of thermal conductivity suction sensors, 132–139

Cathode half-cell reactions, 345

Capillary fringe, 188

Capillary height, 63–64

Capillary law, 205

Capillary model, SWCC and, 185

Capillary phenomenon, 63–66

Capillary potential, 185

Capillary pressure, 64

Capillary rise, 64–65, 365–374

Capillary zone, 29

Cavitation, 52–53, 119–120

CBCs (capillary barrier covers), 323

Centipoises, 457

Children and Collins-George model of

permeability function, 380–385

Chilled-mirror method for SWCC
determination, 251–253

Chilled-mirror psychrometers, 153–154

Chapman, 448

Clapeyron equation, 494

Classification tests, 9

Clay:

consolidation tests on, 818–821

void ratio and soil suction for, 46–48

volume-mass constitutive relations for, 200

Clear sky radiation, 302

Climate:

classification of sites based on, 274–281

and moisture and thermal flux boundaries, 6–7

and in situ soil suction, 95

Closed-form equation, for heave analysis, 763–764

Closed-form solution, for rheological model, 335

Coarse soils, thermal conductivity estimation for, 507–509

Coefficient of active earth pressure, 615

Coefficient of compressibility, 666, 685–686

Coefficient of consolidation, 810

Coefficient of diffusion, 61, 340, 341, 830

Coefficient of earth pressure at rest, 747–775

Coefficient of lateral earth pressure, 95–99

Coefficient of osmotic permeability, 107

Coefficient of passive earth pressure, 618

Coefficient of permeability, 331–340

anisotropic, 351–353

changes in, 327

and degree of saturation, 332–335

and equations for steady-state water flow, 345

fluid and porous medium components, 331–340

for freezing zone, 494, 495

for high-air-entry ceramic disks, 114, 547

and hysteresis, 336–340

and infiltration, 437

and moisture and thermal flux boundaries, 6–7

and one-dimensional steady state flow in

unsaturated soil, 347–348

relative, 388–394

for stress deformation and

saturated-unsaturated seepage

analysis, 832

and volume-mass relations, 332

water, 356–357

in wetting-front column test, 368

Coefficient of transmission, for air flow, 453, 462, 463, 817

Coefficient of volume change, 687

and air phase partial differential equation, 816–817

and consolidation test results, 820–821

elastic parameter functions from, 771–772

Cohesion:

and bearing capacity, 627

total, 613, 628, 636

total cohesion method, 651–655

Cohesion bearing capacity factor, 627

Cohesion intercept, Mohr-Coulomb failure

envelope, 528, 529, 533–535

Cohesionless, 695, 702–703

Column tests, with single-specimen

pressure-plate devices, 248–250

Compacted kaolin clay, 605–608, 818–821

Compacted soil, 73–76

air permeability of, 455–456

shrinkage curve for, 46

Comparative swelling pressure studies, 747–752

Compatability, and strain-displacement, 716–717, 768

Compensator, for pressure plate cell, 245

Compressibility:

of air-water mixtures, 788–794

components of, 789–790

effects of dissolved air on, 790

effects of free air on, 790

limitations of capillary equation for, 791–794

coefficient of, 666, 685–686

estimation of elastic properties from, 732–733

isothermal, 787–789

of pore liquids, 787–788

Compressibility equation, 789

Compressibility form of volume-mass

constitutive relations, 679–685

with other stress state variables, 681

sign convention for, 682–683

verification of uniqueness of constitutive

surfaces, 681–685

Compressible soils, SWCCs of, 240–244

Compression:

isotropic, 677

unconfined compression strength, 590–593

virgin compression portion of void ratio, 779

Compression indices:

correlations of, 732–733

unloading-reloading, 695, 696, 701, 703

virgin, 695, 696, 699, 702, 703

Conductive heat flow, 486–488, 495–500

Conductivity, hydraulic, 457, 488

Confining pressure, in triaxial tests, 562–564

Conservation of angular momentum, 714–716

Conservation of linear momentum, 89, 714–716
Consolidated drained direct shear tests: interpretation of results, 566–567
nonlinear shear strength vs matric suction in, 571–572
test procedure, 565–566
Consolidated drained triaxial tests: procedure, 552–553
shear strength measurements in, 539
strain rates for, 580
typical laboratory results, 568–570
Consolidated undrained triaxial test, 553, 559–561
Consolidation, 509–581, 851–857
average degree of, 823–825
coefficient of, 810
coupled formulations and three-dimensional, 825–829

