Contents

List of Contributors xiii
Foreword xvii
Preface xix

1 Contemporary Protein Analysis by Ion Mobility Mass Spectrometry 1
Johannes P.C. Vissers and James I. Langridge

1.1 Introduction 1
1.2 Traveling-Wave Ion Mobility Mass Spectrometry 1
1.3 IM–MS and LC–IM–MS Analysis of Simple and Complex Mixtures 2
1.3.1 Cross Section and Structure 2
1.3.2 Separation 4
1.3.3 Sensitivity 5
1.4 Outlook 7
Acknowledgment 8
References 8

2 High-Resolution Accurate Mass Orbitrap and Its Application in Protein Therapeutics Bioanalysis 11
Hongxia Wang and Patrick Bennett

2.1 Introduction 11
2.2 Triple Quadrupole Mass Spectrometer and Its Challenges 11
2.3 High-Resolution Mass Spectrometers 12
2.4 Quantitation Modes on Q Exactive Hybrid Quadrupole Orbitrap 13
2.5 Protein Quantitation Approaches Using Q Exactive Hybrid Quadrupole Orbitrap 14
2.6 Data Processing 16
2.7 Other Factors That Impact LC–MS-based Quantitation 16
2.7.1 Sample Extraction to Reduce Matrices 16
2.7.2 Internal Standard 17
2.8 Conclusion and Perspectives of LC–HRMS in Regulated Bioanalysis 18
References 18

3 Current Methods for the Characterization of Posttranslational Modifications in Therapeutic Proteins Using Orbitrap Mass Spectrometry 21
Zhiqi Hao, Qiuting Hong, Fan Zhang, Shiaw-Lin Wu, and Patrick Bennett

3.1 Introduction 21
3.2 Characterization of PTMs Using Higher-Energy Collision Dissociation 23
3.2.1 Oxidation 24
3.2.2 Deamidation 24
3.3 Application of Electron Transfer Dissociation to the Characterization of Labile PTMs 26
3.3.1 Performing ETD Experiments in Orbitrap Instruments 27
3.3.2 Structure Elucidation of Glycopeptides Using Multiple Fragmentation Mechanisms in Orbitrap Instruments 28
11.2.1.1 Solid-Phase Extraction (SPE) 131
11.2.1.2 Affinity Enrichment 131
11.2.1.3 Depletion of High-Abundant Proteins 131
11.2.1.4 Solution Fractionation 132
11.2.1.5 Protein Precipitation for PEGylated Proteins 132
11.2.2 LC-HRMS 132
11.2.2.1 HPLC 132
11.2.2.2 Full-Scan HRMS Data Acquisition and Analysis 133
11.3 Internal Standard Strategy 133
11.3.1 Stable Isotope Labeled Protein 134
11.3.2 Protein Analog 135
11.4 Calibration and Quality Control (QC) Sample Strategy 135
11.5 Common Issues in Quantification of Proteins Using LC-HRMS 135
11.5.1 Stability 135
11.5.2 Adsorption 136
11.5.3 Specific Protein Binding 136
11.5.4 Posttranslational Modifications (PTMs) 136
11.6 Examples of LC-HRMS-Based Intact Protein Quantification 137
11.7 Conclusion and Future Perspectives 138
Acknowledgment 140
References 140

12 LC–MS/MS Bioanalytical Method Development Strategy for Therapeutic Monoclonal Antibodies in Preclinical Studies 145
Hongyan Li, Timothy Heath, and Christopher A. James
12.1 Introduction: LC-MS/MS Bioanalysis of Therapeutic Monoclonal Antibodies 145
12.2 Highlights of Recent Method Development Strategies 146
12.2.1 Strategy for Surrogate Peptide Selection and Optimization 146
12.2.2 Sample Preparation 148
12.2.2.1 Immunoaffinity-Based Sample Preparation 148
12.2.2.2 Nonimmunoaffinity-Based Sample Preparation 151
12.2.3 Accelerated Trypsin Digestion 152
12.2.4 Internal Standard Selection 153
12.2.4.1 SIL-Peptide IS 154
12.2.4.2 Cleavable Flanking SIL-Peptide IS 154
12.2.4.3 SIL-mAb IS 154
12.3 Case Studies of Preclinical Applications of LC–MS/MS for Monoclonal Antibody Bioanalysis 154
12.3.1 Case Study #1 154
12.3.1.1 Key Analytical Method Features 154
12.3.2 Case Study #2 155
12.3.2.1 Key Analytical Method Features 155
12.4 Conclusion and Future Perspectives 156
References 158

