Contents

Preface xvii
Acknowledgments xix
About the Authors xxi
List of Abbreviations xxiii

1 Introduction 1
1.1 Outline of the Book 1
1.2 Basics of Power Processing 4
 1.2.1 AC-DC Conversion 4
 1.2.2 DC-DC Conversion 14
 1.2.3 DC-AC Conversion 18
 1.2.4 AC-AC Conversion 21
1.3 Hardware Issues 24
 1.3.1 Isolation 25
 1.3.2 Power Stages 26
 1.3.3 Output Filters 33
 1.3.4 Voltage and Current Sensing 35
 1.3.5 Signal Conditioning 36
 1.3.6 Protection 38
 1.3.7 Central Controller 38
 1.3.8 Test Equipment 42
1.4 Wind Power Systems 44
 1.4.1 Basics of Wind Power Generation 44
 1.4.2 Wind Turbines 45
 1.4.3 Generators and Topologies 48
 1.4.4 Control of Wind Power Systems 51
1.5 Solar Power Systems 53
 1.5.1 Introduction to Solar Power 53
 1.5.2 Processing of Solar Power 54
1.6 Smart Grid Integration 55
 1.6.1 Operation Paradigms of Power Systems 55
 1.6.2 Introduction to Smart Grids 56
 1.6.3 Requirements for Smart Grid Integration 59
Preliminaries

2.1 Power Quality Issues
2.1.1 Introduction
2.1.2 Degradation Mechanisms of Voltage Quality
2.1.3 Role of Inverter Output Impedance
2.2 Repetitive Control
2.2.1 Basic Principles
2.2.2 Poles of the Internal Model \(M(s) \)
2.2.3 Selection of the Delay in the Internal Model
2.3 Reference Frames
2.3.1 Natural (abc) Frame
2.3.2 Stationary Reference (αβ) Frame
2.3.3 Synchronously Rotating Reference (dq) Frame
2.3.4 The Case with Phase Sequence acb

PART I POWER QUALITY CONTROL

3 Current \(H^\infty \) Repetitive Control
3.1 System Description
3.2 Controller Design
3.2.1 State-space Model of the Control Plant \(P \)
3.2.2 Formulation of the Standard \(H^\infty \) Problem
3.2.3 Evaluation of the System Stability
3.3 Design Example
3.4 Experimental Results
3.4.1 Synchronisation Process
3.4.2 Steady-state Performance
3.4.3 Transient Response (without a Load)
3.5 Summary