dimensionless consolidation parameters, 823–825
finite difference technique for solving equations, 817–819
in nonisothermal systems, 829–831
one-dimensional, 809–811, 817–819
osmotic, 107
preconsolidation pressure, 740, 742–744
and rheological model for unsaturated soils, 851–857
constitutive relations in, 852–853
differential equations for linear elements, 851
numerical solution for, 855
and stress/seepage in coupled vs. uncoupled systems, 809–817
derivation of equations for unsaturated soil, 812–817
physical relations for, 811–812
theory of, 582, 785–786
three-dimensional, 825–829
Constant-volume oedometer tests, 736, 737
and numerical swelling pressure model, 849
for stress state of unsaturated soils, 742–744
swell pressure from, 753–754
Constant-water-content triaxial tests, 537, 538
nonlinear shear strength vs. matric suction in, 571–575
procedure, 553
strain rates for, 580
typical laboratory results, 569–570
constitutive relations (constitutive relationships): defined, 31
heat flow, 487, 488
incorporation into physical processes, 77–78
in rheological model for unsaturated soils, 852–853
soil structure, 769, 826–827
and SWCC equation, 270
for three-dimensional consolidation, 826
volume-mass, 198–200, 673–685
and change in volume of air, 675, 676
compressibility form, 679–685
elasticity form, 673–674
isotropic loading, 675, 677
K0 loading, 678
plane strain loading, 678
plane stress loading, 679
triaxial loading, 677–678
uniaxial loading, 677
in water phase, 674–675
water phase, 769–770
and one-dimensional consolidation, 811, 814
for rheological model, 855
and three-dimensional consolidation, 827–828
Consitutive surfaces:
degree of saturation, 668, 685, 707, 780
loading of, 722–723
on semilogarithm plot, 700–703
in stress and deformation studies, 666–670
uniqueness of, 681–685
void ratio and water content:
definition coefficients for, 685–686
equations for, 778–781
in Pham and Fredlund volume-mass model, 700–707
volumetric deformation indices for, 690, 691
volume-mass form of, 686–687
Contact angle, 63, 65
Contact filter paper procedure, 154
Continuity requirement, 671, 796, 811, 828
Continuous air-filled pore, 700
Couple matrix, 784
Cover systems, 15–17
dependent models of SWCC hysteresis, 696
and ground surface moisture boundary flux conditions, 274
stratigraphy and geometry of, 282
Critical slip surface:
in dynamic programming method, 643–647
in free body diagram for slope stability, 632–633
restrictions on shape of, 647
trial-and-error search for, 634–635
Critical state shear strength equations, 525–526
CS-229 thermal conductivity sensor, 131, 133, 140, 144–145
Curve-fitting parameters, for SWCC equations, 230–231
Dakota’s law, 58
Dam:
construction and operation of, 12, 13
seepage through, 407–414
water flow through earth dam, 418–423
Darcy’s law for air flow, 451–458
and air diffusion through water, 460
and intrinsic permeability, 456–458
Klinkenberg effect, 458
Darcy’s law for water flow through unsaturated soil, 331–344
coefficient of permeability, 331–340
and degree of saturation, 332–335
fluid and porous medium components, 331–332
and hysteresis, 336–340
lower limit of, 341–444
and matric suction, 334–336
and volume-mass relations, 332
water vapor flow, 338, 340–341
Databases, grain-size distribution for SWCC in, 262–263
Decision analysis, slope stability in, 662–663
Deep infiltration, 8, 321
Deformable soils, volume-mass relations for, 194–195
Deformation, 587. See also Stress-deformation analysis
Deformation coefficients, 685–693
for constitutive surfaces on semilogarithmic plot, 690–693
for unloaded surfaces, 687, 689–690
for void ratio and water content surfaces, 685–686
Deformation state variables, 31–32, 83–84, 670
Deformation stress state, 198
Degassing, 52
Degree of saturation.
See also Air degree of saturation
air, 472–475
and air coefficient of permeability, 454–455
and changes in other volume-mass properties, 71
and coefficient of permeability, 332–335
defined, 67, 68
effective, 334, 377
in effective stress equation, 83
in field and laboratory, 5–6
matric suction vs., 509–510
for pore fluid other than water, 72
residual, 331
and shear strength, 595, 596
soil suction vs., 48
and SWCC, 192
in thermal conductivity estimation, 506
Degree of saturation constitutive surfaces, 668, 685, 707, 780
Density:
of air, 53, 453, 463–464, 816
dry, 69–70, 74, 737–738
probability density function, 36
of salt-water mixtures, 50–51
of soil, 69–70, 73
of solids, 48–49
total, 69–70, 73
of water, 50
Dependent models of SWCC hysteresis, 696
Depth of potential heave, 759
Desaturation stages, SWCC, 220–221
Desiccation, 739
Desiccators, vacuum, 249–251
Design stage (implementation), 10
Design suction, 628
Desorption, Zapata model for estimating, 268
Desorption branch of SWCCs, see Drying SWCCs
Deviator stress, 523
Dew point, relative humidity from, 55–56, 289, 290
Gravimetric water content, (continued)
as deformation state variable, 679
dimensionless, 192, 193
for pore fluid other than water, 72
in situ measurement, 165–166
and SWCC, 192–193. See also Pham and
Fredlund equation for SWCC
Gravitational energy, 329
Grid elements, in dynamic programming, 643
Ground movements, 15–16, 741
Ground surface:
as boundary condition, 273
net evaporative flux at, 320–321
slope stability and slip surfaces near, 660–662
water balance at, 283–285
Ground surface moisture flux boundary
conditions, 273–326
actual evaporative flux, 305–318
coupled solutions, 307–316
example calculations, 317–318
experimental-based relationship to PE
and, 315–317
limiting function, 314–315
uncoupled solutions, 313–317
Wilson–Penman equation, 307–314
atmospheric pressure, 298–299
climatic classification of sites, 274–281
partitioning of year for, 277–278
Thermowatt system, 274–277
cover systems modeling, 321–326
geometry and stratigraphy, 282
heat of vaporization, 298
net evaporative flux, 320–321
net radiation, 299–303
potential evaporative flux, 291–296,
303–305
precipitation, 286–287
psychrometric constant, 298
relative humidity, 287–290, 303
runoff, 290–291
saturated–unsaturated water flow for REV,
282–283
