Index

3G LTE, 15
3GPP model, 235
802.11n models, 228
802.16 models, 231

access point, 15
accuracy, 175
 of channel, 146, 168, 180, 189
adaptive modulation and coding, 119
Alamouti, 240
Alamouti STBC, 123, 142
 diversity Gain, 126
 full diversity Gain, 126
 full rate, 124
 in MIMO systems, array gain, 127
 matrix code, 124
 orthogonality, 125
angle in azimuth, 195
angle of arrival, 179, 180, 203–4,
 208
 nonuniform, 211
angle of departure, 179–80
angle of elevation, 195
angular patterns, 197
angular profile, 232
angular spread, 229
antenna, 145
 design, 205
 directional, 195
 examples, 221
 gain, 148
 isotropic, 194
 omnidirectional, 195
antenna patterns, 197
antennas
 multiple, 167
array antenna
 compact, 214
 topologies, 207, 209
array gain, 32, 73
time-invariant SIMO channel, 32
autocorrelation, 156–7
correlated samples, 158
of frequency, 164
rate of change, 157
time based filtering, 158
autocorrelation and Doppler spread, 157
AWGN channel, 28, 29
azimuth
 nonuniform AOA, 211
azimuth pattern, 197
bandwidth
 antenna gain, 206
 antenna impedance, 198
 bandwidth and data rate, 145
beamforming, 108, 244
eigenmode beamforming, 110
eigenmode transmission, 114, 141
gain, 4
beamforming (Continued)
maximal eigenmode beamforming, 110, 113, 141
maximal ratio combining, 112
principle of, 108
receive beamforming, 110, 112, 141
receive matched filtering, 112, 141
transmit beamforming, 110–111, 141
transmit matched filtering, 112, 141
bit rate, 21
body area networks, 244
branch power ratio, 215, 217, 221
broadcasting, 240
capacity
definition, 20
fast fading channel with CSIT distribution, 48
fast fading MIMO channel with CSIT distribution, 51–2, 72
fast fading SIMO channel with CSIT Distribution, 50, 69
fast fading SISO channel with CSIT distribution, 49, 69
for a Rayleigh i.i.d. MIMO channel, 52
for general MIMO channel distribution, 51
for i.i.d. Rayleigh fading, 51
of MIMO channels, 17
time-invariant channel, 28
time-invariant MIMO channel, 34, 38, 44, 72
time-invariant MISO channel, 32, 34, 71
time-invariant SIMO channel, 30, 32, 69
time-invariant SISO channel, 29–30, 69
with outage, 56–7
capacity, 146, 178, 186
antenna effect on, 214, 217
capacity with outage, 58
slow fading MIMO channel with CSIT distribution, 65
slow fading SISO channel with CSIT distribution, 61
channel
antenna impact on, 217
impact of antenna on, 212
impulse response, 173
channel clusters, 175
channel coding, 19
channel coefficient, 146
channel conditioning, 42
channel energy, 36
channel fading, 24
fast fading, 25
slow fading, 25
channel matrix rank, 36
channel models, 145
channel reciprocity, 26
channel state information, 18, 24, 26
at receiver (CSIT), 26
at transmitter (CSIT), 26
channel with memory, 157
channels
MIMO, 145
SISO, 146
Cholesky decomposition, 84
Cholesky factorisation, 182
classical Doppler spectrum of Rayleigh channel, 155
code, 19
coherece bandwidth, 163–4
coloured noise, 83
communications
mobile, wireless, 1
compact antennas
mutual coupling effect, 214
compact linear arrays, 209
complex baseband representation, 19
complex circularly symmetric random variable, 247
distribution, probability density function, 247
complex Gaussian random variable, 247
complex circularly symmetric random variable, 247
complex Gaussian samples, 159
complex random variable, 150
complexity, 146, 180
complexity of channel model, 167, 170, 174, 189
correlation, 158
 angular, 209
 impact on capacity, 217
 polarisation, 209
 spatial, 207–8
correlation based models, 168, 180–181
correlation matrix, 181, 184
cross polar ratio, 201
cumulative distribution, 177
D-Blast, 133, 142
 diagonal decoding, 134
 diagonal encoding, 133
 error propagation, 136
 numerical evaluations, 136
 outage probability, 135
 performance gains, 135
 soft estimates, 134
 successive interference cancellation, 134
degradation of antenna efficiency, 214
degradation of capacity, 216
delay, 157
delay paths, 161–2
delay spread, 164, 229
demodulation algorithm., 167
deterministic, 169
deterministic models, 168
diffraction, 178
diffuse scattering, 175, 176
digital communication systems, 18
 background, 18
 channel coding, 19
 code, 19
 codeword, 19
 complex baseband representation, 19
 constellation, 19
 maximum likelihood decoder (SISO channel), 19
 modulation, 19
 source coding, 18
 symbol, 19
digital video broadcasting, 240
dipole antenna, 195, 205, 210
directivity of antenna, 195
diversity, 3–4, 59
diversity gain, 67, 73
Doppler shift, 152
Doppler spread/spectrum, 153
DVB, 240
efficiency
degradation of, 214
efficiency of antenna, 196, 205
eigenchannel, 37
eigenmode, 35
eigenmode beamforming, 110
eigenmode transmission, 39, 114, 141
 channel conditioning, 41
 performance, 41, 118
 performance at low and high SNR, 41
 performance wrt channel matrix rank, 41
 post-processing SNR, 116, 141
 waterfilling, 117
eigenvalue, 182
 comparison for Kronecker, 185
eigenvalue decomposition, 187
ergodic capacity, 49
 fast fading channel with CSIT distribution, 49
 fast fading MIMO channel with CSIT Distribution, 51
 fast fading SIMO channel with CSIT distribution, 50
 fast fading SISO channel with CSIT distribution, 50
ergodic stochastic process, 249
experimental plane-wave based method, 219
fading
 large scale, 146
 narrowband and wideband, 162
 small scale, 146
fast fading, 25
fast fading channel
 with CSIT distribution, 48–9
fast fading MIMO channel
 performance, 74
fast fading MIMO Channel with CSIT distribution
 ergodic capacity, 72
fast fading MIMO channel with CSIT distribution, 51
fast fading MIMO channel with CSIT distribution, 51–2
 antenna number effect, 53
 channel conditioning, 52
 high SNR, 53
 low SNR, 55
 performance, 52
fast fading MISO channel with CSIT distribution, 51
fast fading SIMO channel with CSIT distribution, 50
fast fading SIMO channel with CSIT distribution
 ergodic capacity, 69
fast fading SISO channel with CSIT distribution, 49
fast fading SISO channel with CSIT distribution
 ergodic capacity, 69
femtocell, 244
filtering
 for Doppler spectrum, 158
Fourier transform, 156, 159–60, 162–3, 165
free space propagation, 148
frequency based filtering, 159
frequency domain, 163
frequency selective channel, 163
Friis equation, 148