4 Voltage and Current \(H^\infty \) Repetitive Control
4.1 System Description
4.2 Modelling of an Inverter
4.3 Controller Design
4.3.1 Formulation of the \(H^\infty \) Control Problem
4.3.2 Realisation of the Generalised Plant
4.3.3 State-space Realisation of \(T_{ew} \)
4.3.4 State-space Realisation of \(T_{ba} \)
4.4 Design Example
4.5 Simulation Results
4.5.1 Nominal Responses
4.5.2 Response to Load Changes
4.5.3 Response to Grid Distortions
4.6 Summary
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Voltage H^∞ Repetitive Control with a Frequency-adaptive Mechanism</td>
<td>109</td>
</tr>
<tr>
<td>5.1</td>
<td>System Description</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>Controller Design</td>
<td>110</td>
</tr>
<tr>
<td>5.2.1</td>
<td>State-space Model of the Control Plant P</td>
<td>111</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Frequency-adaptive Internal Model M</td>
<td>112</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Formulation of the Standard H^∞ Problem</td>
<td>113</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Evaluation of System Stability</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>Design Example</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental Results</td>
<td>117</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Steady-state Performance in the Stand-alone Mode</td>
<td>117</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Steady-state Performance in the Grid-connected Mode</td>
<td>119</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Transient Response: without a Local Load</td>
<td>120</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Response to Variations of the Grid Frequency</td>
<td>120</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
<td>126</td>
</tr>
<tr>
<td>6</td>
<td>Cascaded Current-Voltage H^∞ Repetitive Control</td>
<td>127</td>
</tr>
<tr>
<td>6.1</td>
<td>Operation Modes in Microgrids</td>
<td>127</td>
</tr>
<tr>
<td>6.2</td>
<td>Control Scheme</td>
<td>129</td>
</tr>
<tr>
<td>6.3</td>
<td>Design of the Voltage Controller</td>
<td>131</td>
</tr>
<tr>
<td>6.3.1</td>
<td>State-space Model of the Plant P_u</td>
<td>131</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Formulation of the Standard H^∞ Problem</td>
<td>132</td>
</tr>
<tr>
<td>6.4</td>
<td>Design of the Current Controller</td>
<td>133</td>
</tr>
<tr>
<td>6.4.1</td>
<td>State-space Model of the Plant P_i</td>
<td>133</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Formulation of the Standard H^∞ Problem</td>
<td>134</td>
</tr>
<tr>
<td>6.5</td>
<td>Design Example</td>
<td>134</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Design of the H^∞ Voltage Controller</td>
<td>135</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Design of the H^∞ Current Controller</td>
<td>136</td>
</tr>
<tr>
<td>6.6</td>
<td>Experimental Results</td>
<td>136</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Steady-state Performance in the Stand-alone Mode</td>
<td>136</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Steady-state Performance in the Grid-connected Mode</td>
<td>138</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Transient Performance</td>
<td>144</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Seamless Transfer of the Operation Mode</td>
<td>145</td>
</tr>
<tr>
<td>6.7</td>
<td>Summary</td>
<td>147</td>
</tr>
<tr>
<td>7</td>
<td>Control of Inverter Output Impedance</td>
<td>149</td>
</tr>
<tr>
<td>7.1</td>
<td>Inverters with Inductive Output Impedances (L-inverters)</td>
<td>149</td>
</tr>
<tr>
<td>7.2</td>
<td>Inverters with Resistive Output Impedances (R-inverters)</td>
<td>150</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Controller Design</td>
<td>150</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Stability Analysis</td>
<td>151</td>
</tr>
<tr>
<td>7.3</td>
<td>Inverters with Capacitive Output Impedances (C-inverters)</td>
<td>152</td>
</tr>
<tr>
<td>7.4</td>
<td>Design of C-inverters to Improve the Voltage THD</td>
<td>153</td>
</tr>
<tr>
<td>7.4.1</td>
<td>General Case</td>
<td>153</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Special Case I: to Minimise the 3rd and 5th Harmonic Components</td>
<td>155</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Special Case II: to Minimise the 3rd Harmonic Component</td>
<td>156</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Special Case III: to Minimise the 5th Harmonic Component</td>
<td>157</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>Simulation Results for R-, L- and C-inverters</td>
<td>157</td>
</tr>
<tr>
<td>7.5.1</td>
<td>The Case with $L = 2.35$ mH</td>
<td>158</td>
</tr>
<tr>
<td>7.5.2</td>
<td>The Case with $L = 0.25$ mH</td>
<td>158</td>
</tr>
<tr>
<td>7.6</td>
<td>Experimental Results for R-, L- and C-inverters</td>
<td>159</td>
</tr>
<tr>
<td>7.6.1</td>
<td>The Case with $L = 2.35$ mH</td>
<td>160</td>
</tr>
<tr>
<td>7.6.2</td>
<td>The Case with $L = 0.25$ mH</td>
<td>161</td>
</tr>
<tr>
<td>7.7</td>
<td>Impact of the Filter Capacitor</td>
<td>162</td>
</tr>
<tr>
<td>7.8</td>
<td>Summary</td>
<td>163</td>
</tr>
<tr>
<td>8</td>
<td>Bypassing Harmonic Current Components</td>
<td>165</td>
</tr>
<tr>
<td>8.1</td>
<td>Controller Design</td>
<td>166</td>
</tr>
<tr>
<td>8.2</td>
<td>Physical Interpretation of the Controller</td>
<td>167</td>
</tr>
<tr>
<td>8.3</td>
<td>Stability Analysis</td>
<td>169</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Without Consideration of the Sampling Effect</td>
<td>169</td>
</tr>
<tr>
<td>8.3.2</td>
<td>With Consideration of the Sampling Effect</td>
<td>170</td>
</tr>
<tr>
<td>8.4</td>
<td>Experimental Results</td>
<td>171</td>
</tr>
<tr>
<td>8.5</td>
<td>Summary</td>
<td>172</td>
</tr>
<tr>
<td>9</td>
<td>Power Quality Issues in Traction Power Systems</td>
<td>173</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>173</td>
</tr>
<tr>
<td>9.2</td>
<td>Description of the Topology</td>
<td>175</td>
</tr>
<tr>
<td>9.3</td>
<td>Compensation of Negative-sequence Currents, Reactive Power and Harmonic Currents</td>
<td>175</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Grid-side Currents before Compensation</td>
<td>175</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Compensation of Active and Reactive Power</td>
<td>178</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Compensation of Harmonic Currents</td>
<td>179</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Regulation of the DC-bus Voltage</td>
<td>179</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Implementation of the Compensation Strategy</td>
<td>179</td>
</tr>
<tr>
<td>9.4</td>
<td>Special Case: $\cos \theta = 1$</td>
<td>180</td>
</tr>
<tr>
<td>9.5</td>
<td>Simulation Results</td>
<td>181</td>
</tr>
<tr>
<td>9.5.1</td>
<td>The Case when $\cos \theta \neq 1$</td>
<td>181</td>
</tr>
<tr>
<td>9.5.2</td>
<td>The Case when $\cos \theta = 1$</td>
<td>181</td>
</tr>
<tr>
<td>9.6</td>
<td>Summary</td>
<td>184</td>
</tr>
<tr>
<td>10</td>
<td>Topology of a Neutral Leg</td>
<td>187</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td>10.2</td>
<td>Split DC Link</td>
<td>188</td>
</tr>
<tr>
<td>10.3</td>
<td>Conventional Neutral Leg</td>
<td>189</td>
</tr>
<tr>
<td>10.4</td>
<td>Independently-controlled Neutral Leg</td>
<td>190</td>
</tr>
<tr>
<td>10.5</td>
<td>Summary</td>
<td>191</td>
</tr>
<tr>
<td>11</td>
<td>Classical Control of a Neutral Leg</td>
<td>193</td>
</tr>
<tr>
<td>11.1</td>
<td>Mathematical Modelling</td>
<td>193</td>
</tr>
<tr>
<td>11.2</td>
<td>Controller Design</td>
<td>195</td>
</tr>
</tbody>
</table>