transpiration flux, 318–320
water flow problems with, 437
Groundwater table, see Water table
Guan and Fredlund direct high-suction
tensiometer, 121
Hanging column, 245, 247
Hazard assessment, slope stability in, 663–665
Head boundary conditions, water flow
problems with, 399–401
Heat leak process, 71–73, 76–77, 784
Heat, quantity of, 505
Heat capacity:
specific, 49, 51, 56, 504
and specific heat, 491
volumetric, 498, 503–504, 510
Heat flow, 487–519, 830–831
direct measurement of thermal properties,
500–505
estimation of thermal properties, 505–510
and freezing/thawing soils, 492–493
and moisture boundary conditions, 285–286
partial differential equations for, 495–500
and actual evaporation, 307–308, 314,
316
and freezing/thawing of soils, 498–499
steady-state flow, 496–497
transient-state flow, 497–498
with vapor flow, 499
processes in unsaturated soils, 487–488
theory of, 488–492
thermal problems, 510–519
one-dimensional, 511, 512
two-dimensional, 511–517
Heat flux boundary conditions, 499–500
Heat of vaporization, 298, 318, 491
Heave:
and expansive soils, 735–738
prediction of, in expansive soil, 832–836
and stress history, 738–756
total, 735–738, 757
Heave analysis, 756–768
in situ measurement, 761–762
closed-form equation with constant swelling
pressure, 763–764
estimation of pore-water pressures for, 758
for excavation of profile and backfilling
with nonexpansive soil, 767–768
one-dimensional calculations, 759–761
and parametric analysis, 763
and swelling pressure, 764–766
for wetting from top to specified depth, 765,
766
zone of subsoil wetting, 758–759
Henry’s law, 60
Heterogeneous anisotropic seepage:
coefficient of permeability for, 351–353
partial differential equations for, 346
three-dimensional flow from, 349, 350
and swelling theory, 768–771
two-dimensional flow from, 348–349
Heterogeneous isotropic seepage:
partial differential equations for, 345–346
three-dimensional flow from, 350
and swelling theory, 768–771
two-dimensional flow from, 349
High-air-entry disks:
diffusion through, 467–469
impedance factor of, 583–585
pore-water control with, 544–545
properties of, 112
saturation procedure, 546–547
in triaxial cells, 545–546
High-intensity rainfall conditions, slope
stability in, 658–660
Highly shrinking soils, 739, 740
Highly swelling soils, 739, 740
Highly swelling soils, 739, 740
High intensity, rainfall, 285
High-suction, tensiometer, 121
Hydraulic conductivity, 457, 488
Hydraulic gradient, in wetting-front column
test, 368
Hydraulic head:
and engineering design protocols, 7, 28
in saturated–unsaturated water flow
problems, 283, 399–401, 403–404
total energy head, 330
Hydraulic gradient:
and Darcy’s law, 331
finite element method for, 406–407
in instantaneous profile method, 359–360
for unsteady-state seepage, 417
for water flow in unsaturated soil, 327–329
Hydrostatic conditions, matric suction
estimates in, 170, 171
Hygrometer, 298
Hysteresis effect, 28
for coefficient of permeability, 336–340
for filter paper method, 158–161
and loading/unloading sequences, 732
for matric suction estimation, 172, 176–178
and relationships of volumetric deformation
coefficients, 687, 689–690
for SWCC, 172, 217–219
for thermal conductivity of conductors,
145–148
and uniqueness of constitutive surfaces, 682
Hysteresis model of SWCC, 696, 704
Ideal gas law, 31, 53, 60
Immiscible mixture, air and water as, 57
Impedance factor, of high-air-entry disks,
583–585
Inactive season, for moisture flux, 277, 278
Incompressible soils, SWCCs of, 240–241
Incremental constitutive equation for water
phase, 675
Incremental elasticity, 768–778
evaluation from volume change indices,
771–773
one-dimensional solution with, 775–778
and swelling theory, 768–771
two-dimensional solution with, 778
Independent models of SWCC hysteresis, 696
Independent phase equilibrium, 89–90
Indirect measurement:
of matric suction, 112, 113
of soil suction, 129–130, 154
Induced pore pressure problems, 786
Infiltration:
depth, 8, 321
and matric suction, 437–439
net, 8, 284, 321
and nonlinear differential seepage equation,
401–403
during rainfall, 439–440
transient infiltration analysis, 648, 650–651
Initialization of stress state, on SWCC,
766
In situ measurement of water content, 165–169
Instantaneous profile methods, 358–366
apparatus and procedure, 359
computations, 359–360
in situ use, 363–365
Integrity, of cover systems, 326
Intermediate stress, in Mohr circle, 102, 103
International System of Units (SI), 858–859
Interslice normal force, 638
Interslice shear force, 638
Integrity, of cover systems, 326
Incompressible soils, SWCCs of, 240–241
and swelling theory, 768–771
two-dimensional solution with, 775–778
one-dimensional solution with, 775–778
and swelling theory, 768–771
two-dimensional solution with, 778
Independent models of SWCC hysteresis, 696
Independent phase equilibrium, 89–90
Indirect measurement:
of matric suction, 112, 113
of soil suction, 129–130, 154
Induced pore pressure problems, 786
Infiltration:
depth, 8, 321
and matric suction, 437–439
net, 8, 284, 321
and nonlinear differential seepage equation,
401–403
during rainfall, 439–440
transient infiltration analysis, 648, 650–651
Initialization of stress state, on SWCC,
219–220
In situ designation, of stress states, 94–95
In situ estimation, of soil suction, 179–181
In situ measurement:
of water content, 165–169
Instantaneous profile methods, 358–366
apparatus and procedure, 359
computations, 359–360
in situ use, 363–365
Integrity, of cover systems, 326
Intermediate stress, in Mohr circle, 102, 103
International System of Units (SI), 858–859
Interslice normal force, 638
Interslice shear force, 638
Intrinsic permeability, 331–332, 456–458
Inverse relative distance, 302
Irrigation equations, 302–303
Isothermal compressibility, of air, 787–789
Isothermal transient flow analysis, 812–813
Isothermal compression, 677
Isotropic loading:
constitutive surfaces under, 667
tangent pore pressure parameters with, 805–806
and volume-mass constitutive relations, 675, 677
Isotropic seepage:
partial differential equations for, 345–346
three-dimensional flow for, 350