13 Generic Peptide Strategies for LC–MS/MS Bioanalysis of Human Monoclonal Antibody Drugs and Drug Candidates 161
Michael T. Furlong
13.1 Introduction 161
13.2 A Universal Peptide LC–MS/MS Assay for Bioanalysis of a Diversity of Human Monoclonal Antibodies and Fc Fusion Proteins in Animal Studies 161
13.2.1 Identification of a Candidate Universal Surrogate Peptide to Enable Quantification of Human mAb and Fc Fusion Protein Drug Candidates 161
13.2.2 Application of an Exploratory Universal (Peptide 1) LC–MS/MS Assay to a Monkey Pharmacokinetic Study 162
13.2.3 Potential Applicability of a Peptide 1 Variant to Bioanalysis of Human IgG2-Based mAbs and Fc Fusion Proteins 163
13.2.4 Impact of Peptide 1 Asparagine Deamidation on Human mAb Quantification Can Be Mitigated 164
13.3 An Improved “Dual” Universal Peptide LC–MS/MS Assay for Bioanalysis of Human mAb Drug Candidates in Animal Studies 165
13.3.1 Identification and Evaluation of “Dual” Universal Peptide LC–MS/MS Assay Candidates 165
13.3.2 Quantitative Evaluation and Comparison of Light and Heavy Chain Dual Universal Peptide Candidates 167
13.3.3 Assessing the Level of Quantitative Agreement Between Peptide 1 and Peptide 2 in Assay Performance Evaluation Runs 167
13.3.4 Deployment of the Exploratory Dual Universal Peptide Assay in Support of a Monkey Pharmacokinetic Study 168
13.3.5 Considerations for Calibration Curve/QC Replicate Acceptance Criteria When a Dual Peptide Assay Is Employed 168
13.3.6 Interpreting and Reporting Study Sample Concentration Data Generated with a Dual Peptide Assay 168
13.3.7 Related Studies: Generic LC–MS/MS Assays for Human mAb Bioanalysis in Animal Studies 169
13.4 Extending the Universal Peptide Assay Concept to Human mAb Bioanalysis in Human Studies 170
13.4.1 Potential Expansion of the Universal LC–MS/MS Assay Concept into Human Studies 170
13.4.2 Development and Evaluation of an Exploratory Universal IgG4 Clinical LC–MS/MS Assay 171
13.4.3 Evaluation of the Impact of Anti-mAb Antibodies on Exploratory Universal IgG4 LC–MS/MS Assay Performance 173
13.5 Internal Standard Options for Generic Peptide LC–MS/MS Assays 173
13.5.1 Stable Isotopically Labeled Peptide Internal Standards 173
13.5.2 Stable Isotopically Labeled Protein Internal Standards 174
13.5.3 “Flanked” Stable Isotopically Labeled Peptide Internal Standards 175
13.6 Sample Preparation Strategies for Generic Peptide LC–MS/MS Assays 175
13.6.1 Direct Digestion, Pellet Digestion, and Solid-Phase Extraction 175
13.6.2 Affinity Capture 176
13.6.3 Additional Sample Preparation Approaches for Generic Peptide LC–MS/MS Assays 176
13.7 Limitations of Generic Peptide LC–MS/MS Assays 177
13.8 Conclusion 178
Acknowledgments 178
References 178

14 Mass Spectrometry-Based Methodologies for Pharmacokinetic Characterization of Antibody Drug Conjugate Candidates During Drug Development 183
Yongjun Xue, Priya Sriraman, Matthew V. Myers, Xiaomin Wang, Jian Chen, Brian Melo, Martha Vallejo, Stephen E. Maxwell, and Sekhar Surapaneni
14.1 Introduction 183
14.2 Mechanism of Action 183
14.2.1 Linker Chemistry 185
14.2.2 Toxins 185
14.2.3 ADME 185
14.2.4 Unique Bioanalytical Challenges 185
14.3 Mass Spectrometry Measurement for DAR Distribution of Circulating ADCs 186
14.3.1 Immunocapture of ADCs from Plasma or Serum 186
14.3.2 Deglycosylation for Captured ADCs 187
14.3.3 Mass Spectrometry Measurement for DAR Distribution of Circulating ADCs 188
14.4 Total Antibody Quantitation by Ligand Binding or LC–MS/MS 189
14.4.1 Ligand Binding Assay 189
14.4.2 LC–MS/MS Assay for Total Antibody Quantitation 190
16.5 Oxidation 226
16.5.1 Methionine Oxidation 227
16.5.2 Metal-Catalyzed Oxidation (MCO) 227
16.5.3 Photooxidation 227
16.5.4 Deamidation 228
16.5.5 Effect of Sequence and Structure on Deamidation 228
16.6 Discoloration 228
16.7 Sequence Variants 230
16.8 Glycosylation 232
16.8.1 Glycoprotein Structure 232
16.8.2 Intact Glycoprotein Analysis 235
16.8.3 Glycopeptide Analysis 237
16.8.4 Tandem MS of Glycopeptides 237
16.8.5 Free Glycan Analysis 238
16.8.6 Release of Glycans from Glycoproteins 238
16.8.7 Detailed Sequence and Linkage Analysis of Glycans 239
16.9 Conclusion 240
References 240

Index 251