PART II NEUTRAL LINE PROVISION

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Topology of a Neutral Leg</td>
<td>187</td>
</tr>
<tr>
<td>11</td>
<td>Classical Control of a Neutral Leg</td>
<td>193</td>
</tr>
<tr>
<td>11.1</td>
<td>Mathematical Modelling</td>
<td>193</td>
</tr>
<tr>
<td>11.2</td>
<td>Controller Design</td>
<td>195</td>
</tr>
</tbody>
</table>
Contents

11.2.1 Design of the Current Controller K_i 196
11.2.2 Design of the Voltage Controller K_v 196

11.3 Performance Evaluation 199

11.4 Selection of the Components
11.4.1 Capacitor C_N 201
11.4.2 Inductor L_N 201

11.5 Simulation Results
11.5.1 With $i_N = 0$ 202
11.5.2 With a 50 Hz Neutral Current 203
11.5.3 With a 150 Hz Neutral Current 204
11.5.4 With a DC Neutral Current 205

11.6 Summary 205

12 H^∞ Voltage-Current Control of a Neutral Leg 207

12.1 Mathematical Modelling 207
12.2 Controller Design
12.2.1 State-space Realisation of P 211
12.2.2 State-space Realisation of the Closed-loop Transfer Function 213

12.3 Selection of Weighting Functions 214
12.4 Design Example 215
12.5 Simulation Results 216
12.6 Summary 217

13 Parallel PI Voltage-H^∞ Current Control of a Neutral Leg 219

13.1 Description of the Neutral Leg 219
13.2 Design of an H^∞ Current Controller
13.2.1 Controller Description 221
13.2.2 Formulation as a Standard H^∞ Problem 221
13.2.3 State-space Realisation of the Plant P 222
13.2.4 State-space Realisation of the Generalised Plant \tilde{P} 223
13.2.5 Design Example 224

13.3 Addition of a Voltage Control Loop 226
13.4 Experimental Results
13.4.1 Steady-state Performance 227
13.4.2 Transient Response to Changes in the Neutral Current 230

13.5 Summary 230

14 Applications in Single-phase to Three-phase Conversion 233

14.1 Introduction 233
14.2 The Topology under Consideration 236
14.3 Basic Analysis 237
14.4 Controller Design
14.4.1 Synchronisation Unit 239
14.4.2 Control of the Rectifier Leg 241
14.4.3 Control of the Neutral Leg 241
14.4.4 Control of the Phase Legs 242
PART III POWER FLOW CONTROL

15 Current Proportional–Integral Control 251
15.1 Control Structure 251
 15.1.1 In the Synchronously Rotating Reference (dq) Frame 251
 15.1.2 Equivalent Structure in the Natural (abc) Frame 253
15.2 Controller Implementation 254
15.3 Experimental Results 254
 15.3.1 Steady-state Performance 254
 15.3.2 Transient Performance 257
15.4 Summary 258

16 Current Proportional-Resonant Control 259
16.1 Proportional-resonant Controller 259
16.2 Control Structure 260
 16.2.1 In the Stationary Reference (αβ) Frame 260
 16.2.2 Equivalent Controller in the abc Frame 261
16.3 Controller Design 261
 16.3.1 Model of the Plant 261
 16.3.2 Design Example 262
16.4 Experimental Results 263
 16.4.1 Steady-state Performance 263
 16.4.2 Transient Performance 266
16.5 Summary 268

17 Current Deadbeat Predictive Control 269
17.1 Control Structure 269
17.2 Controller Design 269
17.3 Experimental Results 271
 17.3.1 Steady-state Performance 272
 17.3.2 Transient Performance 275
17.4 Summary 275

18 Synchronverters: Grid-friendly Inverters that Mimic
 Synchronous Generators 277
18.1 Mathematical Model of Synchronous Generators 278
 18.1.1 Electrical Part 278
 18.1.2 Mechanical Part 280
 18.1.3 Presence of a Neutral Line 281
Contents