two-dimensional flow for, 349
Isotropic soil, 797
K_0 loading in, 798–800
steady-state air flow in, 463
Jet-fill tensiometers, 116, 117
Johansen model of thermal conductivity estimation, 506–507
K_f loading:
constitutive surfaces from, 667–668, 685
deforation-stress state line for, 198
and drained vs. undrained loading, 798–800
one-dimensional consolidation with, 811
in simulation of soil compaction, 74
three-dimensional swelling with, 849
x factor equation, 594, 595
x parameter, 597, 598
Kelvin equation, 30, 62–63, 181
Kelvin model, 851
Kersten estimation model of thermal conductivity, 505–506
K_1 line, 531
Khalili and Khabbaz shear strength estimation, 204
Kinematical restrictions, on critical slip surface, 647
Klinkenberg effect, 458
Lagrangian description of relative movement, 671
LAI (leaf area index), 18, 319
Laliberte equation for SWCC, 201
L' parameter, 596
Laplacian equation, 62, 403
Latent heat of fusion, 493
Latent heat of vaporization, 298, 318
Laterally earth force, 621
Lateral earth pressure:
coefficient of, 95–99
coefficient of earth pressure at rest, 774–775
and shear strength, 611
Overed hill, seepage in slope of, 418, 429–437
Layered systems, bearing capacity of, 631–632
Leaf area index (LAI), 18, 319
Leong and Rahardjo permeability function, 384–396
Limit equilibrium analysis, 611, 632. See also General limit equilibrium (GLE) method of slope stability
Limiting function method, for actual evaporation, 305, 314–315
Linear form of shear strength equation, 525
Linearization, of shear strength functions, 610–611
Linear momentum, conservation of, 89, 714–716
Linear rheological elements:
constitutive relations for, 852–853
differential equations for, 853
in multilayer system, 853–855
in series, 807, 852
Linear variable differential transformers (LVDTs), 550–551
Line of intercepts, for extended Mohr-Coulomb failure envelope, 527, 528
Liquid state, of water, 57
Loading. See also K_0 loading: Undrained loading
of constitutive surfaces, 722–723
drained, 796–802
initial pore pressures with, 807–808
isotropic, 667, 675, 677, 805–806
plane strain, 678
plane stress, 679
and soil suction, 701
triangular, 677–678
uniaxial, 677
Loading after swell procedure, 752, 753
Lognormal-type equation, for grain-size distribution curves, 34
Long-wave radiation (outgoing), 301–302
Lowe equation, for saturation vapor pressure, 297–298
Low suction, 114–120
function of tensiometers, 114–116
jet-fill tensiometers, 116, 117
quick-draw tensiometers, 118, 119
small-tip tensiometers, 116–118
on SWCC, 195–197
Low-volume change soil, 221
LVDTs (linear variable differential transformers), 550–551
McKee and Bumb equation for SWCC, 202, 204
Major coefficient of permeability, 351, 353
Major stress:
at failure, 523–524
in Mohr circle, 102, 103
principal, 98, 100
Mass:
of air, 815
basic volume-mass relationship, 70–71
conservation of, 77, 81
mass relations, 68. See also Volume-mass relations
model to predict removal of, 78–79
volume-mass relations with mass losses, 76–79
Mass rate of air flow:
et, 465–472
air coefficient of permeability, 465–468, 473–480
air diffusion through water, 467–472
dew point, 289
of pan evaporation, 292
and permeability function, 374
of relative humidity, 288
of soil suction, 109–149
of steam entrainment, 506–507
with direct shear tests, 565–567
measured vs. estimated shear strength, 602–609
with triaxial tests, 551–565
Mean stress:
of constitutive surfaces, 671
of soil suction, 110–112
theory related to, 109–110
with thermal conductivity suction sensors, 130–149
of stress-deformation properties, 721–730
loading of constitutive surfaces, 722–723
pressure plate drying tests, 723–725
procedures and equipment, 722
shrinkage tests, 725
and volume change index determination, 725–730
of thermal properties, 500–505
of total suction, 149–164
and filter paper method, 154–164
psychrometers, 149–154
of water flow, 354–374
Metastable soil, sign convention for deformation of, 683
Mineralogy, in thermal conductivity estimation, 507, 508
Minor coefficient of permeability, 352, 353
Minor principal stress, 99, 100
Minor stress:
at failure, 523–524
in Mohr circle, 102, 103
Miscible mixture, air and water as, 57
Mixing term, in potential evaporation, 291, 294, 298
INDEX 917
friction angle associated with, 592, 593
and high-air-entry disks, 545
in Mohr circle, 100
and one-dimensional consolidation, 812
osmotic vs., 105–106
in pressure plate devices, 234–235
and shear strength, 520, 551–552, 562, 563, 571–578, 596–597
for stress-deformation and seepage analysis, 25, 26, 837
in uniqueness tests, 683–685
water flow problems with, 437–449
Matric suction equivalent, 739
Maximum devisor stress, 523
Maximum principal stress ratio, 524
Maxwell portion, of linear rheological element, 852
MCs (monolithic covers), 323
Mean stress:
et, 697–701
Measured suction, applied vs., 122–123
Measurement:
of air flow, 465–472
air coefficient of permeability, 465–468, 473–480
air diffusion through water, 467–472
dew point, 289
of pan evaporation, 292
and permeability function, 374
of relative humidity, 288
of soil suction, 109–149
axis translation technique, 126–129
components of soil suction, 110–112
direct measurements of high suction, 119–126
direct measurements of low suction, 114–120
indirect measurement, 129–130
matrix suction, 112–114
theory related to, 109–110
with thermal conductivity suction sensors, 130–149
of stress-deformation properties, 721–730
loading of constitutive surfaces, 722–723
pressure plate drying tests, 723–725
procedures and equipment, 722
shrinkage tests, 725
and volume change index determination, 725–730
of thermal properties, 500–505
of total suction, 149–164
and filter paper method, 154–164
psychrometers, 149–154
of water flow, 354–374
Metastable soil, sign convention for deformation of, 683
Mineralogy, in thermal conductivity estimation, 507, 508
Minor coefficient of permeability, 352, 353
Minor principal stress, 99, 100
Minor stress:
at failure, 523–524
in Mohr circle, 102, 103
Miscible mixture, air and water as, 57
Mixing term, in potential evaporation, 291, 294, 298
INDEX

