Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment xiii</td>
</tr>
<tr>
<td>Biographies xv</td>
</tr>
<tr>
<td>Preface xvii</td>
</tr>
<tr>
<td>1 Introduction to High Performance Drives 1</td>
</tr>
<tr>
<td>1.1 Preliminary Remarks 1</td>
</tr>
<tr>
<td>1.2 General Overview of High Performance Drives 6</td>
</tr>
<tr>
<td>1.3 Challenges and Requirements for Electric Drives for Industrial Applications</td>
</tr>
<tr>
<td>1.3.1 Power Quality and LC Resonance Suppression 11</td>
</tr>
<tr>
<td>1.3.2 Inverter Switching Frequency 12</td>
</tr>
<tr>
<td>1.3.3 Motor Side Challenges 12</td>
</tr>
<tr>
<td>1.3.4 High dv/dt and Wave Reflection 12</td>
</tr>
<tr>
<td>1.3.5 Use of Inverter Output Filters 13</td>
</tr>
<tr>
<td>1.4 Organization of the Book 13</td>
</tr>
<tr>
<td>References 16</td>
</tr>
<tr>
<td>2 Mathematical and Simulation Models of AC Machines 19</td>
</tr>
<tr>
<td>2.1 Preliminary Remarks 19</td>
</tr>
<tr>
<td>2.2 DC Motors 19</td>
</tr>
<tr>
<td>2.2.1 Separately Excited DC Motor Control 20</td>
</tr>
<tr>
<td>2.2.2 Series DC Motor Control 22</td>
</tr>
<tr>
<td>2.3 Squirrel Cage Induction Motor 25</td>
</tr>
<tr>
<td>2.3.1 Space Vector Representation 25</td>
</tr>
<tr>
<td>2.3.2 Clarke Transformation (ABC to αβ) 26</td>
</tr>
<tr>
<td>2.3.3 Park Transformation (αβ to dq) 29</td>
</tr>
<tr>
<td>2.3.4 Per Unit Model of Induction Motor 30</td>
</tr>
<tr>
<td>2.3.5 Double Fed Induction Generator (DFIG) 32</td>
</tr>
<tr>
<td>2.4 Mathematical Model of Permanent Magnet Synchronous Motor 35</td>
</tr>
<tr>
<td>2.4.1 Motor Model in dq Rotating Frame 36</td>
</tr>
<tr>
<td>2.4.2 Example of Motor Parameters for Simulation 38</td>
</tr>
<tr>
<td>2.4.3 PMSM Model in Per Unit System 38</td>
</tr>
<tr>
<td>2.4.4 PMSM Model in α–β (x–y)-Axis 40</td>
</tr>
<tr>
<td>2.5 Problems 42</td>
</tr>
<tr>
<td>References 42</td>
</tr>
</tbody>
</table>
3 Pulse Width Modulation of Power Electronic DC-AC Converter