gain of antenna, 195
gaussian distribution, 149–50
geometric based models, 168, 171
geometric ray optics, 169
geometric stochastic models, 171

hard estimate, 80
HF band, 241

impedance
 mutual, 212
impedance matching, 198, 205
impedance of antenna, 198
independent identically distributed, 167
independent identically distributed channels, 160
inter-stream interference, 79
interdependence between MIMO paths, 168
isotropic radiator, 194
keyhole effect, 178
Kronecker, 227
Kronecker assumptions, 183–4
Kronecker model, 183
Kronecker product, 183
Laplacian angle of arrival, 232
line of sight propagation, 169
linear Receivers, 79
link-level models, 226
log normal distribution, 147
matched filter (MF), 31–2, 80
 expression (block-wise), 139
 expression (stream-wise), 139
maximal ratio combining (MRC), 83
 MIMO system, 84
 post-processing SNR (stream-wise expression), 139
 SIMO capacity, 83
 SIMO system, 80
 SIMO system with coloured noise, 83
mathematical modelling approach, 227
matrix inversion lemma, 250
maximal eigenmode beamforming, 110, 113, 141
 post-processing SNR, 114, 141
maximal ratio combining, 112
maximum likelihood decoder (SISO channel), 19
maximum ratio combining (MRC), 31–2, 83
mean effective gain, 202, 224
MIMO
 history, 14
Index

