Contents

About the Author xiii
Preface xv

1 Circuit Theory for Power Transfer Networks 1
 1.1 Introduction 1
 1.2 Ideal Circuit Elements 2
 1.3 Average Power Dissipation and Effective Voltage and Current 3
 1.4 Definitions of Voltage and Current Phasors 5
 1.5 Definitions of Active, Passive and Lossless One-ports 6
 1.6 Definition of Resistor 6
 1.7 Definition of Capacitor 7
 1.8 Definition of Inductor 8
 1.9 Definition of an Ideal Transformer 11
 1.10 Coupled Coils 12
 1.11 Definitions: Laplace and Fourier Transformations of a Time Domain Function $f(t)$ 12
 1.12 Useful Mathematical Properties of Laplace and Fourier Transforms of a Causal Function 14
 1.13 Numerical Evaluation of Hilbert Transform 20
 1.14 Convolution 21
 1.15 Signal Energy 21
 1.16 Definition of Impedance and Admittance 22
 1.17 Immittance of One-port Networks 23
 1.18 Definition: ‘Positive Real Functions’ 25

2 Electromagnetic Field Theory for Power Transfer Networks: Fields, Waves and Lumped Circuit Models 35
 2.1 Introduction 35
 2.2 Coulomb’s Law and Electric Fields 36
 2.3 Definition of Electric Field 37
 2.4 Definition of Electric Potential 38
 2.5 Units of Force, Energy and Potential 41
 2.6 Uniform Electric Field 42
 2.7 Units of Electric Field 43
 2.8 Definition of Displacement Vector or ‘Electric Flux Density Vector’ D 43
 2.9 Boundary Conditions in an Electric Field 46
2.10 Differential Relation between the Potential and the Electric Field

Page 47

2.11 Parallel Plate Capacitor

Page 49

2.12 Capacitance of a Transmission Line

Page 52

2.13 Capacitance of Coaxial Cable

Page 54

2.14 Resistance of a Conductor of Length L: Ohm’s Law

Page 55

2.15 Principle of Charge Conservation and the Continuity Equation

Page 60

2.16 Energy Density in an Electric Field

Page 61

2.17 The Magnetic Field

Page 61

2.18 Generation of Magnetic Fields: Biot–Savart and Ampère’s Law

Page 64

2.19 Direction of Magnetic Field: Right Hand Rule

Page 67

2.20 Unit of Magnetic Field: Related Quantities

Page 67

2.21 Unit of Magnetic Flux Density B

Page 68

2.22 Unit of Magnetic Flux ϕ

Page 68

2.23 Definition of Inductance L

Page 68

2.24 Permeability μ and its Unit

Page 69

2.25 Magnetic Force between Two Parallel Wires

Page 70

2.26 Magnetic Field Generated by a Circular Current-Carrying Wire

Page 71

2.27 Magnetic Field of a Tidily Wired Solenoid of N Turns

Page 73

2.28 The Toroid

Page 73

2.29 Inductance of N-Turn Wire Loops

Page 74

2.30 Inductance of a Coaxial Transmission Line

Page 76

2.31 Parallel Wire Transmission Line

Page 81

2.32 Faraday’s Law

Page 82

2.33 Magnetic Energy Density in a Given Volume

Page 83

2.34 Transformer

Page 84

2.35 Mutual Inductance

Page 87

2.36 Boundary Conditions and Maxwell Equations

Page 89

2.37 Summary of Maxwell Equations and Electromagnetic Wave Propagation

Page 96

2.38 Power Flow in Electromagnetic Fields: Poynting’s Theorem

Page 101

2.39 General Form of Electromagnetic Wave Equation

Page 101

2.40 Solutions of Maxwell Equations Using Complex Phasors

Page 103

2.41 Determination of the Electromagnetic Field Distribution of a Short Current Element: Hertzian Dipole Problem

Page 105

2.42 Fourier Transform of Maxwell Equations: Phasor Representation

Page 109

2.43 Antenna Loss

Page 108

2.44 Magnetic Dipole

Page 108

2.45 Long Straight Wire Antenna: Half-Wave Dipole

Page 109

2.46 Transmission Lines as Circuit Elements

Page 110

3 Transmission Lines for Circuit Designers: Transmission Lines as Circuit Elements

Page 117

3.1 Ideal Transmission Lines

Page 117

3.2 Time Domain Solutions of Voltage and Current Wave Equations

Page 122

3.3 Model for a Two-Pair Wire Transmission Line as an Ideal TEM Line

Page 122

3.4 Model for a Coaxial Cable as an Ideal TEM Line

Page 123

3.5 Field Solutions for TEM Lines

Page 123

3.6 Phasor Solutions for Ideal TEM Lines

Page 124

3.7 Steady State Time Domain Solutions for Voltage and Current at Any Point z on the TEM Line

Page 125

3.8 Transmission Lines as Circuit Elements

Page 126
6.12 Cascaded (or Tandem) Connections of Two-ports 311
6.13 Comments 313
6.14 Generation of Scattering Parameters from Transfer Scattering Parameters 315