Mobilized shear force, 636
Modified Kovacs (MK) model of SWCC, 255–256
Modified triaxial tests:
 shear strength measurement with, 537
Modulus of elasticity, 674
Mohr circles, 98–105
construction of, 100–102
and extended Mohr-Coulomb failure envelope, 526–527
stress invariants, 102–105
Mohr-Coulomb failure envelope, extended, 526–536
nonlinearity of, 535
and other stress state variables, 529–530
plotting, 526–529
relationship of tan φ and γ, 536
and stress point envelopes, 530–535
for unsaturated soils, 524–526
Moist air, 53
Moisture flux:
 and Darcy’s law, 341
 at ground surface, 273
 and infiltration during rainfall, 439–440
partial differential equations for, 307, 313–316
Moisture flux boundary conditions. See also
 Ground surface moisture flux boundary conditions
 and limiting function for actual evaporation, 315
and Wilson-Penman equation for actual evaporation, 309, 313
Moisture-flux-only solutions, for actual
 evaporation, 286
Moisture index, 275–277
Moldrup air permeability tests, 476–479
Molecular mass of air, 53
Moment equilibrium, factor-of-safety
 equations with respect to, 637, 639, 640
Monolithic covers (MCs), 323
Monteith equation, for potential evaporative
 flux, 293
 equations with respect to, 634, 642–651
 for actual evaporation, 194–195
 and state variables, 105–108
 in soil suction estimation, 182–183
 and relative humidity, 311
 measurement, 164–165
 defined, 112
 Normal strain, 671, 716–717
 Normal stress:
 friction angle with, 592, 593
 constitutive surfaces with, 668, 669
 and deformable vs. nondeformable soils, 194–195
 Net short-wave radiation (incoming), 301
Net normal stress, friction angle with, 592, 593
Net normal stress, at failure, 523–524
in Mohr circle, 102, 103
Net moisture flux at ground surface, 273
Net normal stress:
 constitutive surfaces with, 668, 669
 and deformable vs. nondeformable soils, 194–195
Net infiltration, 8, 284, 321
Net intermediate stress, in Mohr circle, 102, 103
Net mass rate of air flow, 462, 815
Net mean stress, 697–701
Net minor stress:
 at failure, 523–524
 in Mohr circle, 102, 103
Net moisture flux, 595–596
OCR (overconsolidation ratio), 740–741, 774
Oedometer. See also Constant-volume
 oedometer tests
 correction for compressibility of, 744–745
 double oedometer method, 736
Net short-wave radiation (outgoing), 301–302
Net major stress:
 at failure, 523–524
 in Mohr circle, 102, 103
Net infiltration, 8, 284, 321
Net intermediate stress, in Mohr circle, 102, 103
Net mass rate of air flow, 462, 815
Net mean stress, 697–701
Net normal stress, friction angle with, 592, 593
Net normal stress, constitutive surfaces with, 668, 669
and deformable vs. nondeformable soils, 194–195
and extended Mohr-Coulomb failure envelope, 526–527
and initial matrix suction, 774
from Mohr circle, 99–101
and three-dimensional consolidation, 827
Net radiation:
 at ground surface, 285
 and moisture flux boundary conditions, 299–303
 in potential evaporation, 291, 294, 296
Net short-wave radiation (incoming), 301
Net normal stress, friction angle with, 592, 593
Net Neumann boundary conditions, 273, 406, 465
Neumann boundary conditions, 273–276
Neumann boundary conditions, for steady-state, 301–302
Neumann boundary conditions, for unstable solutions, 513–515
Neutron scattering method of measuring water
 flux, at ground surface, 285
Neutron scattering method of measuring water
 flux, vs. gravimetric measurement, 285
Net normal stress, friction angle with, 592, 593
Neumann boundary conditions, 273–276
Net normal stress, friction angle with, 592, 593
Numerical solution, from rheological model, 855
Numerical swelling pressure model, 849–852
Oberg and Sallfors shear strength estimation, 595–596
OCR (overconsolidation ratio), 740–741, 774
Oedometer. See also Constant-volume
 oedometer tests
 correction for compressibility of, 744–745
 double oedometer method, 736
 free-swell oedometer test, 736, 744, 751, 489–495
 modifications of, 723, 724
 in situ stress-state tests, 741–747
testing of expansive soils with, 736–737
One-dimensional air flow:
 steady-state, 461–462, 481
 transient, 463–464
One-dimensional consolidation, of cover systems, 282
One-dimensional consolidation, 809–811, 817–819
One-dimensional formulations for heave
 analysis, 756–768
Closed-form equation with constant swelling
 pressure, 763–764
estimation of pore-water pressures for, 758
for excavation of profile and backfilling
 with nonexpansive soil, 767–768
with incremental elasticity, 775–778
one-dimensional heave calculations, 759–761
theory of heave analysis, 757
total heave analysis calculations, 757–758
total heave and swelling pressure, 764–766
for wetting from top to specified depth, 765, 766
One-dimensional heat flow:
 steady-state, 496–497
 transient, 497, 498, 511, 512
One-dimensional heave, 757, 759–761
One-dimensional steady-state water flow, 346–348, 398–403
One-phase solid, equilibrium for, 87–89
Open pore diameter, 693
Optimality, principle of, 645
Optimal path, 645, 646
Optimal point, 645
Optimization procedures (for slope stability
determination), 634, 642–651
example, 647–651
theory, 643–647
Optimum water content, 73
Osmosis, 107
Osmotically induced consolidation, 107
Osmotic component of free energy, 110
Osmotic consolidation, 107
Osmotic flow, 107
Osmotic permeability, coefficient of, 107
Osmotic suction:
 defined, 112
 measurement, 164–165
 and relative humidity, 311
 in soil suction estimation, 182–183
 and state variables, 105–108
 Overall volume change, 78
 defined, 671–672
 and shear strength measurement, 549–551
 Overburden pressure, 613, 618, 626
 Overconsolidation ratio (OCR), 740–741, 774
Packing porosity, 257–259
Pan evaporation, 292
Partial differential equations (PDEs), 17–26
for air flow, 461–465
for boundary value problems, 18
for finite element mesh for tailings pond, 21
for heat flow, 495–500
and actual evaporation, 307–308, 314, 316
and freezing/thawing of soils, 498–499
and heat flow problems, 511
steady-state flow, 496–497
transient-state flow, 497–498
with vapor flow, 499
for numerical modeling of soils, 21
for stress-deformation analysis, 713–721
and conservation of linear and angular momentum, 714–716
and constitutive laws for unsaturated soils, 717
elastic models, 718–719
elastoplastic models, 719–720
strain displacement and compatibility, 716–717
for stress-strain relationships, 717–718
for stress-deformation and seepage analysis, 23, 25–26, 832–833
toward theory of consolidation, 810–811
t向社会 dimensional seepage analysis, 21, 22
for uncoupled processes, 20–21
for water flow, 344–354
and actual evaporation, 307, 313–316
and modeling of cover systems, 323–324
steady-state water flow, 344–350
transient seepage, 351–354
Particle sizes, 40–66
Passive earth force, 624–625
Passive earth pressures, 617–621
and changes in suction, 625–626
coefficient of, 618
defined, 611
definition associated with, 620–621
distribution of, 619–620
Past stress states, 739
PDEs, see Partial differential equations
PDF (probability density function), 36
PE, see Potential evaporation
Pelo-transfer function (PTF), 255
Peltier-type psychrometers, 150–151
Penman equation, for potential evaporative flux, 292–296, 301, 303–305
Penman-Monteith method, for potential evaporation, 301–302
Percent shift, of SWCC boundary curves, 176–179
Percolation, 8, 344
Pereira and Fredlund equation for SWCC, 202
Permeability:
air, 465, 475–479
intrinsic, 331–332, 456–458
of liquid water at residual conditions, 341–342
Permeability function. See also Coefficient of permeability
defined, 336, 378
drying, 360–363
estimation procedures, 375–379
and amount of water in soil, 376–378
with correlation soil parameters, 394–397
data fit for, 389, 393–394
and direct measurement, 374
empirical equations, 378–379
minimum value of function, 397
numerical integration for relative coefficient of permeability, 388–394
regression techniques for best-fit function, 396, 397
statistical models, 380–388
terminology for, 378
and water storage modulus for transient modeling, 397
and infiltration, 439
and water vapor, 342–344
from wetting-front column tests, 372–374
Permittivity, see Dielectric constant
Pham and Fredlund equation for SWCC, 202, 224–231
data fit for, 228, 229
for entire curve, 227–228
parameters of, 225–227
Pham-Fredlund volume-mass constitutive model, 693–713
assumptions for, 695–697
formulation for drying of slurry soil, 701–703
hysteresis model for SWCC, 704
parameters for, 707
for saturated-unsaturated soils, 704–707
Phase properties of unsaturated soil, 48–66
air phase, 53–57
air-water interface, 57–66
capillary phenomenon, 63–66
contractile skin at, 57, 58
surface tension at 61–63
types of interactions at, 58
and heat flow, 488
solid phase, 48–49
and thermal conductivity, 510
phase, 49–53
Physical processes, air flow coupled with, 484, 486
Physical relations, for stress/seepage, 811–812
Physio-empirical method, for SWCC determination, 256–260
Piezometric lines, 640, 642
Plane strain loading, 678
Plane stress loading, 679
Plant limiting factor (PLF), 320
Plastic equilibrium analysis, 611–613
PLF (plant limiting factor), 320
Point, stress state at, 88
Poisson’s ratio, 732, 774
Pole point, of Mohr circle, 102
Pores:
shape of, 693–694