purpose, 7
uses, 7, 15
MIMO Rayleigh fading model, 248
MIMO antenna, 193
MIMO receivers, 76
MMSE receiver, 92
bias, 93
expression (block-wise expression), 139
expression (stream-wise expression), 139
post-processing SNR (block-wise expression), 139
post-processing SNR (stream-wise expression), 139
MMSE-SIC
expression (stream-wise expression), 139
post-processing SNR (stream-wise expression), 139
modulation, 19
Monte Carlo, 157
MPCs, 233
multipath, 146
multipath components, 233
multipath delay, 160
multipath propagation, 169
multiple access
frequency division, 2
time division, 2
multiplexing, 7
multiplexing gain, 42, 73
mutual coupling, 212, 214
mutual impedance, 212
narrowband channels, 160
narrowband MIMO model, 27
noise enhancement, 91
OFDM, 240
Orthogonal Projection Matrix, 249
orthogonal space–time codes, 130, 142
outage, 58
outage probability, 57–8
for i.i.d transmission, 65
for i.i.d. transmission, 63
general MIMO channel distribution, 64
Rayleigh i.i.d MIMO channel, 65
slow fading channel with CSIT distribution, 56
slow fading MIMO channel with CSIT distribution, 64–5, 72
slow fading MISO channel with CSIT distribution, 63, 71
slow fading SIMO channel with CSIT distribution, 62, 69
slow fading SISO channel with CSIT distribution, 61, 69
path loss, 146, 148
path loss exponent, 148
phase weights, 4, 6, 9
planar antenna, 221
planar topology, 209
polarisation, 166
polarisation of antenna, 199–200
polarisation of environment, 200
power delay profile, 163
quadrifilar helix antenna, 221
quasi-orthogonal space–time codes, 130, 142
radiation resistance, 205
radio access technologies, 235
random or stochastic process, 248
independent random processes, 248
ray based modelling approach, 227
Rayleigh distance, 196
Rayleigh distribution, 150
receive beamforming, 110, 112, 141
receive diversity, 62
receive matched filter (MF), 31
receive matched filtering, 112
post-processing SNR, 141
receive maximum ratio combining (MRC), 31
receivers, 76
hard estimate, 80
inter-stream interference, 79
matched filter, 80
ML receiver, 78
MMSE receiver, 92
performance, 103, 140
Receivers (Continued)
soft estimate, 80
Successive interference cancellation, 97
unbiased MMSE receiver, 93
unequal transmit power allocation, 77
V-Blast, 98
zero forcing receiver, 86
reflection and scattering, 153
reflection from ground, 148
Ricean distribution, 150
RMS delay spread, 229
router, 15

Saleh-Valenzuela model, 228
satellite communications, 242
scattering, 149
shadowing, 147
shadowing loss, 149
signal to noise ratio, 214, 217
singular value decomposition, 34
slow fading, 25
slow fading channel with CSIT distribution, 56
capacity with outage, 57
outage probability, 57
outage, 58
slow fading MIMO channel performance, 74
slow fading MIMO channel with CSIT distribution
outage probability, 72
slow fading MIMO channel with CSIT distribution, 64–5
capacity with outage, 65
performance, 65
slow fading MISO channel with CSIT distribution
outage probability, 71
transmit diversity, 62
slow fading SIMO channel with CSIT distribution
outage probability, 62, 69
receive diversity, 62
slow fading SISO channel with CSIT distribution, 60
outage probability, 61, 69
soft estimate, 80
source coding, 18
space–time block codes, 122, 142
Alamouti STBC, 142
code rate, 129
full diversity, 129
full rate, 129
matrix code, 128
orthogonal design, 129
quasi-orthogonal design, 129
space-time block codes, 122
Alamouti STBC, 123
stationary stochastic process, 248
stochastic, 146
stochastic models, 168
stream of data, 76
subchannel, 37
successive interference cancellation, 97
ordered SIC receiver, 101
symbol, 19
symbol time, 162
system-level models, 226
tap-delay lines, 228
temporal variation, 152
terminal antennas, 221
time based filtering, 158
time-invariant channel, 28
MISO channel, 32
SIMO channel, 30
SISO channel, 29
time-invariant MIMO channel, 34
as a set of parallel independent AWGN channels, 36
eigenchannel, 37
eigenmode, 35
eigenmode transmission, 39
maximal achievable rate, 43
performance, 74
subchannel, 37
waterfilling, 38
time-invariant MISO channel, 32
 equivalent SISO channel, 32
time-invariant SIMO channel, 30
 equivalent SISO channel, 31
time-invariant SISO channel, 29
transmit beamforming, 110–111,
 141
transmit diversity, 62
transmit matched filter (MF), 32
transmit matched filtering, 112, 141
 post-processing SNR, 112, 141
transmit maximum ratio combining (MRC),
 32
transmitted signal, 146

ultra wideband, 242
unbiased MMSE receiver, 93
 post-processing SNR (block-wise
 expression), 94–6
 post-processing SNR (stream-wise
 expression), 96

V-Blast, 98
 Capacity achieving structure, 99
vehicle communications, 244

waterfilling, 38, 117
 asymptotic behaviour, 41
 numerical example, 39
Weibull distribution, 243
Weichselberger model, 186
wideband channels, 160
WiMaX, 15

Z-parameters, 213
zero forcing receiver, 86
 expression (block-wise expression), 139
 expression (stream-wise expression), 139
 noise enhancement, 91
 post-processing SNR (block-wise
 expression), 88, 139
 post-processing SNR (stream-wise
 expression), 90, 139