3.1 Preliminary Remarks

3.2 Classification of PWM Schemes for Voltage Source Inverters

3.3 Pulse Width Modulated Inverters

3.3.1 Single-Phase Half-bridge Inverters

3.3.2 Single-Phase Full-bridge Inverters

3.4 Three-phase PWM Voltage Source Inverter

3.4.1 Carrier-based Sinusoidal PWM

3.4.2 Third-harmonic Injection Carrier-based PWM

3.4.3 Matlab/Simulink Model for Third Harmonic Injection PWM

3.4.4 Carrier-based PWM with Offset Addition

3.4.5 Space Vector PWM

3.4.6 Discontinuous Space Vector PWM

3.4.7 Matlab/Simulink Model for Space Vector PWM

3.4.8 Space Vector PWM in Over-modulation Region

3.4.9 Matlab/Simulink Model to Implement Space Vector PWM in Over-modulation Regions

3.4.10 Harmonic Analysis

3.4.11 Artificial Neural Network-based PWM

3.4.12 Matlab/Simulink Model of Implementing ANN-based SVPWM

3.5 Relationship between Carrier-based PWM and SVPWM

3.5.1 Modulating Signals and Space Vectors

3.5.2 Relationship between Line-to-line Voltages and Space Vectors

3.5.3 Modulating Signals and Space Vector Sectors

3.6 Multi-level Inverters

3.6.1 Diode Clamped Multi-level Inverters

3.6.2 Flying Capacitor Type Multi-level Inverter

3.6.3 Cascaded H-Bridge Multi-level Inverter

3.7 Impedance Source or Z-source Inverter

3.7.1 Circuit Analysis

3.7.2 Carrier-based Simple Boost PWM Control of a Z-source Inverter

3.7.3 Carrier-based Maximum Boost PWM Control of a Z-source Inverter

3.7.4 Matlab/Simulink Model of Z-source Inverter

3.8 Quasi Impedance Source or qZSI Inverter

3.8.1 Matlab/Simulink Model of qZ-source Inverter

3.9 Dead Time Effect in a Multi-phase Inverter

3.10 Summary

3.11 Problems

References

4 Field Oriented Control of AC Machines

4.1 Introduction

4.2 Induction Machines Control
4.2.1 Control of Induction Motor using V/f Method 140
4.2.2 Vector Control of Induction Motor 143
4.2.3 Direct and Indirect Field Oriented Control 148
4.2.4 Rotor and Stator Flux Computation 149
4.2.5 Adaptive Flux Observers 150
4.2.6 Stator Flux Orientation 152
4.2.7 Field Weakening Control 152
4.3 Vector Control of Double Fed Induction Generator (DFIG) 153
4.3.1 Introduction 153
4.3.2 Vector Control of DFIG Connected with the Grid (ab Model) 155
4.3.3 Variables Transformation 156
4.3.4 Simulation Results 159
4.4 Control of Permanent Magnet Synchronous Machine 160
4.4.1 Introduction 160
4.4.2 Vector Control of PMSM in dq Axis 160
4.4.3 Vector Control of PMSM in α-β Axis using PI Controller 164
4.4.4 Scalar Control of PMSM 166

5 Direct Torque Control of AC Machines 171
5.1 Preliminary Remarks 171
5.2 Basic Concept and Principles of DTC 172
5.2.1 Basic Concept 172
5.2.2 Principle of DTC 173
5.3 DTC of Induction Motor with Ideal Constant Machine Model 179
5.3.1 Ideal Constant Parameter Model of Induction Motors 179
5.3.2 Direct Torque Control Scheme 182
5.3.3 Speed Control with DTC 184
5.3.4 Matlab/Simulink Simulation of Torque Control and Speed Control with DTC 185
5.4 DTC of Induction Motor with Consideration of Iron Loss 199
5.4.1 Induction Machine Model with Iron Loss Consideration 199
5.4.2 Matlab/Simulink Simulation of the Effects of Iron Losses in Torque Control and Speed Control 202
5.4.3 Modified Direct Torque Control Scheme for Iron Loss Compensation 213
5.5 DTC of Induction Motor with Consideration of both Iron Losses and Magnetic Saturation 217
5.5.1 Induction Machine Model with Consideration of Iron Losses and Magnetic Saturation 217
5.5.2 Matlab/Simulink Simulation of Effects of both Iron Losses and Magnetic Saturation in Torque Control and Speed Control 218
5.6 Modified Direct Torque Control of Induction Machine with Constant Switching Frequency 233
5.7 Direct Torque Control of Sinusoidal Permanent Magnet Synchronous Motors (SPMSM) 233
 5.7.1 Introduction 233
 5.7.2 Mathematical Model of Sinusoidal PMSM 234
 5.7.3 Direct Torque Control Scheme of PMSM 236
 5.7.4 Matlab/Simulink Simulation of SPMSM with DTC 236
References 253

6 Non-Linear Control of Electrical Machines Using Non-Linear Feedback 255
 6.1 Introduction 255
 6.2 Dynamic System Linearization using Non-Linear Feedback 256
 6.3 Non-Linear Control of Separately Excited DC Motors 258
 6.3.1 Matlab/Simulink Non-Linear Control Model 258
 6.3.2 Non-Linear Control Systems 259
 6.3.3 Speed Controller 260
 6.3.4 Controller for Variable m 261
 6.3.5 Field Current Controller 262
 6.3.6 Simulation Results 262
 6.4 Multiscalar model (MM) of Induction Motor 262
 6.4.1 Multiscalar Variables 262
 6.4.2 Non-Linear Linearization of Induction Motor Fed by Voltage Controlled VSI 264
 6.4.3 Design of System Control 266
 6.4.4 Non-Linear Linearization of Induction Motor Fed by Current Controlled VSI 267
 6.4.5 Stator Oriented Non-Linear Control System (based on Ψ_s, i_s) 270
 6.4.6 Rotor-Stator Fluxes-based Model 271
 6.4.7 Stator Oriented Multiscalar Model 272
 6.4.8 Multiscalar Control of Induction Motor 274
 6.4.9 Induction Motor Model 275
 6.4.10 State Transformations 275
 6.4.11 Decoupled IM Model 277
 6.5 MM of Double Fed Induction Machine (DFIM) 278
 6.6 Non-Linear Control of Permanent Magnet Synchronous Machine 281
 6.6.1 Non-Linear Control of PMSM for a dq Motor Model 283
 6.6.2 Non-Linear Vector Control of PMSM in $\alpha-\beta$ Axis 285
 6.6.3 PMSM Model in $\alpha-\beta$ (x-y) Axis 285
 6.6.4 Transformations 285
 6.6.5 Control System 288
 6.6.6 Simulation Results 288
 6.7 Problems 289
References 290
7 Five-Phase Induction Motor Drive System 293