7 Numerical Generation of Minimum Functions via the Parametric Approach 317
7.1 Introduction 317
7.2 Generation of Positive Real Functions via the Parametric Approach using MATLAB® 318
7.3 Major Polynomial Operations in MATLAB® 321
7.4 Algorithm: Computation of Residues in Bode Form on MATLAB® 323
7.5 Generation of Minimum Functions from the Given All-Zero, All-Pole Form of the Real Part 335
7.6 Immittance Modeling via the Parametric Approach 349
7.7 Direct Approach for Minimum Immittance Modeling via the Parametric Approach 359

8 Gewertz Procedure to Generate a Minimum Function from its Even Part: Generation of Minimum Function in Rational Form 373
8.1 Introduction 373
8.2 Gewertz Procedure 374
8.3 Gewertz Algorithm 377
8.4 MATLAB® Codes for the Gewertz Algorithm 378
8.5 Comparison of the Bode Method to the Gewertz Procedure 386
8.6 Immittance Modeling via the Gewertz Procedure 392

9 Description of Power Transfer Networks via Driving Point Input Immittance: Darlington’s Theorem 405
9.1 Introduction 405
9.2 Power Dissipation P_L over a Load Impedance Z_L 405
9.3 Power Transfer 406
9.4 Maximum Power Transfer Theorem 407
9.5 Transducer Power Gain for Matching Problems 408
9.6 Formal Definition of a Broadband Matching Problem 408
9.7 Darlington’s Description of Lossless Two-ports 410
9.8 Description of Lossless Two-ports via Z Parameters 423
9.9 Driving Point Input Impedance of a Lossless Two-port 426
9.10 Proper Selection of Cases to Construct Lossless Two-ports from the Driving Point Immittance Function 430
9.11 Synthesis of a Compact Pole 435
9.12 Cauer Realization of Lossless Two-ports 436

10 Design of Power Transfer Networks: A Glimpse of the Analytic Theory via a Unified Approach 439
10.1 Introduction 439
10.2 Filter or Insertion Loss Problem from the Viewpoint of Broadband Matching 444
10.3 Construction of Doubly Terminated Lossless Reciprocal Filters 446
10.4 Analytic Solutions to Broadband Matching Problems 447
10.5 Analytic Approach to Double Matching Problems 453
10.6 Unified Analytic Approach to Design Broadband Matching Networks 463
10.7 Design of Lumped Element Filters Employing Chebyshev Functions 464
10.8 Synthesis of Lumped Element Low-Pass Chebyshev Filter Prototype 474
10.9 Algorithm to Construct Monotone Roll-Off Chebyshev Filters 477
10.10 Denormalization of the Element Values for Monotone Roll-off Chebyshev Filters 490
10.11 Transformation from Low-Pass LC Ladder Filters to Bandpass Ladder Filters 492
10.12 Simple Single Matching Problems 494
10.13 Simple Double Matching Problems 499
10.14 A Semi-analytic Approach for Double Matching Problems 500
10.15 Algorithm to Design Idealized Equalizer Data for Double Matching Problems 500
10.16 General Form of Monotone Roll-Off Chebyshev Transfer Functions 511
10.17 LC Ladder Solutions to Matching Problems Using the General Form Chebyshev Transfer Function 517
10.18 Conclusion 526

11 Modern Approaches to Broadband Matching Problems: Real Frequency Solutions 539
11.1 Introduction 539
11.2 Real Frequency Line Segment Technique 540
11.3 Real Frequency Direct Computational Technique for Double Matching Problems 571
11.4 Initialization of RFDT Algorithm 599
11.5 Design of a Matching Equalizer for a Short Monopole Antenna 600
11.6 Design of a Single Matching Equalizer for the Ultrasonic T1350 Transducer 611
11.7 Simplified Real Frequency Technique (SRFT): ‘A Scattering Approach’ 616
11.8 Antenna Tuning Using SRFT: Design of a Matching Network for a Helix Antenna 619
11.9 Performance Assessment of Active and Passive Components by Employing SRFT 634

12 Immittance Data Modeling via Linear Interpolation Techniques: A Classical Circuit Theory Approach 691
12.1 Introduction 691
12.2 Interpolation of the Given Real Part Data Set 693
12.3 Verification via SS-ELIP 693
12.4 Verification via PS-EIP 696
12.5 Interpolation of a Given Foster Data Set $X_f(\omega)$ 698
12.6 Practical and Numerical Aspects 701
12.7 Estimation of the Minimum Degree n of the Denominator Polynomial $D(\omega^2)$ 702
12.8 Comments on the Error in the Interpolation Process and Proper Selection of Sample Points 703
12.9 Examples 704
12.10 Conclusion 716
Contents

13 Lossless Two-ports Formed with Mixed Lumped and Distributed Elements: Design of Matching Networks with Mixed Elements
13.1 Introduction
13.2 Construction of Low-Pass Ladders with UEs
13.3 Application
13.4 Conclusion

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>719</td>
</tr>
<tr>
<td>13.2 Construction of Low-Pass Ladders with UEs</td>
<td>725</td>
</tr>
<tr>
<td>13.3 Application</td>
<td>727</td>
</tr>
<tr>
<td>13.4 Conclusion</td>
<td>731</td>
</tr>
<tr>
<td>Index</td>
<td>751</td>
</tr>
</tbody>
</table>