactions, 345
 swaps made available to trade (MAT), 345
SwapClear, 355, 356
Swaptions, 342, 430, 471, 472, 478
 and bets on volatility, 487
 and interest rate volatility indices (IRV), 502
 payoff, 478
 pricing, 432, 479, 484
 implied volatility, 484, 488
 local volatility, 485
 Monte Carlo simulations, 484
 straddles, 472, 488
Swiss National Bank, 95

Taylor rule, 35, 93, 103
TED spread, 37
Term structure factors, 111, 290, 291
Term structure models, 88, 193, 224, 241, 242, 247, 266, 283
 conditional mean macro model, 296
equilibrium models, 300
 estimation methods, 269
 efficient method of moments, 271
 estimation bias, 272
 GMM, 270
 maximum likelihood, 270
 quasi-maximum likelihood, 271
 and expectations hypothesis, 282
 factor models, 266
 latent factors, 267
 observable factors, 267
forward-based models, 269
 and funding risk, 290
 and identification, 265
interbank rates, 38
LIBOR-OIS spread, 39
macroeconomic models, 267
 no-dominance, 305, 306
 pricing kernel, 283
 quadratic, 446, 481
 and spanning of macroeconomic risk, 44
taxonomy, 242
yield-based models, 268
 zero lower bound, 303, 451, 453, 466
Term structure of CDS spreads, 569, 572
Term structure of forward rates
 Cochrane–Piazzesi factor, 88
Term structure of futures rates
 and monetary policy shocks, 84
Term structure of interest rates, 4, 9, 121, 171, 173, 287, 291
 economics, 9
 and expectations hypothesis, 13
 exact fit with binomial trees, 395, 398, 399, 402, 405
 exact fit with trinomial trees, 407
 inflation-indexed bonds, 192
 international evidence, 173
 inverted hump, 453
 level, slope and curvature, 111, 120, 123
 model fit, 448, 450, 451
 mortgage-related securities, 59
 nonparallel shifts, 123
 parallel shifts, 59, 121, 122
 principal components, 120, 123, 124
 real rates, 193
 slope, 90, 260, 574
 and excess returns, 90
 unsecured, long-term interbank rates, 38
Term structure of risk premia, 181
Term structure of volatilities, 299
Treasury Inflation Protected Securities (TIPS), 19, 41, 42
 embedded deflation option, 42, 194
valuation, 42
Trinomial trees, 406
 calibration to the data, 407
 callable bonds pricing, 410
 Hull and White model, 410
Troubled Asset Relief Program (TARP), 96

U.S. Treasury
 auctions, 7
 bills, notes, and bonds, 7
debt, 3
 and the financial crisis, 95
Unemployment
 expectations
 and yields, 296
Fed objectives, 99
Value-at-Risk, 148, 154
 constraint, 149
 constraint in Asset-Liability Management, 154, 156, 161

Variance swaps, 489
 on bonds, 489, 490, 497
 on interest rate swaps, 492, 493, 500
 model-free pricing, 490
 on time deposits, 499

Volatility, 485
 of assets in Merton’s model, 546
 and bond return volatility, 549
 and credit spreads, 548
 basis point vs. percentage, 490
 of bond futures, 212, 219
 of bond returns, 11, 174, 176, 315
 and factor persistence, 480
 and fundamental uncertainty, 319
 and learning, 316
 and macro news, 222
 of Cochrane–Piazzesi factor, 89
 and convexity, 245–247
 clustering, 90
 of factors, 245, 247, 307
 of Fed funds rate
 vs. target rate, 78
 of forward swap rate, 488
 and funding risk, 290
 and excess returns, 251–253
 and high-frequency data, 210
 and high-frequency trading (HFT), 234, 235
 of illiquidity proxies, 215
 of inflation, 191
 and inflation risk premium, 206
 interest rate derivatives, 471
 of interest rates, 77, 78, 194, 469
 and market price of risk, 295
 no-dominance models, 307
 and risk premia, 109
 and unconventional monetary policy, 106
 interest rate volatility index, 471, 502
 derivatives on, 505
 intraday evidence, 224, 226
 of LIBOR-OIS spreads, 40
 and liquidity, 471
 local volatility, 485
 swaption pricing, 485
 and macro news, 217–219, 222, 224, 226, 227

option-implied
 binomial trees, 398
 Black’s model, 484, 486–488, 493
 demand for Treasuries, 473
 interest rate volatility index, 473
 and macro news, 220, 222
 swaptions volatility cube, 472
 trinomial trees, 412
 VIX index, 34

pricing, 487, 497
 bonds, 497
 model-free, 490, 494
 swaps, 500
 time deposits, 499
realized, 398
 financial crisis, 211, 212
 of repo spreads, 287
SABR model, 486
 stochastic volatility model, 225, 480, 505
 of stock returns, 12, 315
 and the stock/bond covariance, 315, 321
 of swap rates, 471
 and risk, 471
 swaptions, 471
 swap rate volatility index, 496
 swaptions, 488
term structure, 299
 trading, 487, 488
 forward volatility agreements (FVA), 472
 and macro news, 472
 straddles, 472, 488
 variance swaps, 489
 and trading volume, 215, 229
 of volatility, 487

Yield curve
 forecasts, 295
 calibration of binomial trees, 395
 calibration of trinomial trees, 407
economics of, 9
 and expectations, 244
 and expected future rates, 13, 15
 factors, 89, 173
 level, slope, and curvature, 123, 125
 principal components, 89, 124, 462, 480
 fit
 bootstrap procedure, 18
 Nelson–Siegel model, 18
 and forward rates, 16, 17
 interbank, 38, 39
 inverted, 212
 Libor/swap curve, 471
 and liquidity, 196, 201
 and market price of risk, 246
 and monetary policy, 89, 283
 nonparallel shifts
 Factor Duration, 137
 Key Rate Duration, 133
 parallel shifts, 132, 266
 convexity, 268
 duration, 121, 130, 268
 real, 21
 and risk premium, 14
 simulations, 132, 135, 140
 slope, 17, 191, 243, 251, 257, 258
 predictor of bond returns, 172, 252, 258, 260, 295
 and volatility, 252
smoothness, 194, 284
and state variables, 242, 247, 250
and the supply of government debt, 173
volatility
and expected excess returns, 252
and zero-coupon discount curve, 10

Yield curve models
affine models, 241, 244
clientele-based model, 288
Cox, Ingersoll and Ross, 479
factor models, 266, 480
latent factors, 267
forward-based models, 269
Heath, Jarrow and Morton, 482
macroeconomic models, 268
market model, 483
no-arbitrage models
and perfect curve fit, 481, 506
Ho and Lee, 481

Yield curve models
no-arbitrage models
Hull and White, 482

and perfect curve fit, 481, 506
no-arbitrage Nelson–Siegel model, 463
shadow rate model, 466
statistical models, 242
stochastic volatility model, 505
price feedback, 506
structural no-arbitrage models, 242
Vasicek, 479

Yield smoothing, 148, 150, 158
defined benefit retirement plans, 148, 150

Yield spread, 194

Yields, 8
and inflation expectations, 9
nominal, 9
real, 9, 19, 42
and the spanning of macroeconomic expectations, 296
survey forecasts, 292
and inflation expectations, 9
and the spanning of macroeconomic expectations, 296
nominal, 9
real, 9, 19, 42
survey forecasts, 292

nominal, 9
real, 9, 19, 42
and the spanning of macroeconomic expectations, 296
survey forecasts, 292