# CONTENTS

**Preface**

**Acknowledgments**

**Chapter 1  A Brief Review of the Basic Equations**

1.1 The Equations of Classical Mechanics, Application to Lattice Vibrations 2  
1.2 The Equations of Quantum Mechanics 9  

**Chapter 2  The Symmetry of the Crystal Lattice**

2.1 Crystal Structures of Silicon and GaAs 19  
2.2 Elements of Group Theory 22  
  2.2.1 Point Group 22  
  2.2.2 Translational Invariance 26  
2.3 Bragg Reflection 29  

**Chapter 3  The Theory of Energy Bands in Crystals**

3.1 Coupling Atoms 33  
3.2 Energy Bands by Fourier Analysis 34  
3.3 Equations of Motion in a Crystal 42  
3.4 Maxima of Energy Bands—Holes 46  
3.5 Summary of Important Band-Structure Parameters 50  
3.6 Band Structure of Alloys 50  

**Chapter 4  Imperfections of Ideal Crystal Structure**

4.1 Shallow Impurity Levels—Dopants 58  
4.2 Deep Impurity Levels 60  
4.3 Dislocations, Surfaces, and Interfaces 62
Chapter 5  Equilibrium Statistics for Electrons and Holes  67
  5.1  Density of States  67
  5.2  Probability of Finding Electrons in a State  73
  5.3  Electron Density in the Conduction Band  75

Chapter 6  Self-Consistent Potentials and Dielectric Properties  81
  6.1  Screening and the Poisson Equation in One Dimension  82
  6.2  Self-Consistent Potentials and the Dielectric Function  83

Chapter 7  Scattering Theory  89
  7.1  General Considerations—Drude Theory  89
  7.2  Scattering Probability from the Golden Rule  94
    7.2.1  Impurity Scattering  94
    7.2.2  Phonon Scattering  96
    7.2.3  Scattering by a δ-Shaped Potential  102
  7.3  Important Scattering Mechanisms in Silicon and Gallium Arsenide  103

Chapter 8  The Boltzmann Transport Equation  109
  8.1  Derivation  109
  8.2  Solutions of the Boltzmann Equation in the Relaxation Time Approximation  114
  8.3  Distribution Function and Current Density  121
  8.4  Effect of Temperature Gradients and Gradients of the Band Gap Energy  125
  8.5  Ballistic and Quantum Transport  127
  8.6  The Monte Carlo Method  129

Chapter 9  Generation-Recombination  135
  9.1  Important Matrix Elements  135
    9.1.1  Radiative Recombination  135
    9.1.2  Auger Recombination  139
  9.2  Quasi-Fermi Levels (Imrefs)  139
  9.3  Generation-Recombination Rates  140
  9.4  Rate Equations  144

Chapter 10  The Heterojunction Barrier  147
  10.1  Thermionic Emission of Electrons over Barriers  147
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2 Free Carrier Depletion of Semiconductor Layers</td>
<td>151</td>
</tr>
<tr>
<td>10.3 Connection Rules for the Potential at an Interface</td>
<td>153</td>
</tr>
<tr>
<td>10.4 Solution of Poisson’s Equation in the Presence of Free Charge Carriers</td>
<td>154</td>
</tr>
<tr>
<td>10.4.1 Classical Case</td>
<td>154</td>
</tr>
<tr>
<td>10.4.2 Quantum Mechanical Case</td>
<td>157</td>
</tr>
<tr>
<td>10.5 Pronounced Effects of Size Quantization and Heterolayer Boundaries</td>
<td>162</td>
</tr>
<tr>
<td>Chapter 11 The Device Equations of Shockley and Stratton</td>
<td>167</td>
</tr>
<tr>
<td>11.1 The Method of Moments</td>
<td>167</td>
</tr>
<tr>
<td>11.2 Moment for the Average Energy and Hot Electrons</td>
<td>170</td>
</tr>
<tr>
<td>11.2.1 Steady-State Considerations</td>
<td>171</td>
</tr>
<tr>
<td>11.2.2 Velocity Transients and Overshoot</td>
<td>175</td>
</tr>
<tr>
<td>11.2.3 Equation of Poisson and Carrier Velocity</td>
<td>176</td>
</tr>
<tr>
<td>Chapter 12 Numerical Device Simulations</td>
<td>181</td>
</tr>
<tr>
<td>12.1 General Considerations</td>
<td>181</td>
</tr>
<tr>
<td>12.2 Numerical Solution of the Shockley Equations</td>
<td>184</td>
</tr>
<tr>
<td>12.2.1 Numerical Simulation Beyond the Shockley Equations</td>
<td>188</td>
</tr>
<tr>
<td>Chapter 13 Diodes</td>
<td>193</td>
</tr>
<tr>
<td>13.1 Schottky Barriers—Ohmic Contacts</td>
<td>194</td>
</tr>
<tr>
<td>13.2 The $p$–$n$ Junction</td>
<td>201</td>
</tr>
<tr>
<td>13.2.1 Introduction and Basic Physics</td>
<td>201</td>
</tr>
<tr>
<td>13.2.2 Basic Equations for the Diode Current</td>
<td>207</td>
</tr>
<tr>
<td>13.2.3 Steady-State Current in Forward Bias</td>
<td>211</td>
</tr>
<tr>
<td>13.2.4 AC Carrier Concentrations and Current in Forward Bias</td>
<td>213</td>
</tr>
<tr>
<td>13.2.5 Short Diodes</td>
<td>215</td>
</tr>
<tr>
<td>13.2.6 Recombination in Depletion Region</td>
<td>216</td>
</tr>
<tr>
<td>13.2.7 Extreme Forward Bias</td>
<td>219</td>
</tr>
<tr>
<td>13.2.8 Asymmetric Junctions</td>
<td>221</td>
</tr>
<tr>
<td>13.2.9 Effects in Reverse Bias</td>
<td>223</td>
</tr>
<tr>
<td>13.3 High-Field Effects in Semiconductor Junctions</td>
<td>226</td>
</tr>
<tr>
<td>13.3.1 Role of Built-In Fields in Electron Heating and $p$–$n$ Junction Currents</td>
<td>226</td>
</tr>
</tbody>
</table>
Chapter 14 Laser Diodes

14.1 Basic Geometry and Equations for Quantum Well Laser Diodes 248
14.2 Equations for Electronic Transport 250
14.3 Coupling of Carriers and Photons 253
14.4 Numerical Solutions of the Equations for Laser Diodes 257

Chapter 15 Transistors

15.1 Simple Models 266
15.1.1 Bipolar Transistors 266
15.1.2 Field Effect Transistors 272
15.2 Effects of Reduction in Size, Short Channels 278
15.2.1 Scaling Down Devices 278
15.2.2 Short Gates and Threshold Voltage 279
15.3 Hot Electron Effects 281
15.3.1 Mobility in Small MOSFETs 281
15.3.2 Impact Ionization, Hot Electron Degradation 284

Chapter 16 Future Semiconductor Devices

16.1 New Types of Devices 291
16.1.1 Extensions of Conventional Devices 291
16.1.2 Future Devices for Ultrahigh Integration 293
16.2 Challenges in Nanostructure Simulation 295
16.2.1 Nanostructures in Existing Semiconductor Devices 296
16.2.2 Quantum Dots 297
16.2.3 Structural, Atomistic, and Many-Body Effects 297

Appendix A Tunneling and the Golden Rule 301

Appendix B The One Band Approximation 305