volume changes in, see Volume changes
Pore-air, flow of dissolved, 461
Pore-air pressure, 453
consolidation test results, 819–820, 822–824
dam construction, 12, 13
finite analysis technique for, 818–819
induced pore pressure problems, 786
and matric suction, 112
in rheological model, 855
and shear strength measurements, 522, 539, 547
and slope stability, 640–642
and static compaction, 74
and stress-deformation analysis, 720
in triaxial tests, 553, 555–563
Pore-fluid:
and coefficient of permeability, 345
compressibility of, 787–788
Pore pressure parameters, 783–808
and coupled vs. uncoupled solutions, 784–786
derivation of, 794–796
for drained vs. undrained loading, 796–802
equations vs. experimental results, 802–806
and Hilf’s analysis, 800–802
and K, loading, 798–800
and total stress/soil anisotropy, 797–798
and rheological model of representative compressibilities, 807–808
secant, 794–795, 802–803
tangent, 794–795, 805–806
for uncoupled undrained loading, 786–794
compressibility of air-water mixtures, 788–794
compressibility of pore liquids, 787–788
Pore shape parameter, 699
Pore-size distribution:
and capillary rise, 65
coefficient of permeability based on, 384–386
and drying and wetting, 694–695
theory of, 205–207
Pore voids, 797
Pore-water, air flow through, 459
Pore-water pressure, 6, 7
consolidation test results, 819–820, 822–824
dam construction, 12, 13
estimation of, 758
and expansive soils, 15
finite analysis technique for, 818–819
induced pore pressure problems, 786
measurements of, in triaxial tests, 555
in rheological model, 855
and shallow foundations, 15
and shear strength measurements, 522, 539, 544–546
and slope stability, 632, 640–642
for steady-state seepage, 414–416
in stress-deformation analysis, 720
tension readings, 115
in triaxial tests, 553, 559–563
and water storage, 446–447
Pore-water vapor conductivity, 308
Porosity, 66–67, 90, 257–259
Potential evaporation (PE), 291–296
Blaney and Ciddor equation, 293
in climatic classification, 275, 276, 279–280
comparison of calculations for, 303–305
experimental-based relationship of actual
and, 315–317
from limiting function for actual evaporation, 314–315
Monteith equation, 293
Penman equation, 292–296
and PT/ AE, 291
Thornthwaite equation, 292
Potential transpiration (PT), 291
Preapplied matric suction, 123–125
Preconsolidation pressure, 740, 742–744
Preliminary engineering design protocols, 27
Primary variable, of PDEs, 19
Pressure energy component, of driving
potential, 329
Pressure membrane extractor, 239
Pressure-plate devices:
measuring stress-deformation properties with, 723–725
measuring SWCC with, 234–249
drying tests, 239
results from, 239–242
single-specimen devices, 242–249
Tempe cells, 236, 238
volumetric devices, 238–239
Pressure plate test, 239
Principle of optimality, 645
Probability density function (PDF), 36
Soil-water characteristic curve (SWCC), (continued)
results from, 239–242
single-specimen, 242–249
Tempe cells, 236, 238
volumetric, 238–239
and shear strength, 588–593
shear strength parameters for, 598–600
and soil-freezing curve, 494, 495
terminology, 189–190
and mechanical properties of soil, 510
and unsaturated soil property functions, 188–189, 224
vacuum desiccators, 249–251
and volume-mass constitutive surfaces, 733
volume-mass relations, 190–200
constitutive, 198–200
for deformable and nondeformable soils, 194–195
designation of amount of water in soil, 191–193
and stress state designation, 195–197
upper limit for soil section, 197–198
Soil-water systems, soil suction in, 110–111
Solar inclination, 302
Solid phase, of unsaturated soil, 48–49
Solid state, of water, 57
Solution stage (implementation), 10
Spanner psychrometers, see Peltier-type psychrometers
Specific gravity, 49, 72
Specific heat, 491, 503–504
Specific heat capacity, 49, 51, 56, 504
Specific humidity (SH), 54
Squeezing technique for measuring osmotic suction, 164–165
Stable-structured soil, sign convention for
Stages, in dynamic programming method, 643
Stage-set system, in dynamic programming, 643
States of matter, 48, 58
State parameters, 82
State points, in dynamic programming method, 643
State variables, 80–183
basis for, 80–81
defined, 31
deformation, 83–84
and nature of soil, 30–32
and osmotic suction, 105–108
osmotic suction measurement, 164–165
in situ water content measurement, 165–169
dielectric-based methods, 167–169
direct method, 166
radiological-based methods, 166–167
soil suction estimation, 169–183
matric suction, 169–173
osmotic suction, 182–183
with SWCC, 171–181
total suction, 181
soil suction measurement, 109–149
axis translation technique, 126–129
components of soil suction, 110–112
direct measurements of high suction, 119–126
direct measurements of low suction, 114–120
indirect measurement, 129–130
matric suction, 112–114
theory related to, 109–110
with thermal conductivity suction sensors, 130–149
typical values and measuring devices, 112
stress:
background on, 81–83
basis for, 84–87
Mohr circles for, 98–105
and representation of stress states, 94–98
for unsaturated soils, 87–94
total suction measurement, 149–164
filter paper method, 154–164
with psychrometers, 149–154
State variable stage (implementation), 9, 10
Static compaction, pore pressure and, 74
Statistical models of permeability function, 375, 376, 380–388
Burdine model, 383–386
Childs and Collins-George model with modified, 385, 386
Fredlund, et al. model, 387–388
Muallem model, 386–387
Steady-state air flow:
partial differential equations for, 461–463
problems, 481–486
Steady-state air permeability measurement, 465
Steady-state evaporation, 850–852
Steady-state heat flow, partial differential equations for, 496–497
Steady-state water flow: measurement of, 354–358
numerical modeling of, 440–444
partial differential equations for, 344–350
and coefficient of permeability for unsaturated soil, 345
heterogeneous anisotropie seepage, 346
heterogeneous isotropic seepage, 345–346
one-dimensional flow, 346–348
three-dimensional flow, 349–350
two-dimensional flow, 348–349
water storage and release in unsaturated soil, 346
problems with, 404–416
with finite element method, 404–414
with infinite slope, 414–416
one-dimensional flow, 398–403
two-dimensional flow, 403–404, 407–416
Steep slopes, with slip surfaces near ground surface, 662
Store-and-Release cover systems, 17, 322–323
Strain. See also Stress-strain relationships and
deformation from earth pressures, 620, 621
derivation and estimation of equations for consolidation/swelling, 813
and displacement, 716–717, 768
at failure, 581
in rheological model, 852, 855
and shear strength, 522
stress vs., 523, 524
volumetric, see Volumetric strain
Strain rate, for direct shear tests, 578–587
and displacement rate, 585–586
for multistage testing, 586, 587
suitability, 581–585
Stratigraphy, geometry of cover systems and, 282
Stress:
in consolidated drained triaxial tests, 554
and initial matric suction, 774
in one-dimensional consolidation, 809–811
partial differential equations for, 23–25
seepage, stress, and deformation combined analysis, 23, 25–26
and seepage in coupled vs. uncoupled systems, 809–817
derivation of equations for unsaturated soil, 812–817
physical relations for, 811–812
shear, 100, 102, 644
in three dimensional consolidation, 826
total, see Total stress
 void ratio as function of, 780–781
Stress-deformation analysis, 666–782
about, 666–670
deformation coefficient relationships, 685–693
for constitutive surfaces on semilogarithmic plot, 690–693
and determination of coefficients, 687
for unloading surfaces, 687, 689–690
for void ratio and water content surfaces, 685–686
for volume-mass form of constitutive surfaces, 688–687
estimation of stress-deformation properties, 731–735
incremental elasticity, 768–778
evaluation with volume change indices, 711–715
one-dimensional solution with, 775–778
and swelling theory, 768–771
two-dimensional solution with, 778
measurement of stress-deformation properties, 721–730
loading along constitutive surfaces, 722–723
oeodometer modifications, 723, 724
pressure plate drying tests, 723–725
procedures and equipment, 722
shrinkage tests, 725
and volume change index determination, 725–730
and numerical modeling of expansive soil problems, 778–782
partial differential equations for, 713–721
and conservation of linear and angular momentum, 714–716
and constitutive laws for unsaturated soils, 717
elastic models, 718–719
elastoplastic models, 719–720
strain displacement and compatibility, 716–717
for stress-strain relationships, 717–718
PDEs for, 21
Pham-Fredlund volume-mass constitutive model, 693–713
assumptions for, 695–697
formulation for drying of slurry soil, 701–703
hysteresis model for SWCC, 704
parameters for, 707
predictions for literature data sets, 712–713
predictions on artificial soils, 707–712
for saturated-unsaturated soils, 704–707
stress states and pore volume behavior, 694–695
volume change of pore with stress paths, 697–701
for problems, 735–738
stress, seepage, and deformation combined analysis, partial differential equations for, 23, 25–26
and stress history in unsaturated soils, 738–756
two-dimensional stress-deformation and saturated-unsaturated seepage analysis, 831–845
INDEX 925