7.1 Preliminary Remarks 293
7.2 Advantages and Applications of Multi-Phase Drives 294
7.3 Modeling and Simulation of a Five-Phase Induction Motor Drive 295
 7.3.1 Five-Phase Induction Motor Model 295
 7.3.2 Five-Phase Two-Level Voltage Source Inverter Model 304
 7.3.3 PWM Schemes of a Five-Phase VSI 328
7.4 Indirect Rotor Field Oriented Control of Five-Phase Induction Motor 344
 7.4.1 Matlab/Simulink Model of Field-Oriented Control of Five-Phase Induction Machine 347
7.5 Field Oriented Control of Five-Phase Induction Motor with Current Control in the Synchronous Reference Frame 348
7.6 Model Predictive Control (MPC) 352
 7.6.1 MPC Applied to a Five-Phase Two-Level VSI 354
 7.6.2 Matlab/Simulink of MPC for Five-Phase VSI 356
 7.6.3 Using Eleven Vectors with $\gamma = 0$ 356
 7.6.4 Using Eleven Vectors with $\gamma = 1$ 359
7.7 Summary 359
7.8 Problems 359
References 361

8 Sensorless Speed Control of AC Machines 365

8.1 Preliminary Remarks 365
8.2 Sensorless Control of Induction Motor 365
 8.2.1 Speed Estimation using Open Loop Model and Slip Computation 366
 8.2.2 Closed Loop Observers 366
 8.2.3 MRAS (Closed-loop) Speed Estimator 375
 8.2.4 The Use of Power Measurements 378
8.3 Sensorless Control of PMSM 380
 8.3.1 Control system of PMSM 382
 8.3.2 Adaptive Backstepping Observer 383
 8.3.3 Model Reference Adaptive System for PMSM 385
 8.3.4 Simulation Results 388
8.4 MRAS-based Sensorless Control of Five-Phase Induction Motor Drive 388
 8.4.1 MRAS-based Speed Estimator 389
 8.4.2 Simulation Results 396
References 396

9 Selected Problems of Induction Motor Drives with Voltage Inverter and Inverter Output Filters 401

9.1 Drives and Filters – Overview 401
9.2 Three-Phase to Two-Phase Transformations 403
9.3 Voltage and Current Common Mode Component 404
 9.3.1 Matlab/Simulink Model of Induction Motor Drive with PWM Inverter and Common Mode Voltage 405
9.4 Induction Motor Common Mode Circuit 408
9.5 Bearing Current Types and Reduction Methods 410
 9.5.1 Common Mode Choke 412
 9.5.2 Common Mode Transformers 414
 9.5.3 Common Mode Voltage Reduction by PWM Modifications 415
9.6 Inverter Output Filters 420
 9.6.1 Selected Structures of Inverter Output Filters 420
 9.6.2 Inverter Output Filters Design 425
 9.6.3 Motor Choke 435
 9.6.4 Matlab/Simulink Model of Induction Motor Drive with PWM Inverter and Differential Mode (Normal Mode) LC Filter 437
9.7 Estimation Problems in the Drive with Filters 440
 9.7.1 Introduction 440
 9.7.2 Speed Observer with Disturbances Model 442
 9.7.3 Simple Observer based on Motor Stator Models 445
9.8 Motor Control Problems in the Drive with Filters 447
 9.8.1 Introduction 447
 9.8.2 Field Oriented Control 449
 9.8.3 Non-Linear Field Oriented Control 453
 9.8.4 Non-Linear Multiscalar Control 457
9.9 Predictive Current Control in the Drive System with Output Filter 461
 9.9.1 Control System 461
 9.9.2 Predictive Current Controller 464
 9.9.3 EMF Estimation Technique 467
9.10 Problems 471
9.11 Questions 475
References 475

Index 479