18.2 Implementation of a Synchronverter 282
 18.2.1 Power Part 282
 18.2.2 Electronic Part 283

18.3 Operation of a Synchronverter 284
 18.3.1 Regulation of Real Power and Frequency Droop Control 284
 18.3.2 Regulation of Reactive Power and Voltage Droop Control 286

18.4 Simulation Results 287
 18.4.1 Under Different Grid Frequencies 288
 18.4.2 Under Different Load Conditions 288

18.5 Experimental Results 290
 18.5.1 Performance of Power Flow Control 290
 18.5.2 Loading Performance in the Stand-alone Mode 291
 18.5.3 Loading Performance in the Grid-connected Mode 294

18.6 Summary 296

19 Parallel Operation of Inverters 297
 19.1 Introduction 297
 19.2 Problem Description 299
 19.3 Power Delivered to a Voltage Source 300
 19.4 Conventional Droop Control 301
 19.4.1 For R-inverters 301
 19.4.2 For L-inverters 302
 19.4.3 For C-inverters 303
 19.4.4 Experimental Results with R-inverters 304
 19.5 Inherent Limitations of Conventional Droop Control 304
 19.5.1 Real Power Sharing 307
 19.5.2 Reactive Power Sharing 308
 19.6 Robust Droop Control of R-inverters 309
 19.6.1 Control Strategy 309
 19.6.2 Error Due to Inaccurate Voltage Measurements 311
 19.6.3 Voltage Regulation 311
 19.6.4 Error Due to the Global Settings for \(E^* \) and \(\omega^* \) 312
 19.6.5 Experimental Results 313
 19.7 Robust Droop Control of C-inverters 319
 19.7.1 Control Strategy 319
 19.7.2 Simulation Results 320
 19.7.3 Experimental Results 321
 19.8 Robust Droop Control of L-inverters 326
 19.8.1 Control Strategy 326
 19.8.2 Simulation Results 327
 19.8.3 Experimental Results 330
 19.9 Summary 330

20 Robust Droop Control with Improved Voltage Quality 335
 20.1 Control Strategy 335
 20.2 Experimental Results 337
Contents

20.2.1 1:1 Power Sharing 337
20.2.2 2:1 Power Sharing 340
20.3 Summary 346

21 Harmonic Droop Controller to Improve Voltage Quality 347
21.1 Model of an Inverter System 347
21.2 Power Delivered to a Current Source 349
21.3 Reduction of Harmonics in the Output Voltage 351
21.4 Simulation Results 353
21.5 Experimental Results 355
21.6 Summary 358

PART IV SYNCHRONISATION

22 Conventional Synchronisation Techniques 361
22.1 Introduction 361
22.2 Zero-crossing Method 362
22.3 Basic Phase-locked Loops (PLL) 363
22.4 PLL in the Synchronously Rotating Reference Frame (SRF-PLL) 364
22.5 Second-order Generalised Integrator-based PLL (SOGI-PLL) 366
22.6 Sinusoidal Tracking Algorithm (STA) 368
22.7 Simulation Results with SOGI-PLL and STA 369
 22.7.1 With a Noisy Distorted Signal having a Variable Frequency 369
 22.7.2 With a Noisy Distorted Square Wave 372
22.8 Experimental Results with SOGI-PLL and STA 372
 22.8.1 With a Voltage Taken from the Grid 372
 22.8.2 With a Noisy Distorted Signal having a Variable Frequency 375
 22.8.3 With a Noisy Distorted Square Wave 375
22.9 Summary 378

23 Sinusoid-locked Loops 379
23.1 Single-phase Synchronous Machine (SSM) Connected to the Grid 379
23.2 Structure of a Sinusoid-locked Loop (SLL) 380
23.3 Tracking of the Frequency and the Phase 382
23.4 Tracking of the Voltage Amplitude 382
23.5 Tuning of the Parameters 382
23.6 Equivalent Structure 383
23.7 Simulation Results 384
 23.7.1 With a Noisy Distorted Signal having a Variable Frequency 384
 23.7.2 With a Noisy Distorted Square Wave 386
23.8 Experimental Results 386
 23.8.1 With a Voltage Taken from the Grid 386
<table>
<thead>
<tr>
<th>Contents</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8.2 With a Noisy Distorted Signal having a Variable Frequency</td>
<td>389</td>
</tr>
<tr>
<td>23.8.3 With a Noisy Distorted Square Wave</td>
<td>389</td>
</tr>
<tr>
<td>23.9 Summary</td>
<td>390</td>
</tr>
<tr>
<td>References</td>
<td>393</td>
</tr>
<tr>
<td>Index</td>
<td>407</td>
</tr>
</tbody>
</table>