vertical displacements, in stress-deformation and seepage analysis, 837–846
vertical net normal stress, 94–95
vertical stresses, earth pressures and, 626
Vilas shear strength estimation, 600–602
Virgin compression index, pore: assumptions about, 695, 696 and drying process with net mean stress, 699 equation for, 702, 703, 779
Viscosity: of air, 57
dynamic, 456, 457
of water, 52
Void ratio:
and changes in other volume-mass properties, 71, 199
defined, 67
as deformation state variable, 679
as function of stress, 780–781
minimum, 46
and net normal stress/zero suction, 781–782
for pore fluid other than water, 72
soil suction vs., 46–48 and swelling index, 756
in total heave analysis, 758, 765
Void ratio constitutive surfaces:
deformation coefficients for, 685–686
equations for, 778–781
in Pham and Fredlund volume-mass model, 706–707
on semilogarithm plot, 690–693
uniqueness of, 685
volumetric deformation indices for, 690, 691
Volume:
basics, for volume change
constitutive relations of, 795–797
and deformation, 670–673
limiting, 722, 723
overall, 78, 549–551, 671–672
and residual conditions, 264
soil classification based on, 221–224
with stress paths, 697–701, 704
and stress states, 694–695
in swelling process, 849
volume change index, 725–730
for deformable and nondeformable soils, 194
and estimation of permeability function, 377–378
and Fredlund and Xing equation for SWCC, 210
and gravitational water content, 166
and SWCC, 191–192
and unit weight, 70
Waste retention ponds, 14
Waste rock management, 784
Water:
air above water surface, 303
cavitation of, 52–53
and coefficient of permeability, 331
compressibility of, 788
conditioning of tensiometers, 122
designation of amount of water in soil, 191–193
permeability function and amount of water in soil, 376–378
permeability of liquid water at residual conditions, 341–342
pore fluid other than water, 71–73
properties of, 49–53
release and storage in unsaturated soil, 346
states of, 57
tensile strength of, 119
thermal conductivity of, 490–491
volumetric mass constitutive relations in, 674–675
Water balance, at ground surface, 283–285
Water content:
and estimation of permeability function, 376–378
gradient for water flow in unsaturated soil, 328
gravimetric, see Gravimetric water content
optimum, 73
in situ measurement of, 165–169
and soil suction, 315
unfrozen, 504–505
unfrozen, in freezing soils, 493–494
volumetric, see Volumetric water content
Water content constitutive surfaces:
- deformation coefficients for, 685–686
- equations for, 779–780
- on semilogarithm plot, 690–693
- volumetric deformation indices for, 690, 691
- water-entry value, pore volume and, 699, 700, 705

Water flow, 327–397. See also
- Saturated-unsaturated water flow
- problems
- conceptual models of, 186–187
- constitutive relations, 77–78
- Darcy's law for unsaturated soil, 331–344
- coefficient of permeability, 331–340
- water vapor flow, 338, 340–341
- direct measurement, 354–374
- and estimation of permeability function, 374
- laboratory methods, 354–365
- estimation of permeability function, 375–397
- and amount of water in soil, 376–378
- correlation with soil parameters, 394–397
- data fit for, 389, 393–394
- and direct measurement, 374
- empirical equations, 378–379
- minimum value of function, 397
- numerical integration for relative coefficient of permeability, 388–394
- regression techniques for best-fit function, 396, 397
- statistical models, 380–388
- and water storage modulus for transient modeling, 397
- in nonisothermal systems, 829–831
- partial differential equations for, 344–354
- steady-state water flow, 344–350
- transient seepage, 351–354
- stress-deformation uncoupled from, 784
- theory of, 327–330
- through earth dam, 418–423
- wetting-front column technique, 365–374
- calculation of permeability function from, 372–374
- Watermark soil suction sensor, 130
- Water phase:
- average degree of consolidation for, 823–825
- coefficient of permeability, 356–357
- continuity of, 828
- diffusion of air through, 459
- equilibrium equation for, 90
- fluid and vapor flow equation for, 829–830
- time factor for, 824, 825
- volume changes in, 672–673
- Water phase constitutive relationship, 769–770
- and one-dimensional consolidation, 811, 814
- for rheological model, 855
- for three-dimensional consolidation, 827–828
- volume changes in, 795–796
- Water phase partial differential equations for multilayer rheological system, 854
- for one-dimensional consolidation, 813–815
- for transient flow, 353–354
- Water potential, 185
- Water storage:
- and infiltration, 439
- and numerical modeling of transient conditions, 446–447
- and water storage modulus for transient modeling, 397
- and pore-water pressure, 446–447
- for transient flow, 353–354
- for wetting-front column test, 367
- Water storage soil property, 346
- Water table:
- and active earth pressure distribution, 615–617
- and bearing capacity, 628–629
- and passive earth pressure distribution, 619–620
- Water vapor:
- at air-water interface, 58–59
- coefficient of diffusion, 340, 341, 830
- permeability functions for, 342–344
- properties of, 54–55
- Wavy plane, equilibrium for, 93–94
- Weather, analysis of, 277–281
- Weather hazard model, 663–665
- Weight, unit, 70
- Well-graded soils, grain-size distributions for, 35
- Wet-loop-type psychrometers, 153
- Wetting:
- and stress state history, 739–740
- from top to specified depth, 765, 766
- zone of subsoil, 758–759
- Wetting-band concept, 437–438
- Wetting curve suction, 146–148
- Wetting front:
- air-entry value on, 444–446
- depth of, 438
- rising height of, 369, 370
- Wetting-front column technique, 365–374
- calculation of permeability function from, 372–374
- Wetting pore-size distribution (WPD), 694–695
- Wetting process, volume change of pore in, 697–698, 700–701
- Wetting SWCCs, 178–179, 203
- column tests for, 248
- equations for, 200
- and hysteresis, 217–219
- percent shift for, 176–179
- shear strength parameters for, 598–600
- volumetric pressure plate extractor for, 239
- Whatman No. 42 filter paper:
- factors affecting calibration, 156–158, 160, 161
- total and matric suction calibration curves, 161–163
- Wille Geotechnik cell, 243–245
- Wilson-Penman equation, for actual evaporative flux, 307–314
- WP4-T Water PotentiaMeter, 153–154, 252–253
- WPD (wetting pore-size distribution), 694–695
- Y\textsubscript{e} drying path parameter, 598–600
- Yield stress, volume change of pore and, 700, 701, 704
- Young-Laplace equation, 30
- y\textsubscript{w} wetting path parameter, 598–600
- Zapata correlation model for SWCC, 267–268
- Zero air voids curve, 70
- Zero flux boundary conditions, 7
- \zeta\textsubscript{w} parameter, 596–597
- Zone of seasonal moisture fluctuation, 759
- Zone of subsoil wetting, 758–759