INDEX

Acceptor phase, 11, 28, 105, 115, 310
Accuracy, 153–154
Accurel hollow fiber, 26, 115, 132t, 148, 172, 195, 289
Acetaldehyde, 185, 205
Acetone:
 as analyte, 211, 287–288
 as biomarker, 204
 as disperser solvent, 11, 24, 291, 305
 as extracting solvent, 177
 as fiber cleaning solvent, 26, 105, 289
 as volatile release agent, 31, 289
determination in water, 287–288
 physical properties, 125t
 as SME solvent, 119t
Acetonitrile:
 as disperser solvent, 115, 305
 as extracting solvent, 177
 physical properties, 126t
 residual solvent in drugs, 277
 as SME solvent, 120t, 192
Acids:
 alkylphosphonic, 192, 194
carboxylic, 60, 72, 145, 217
derivatization of, 112t
fatty, 192, 196
haloacetic, 183, 185
organic, 109, 192, 200, 211
Active food packaging, 217t
Agitation, 47, 56, 62, 80–81, 175, 262
 magnetic stirring, 22, 48, 67, 147, 149, 175
 manual shaking, 147
 mechanical vibration, 47, 48, 51, 143, 147, 149, 175
 orbital, 23, 262
 sonication, 178, 289
 vortexing, 82, 262, 277, 279
Air monitoring, 173, 222
Air-water distribution coefficient, 40, 137, 152
Alcoholic beverages, 213t
Alcohols:
 as analytes, 185, 211, 212, 277–278, 282, 293
 as SME solvents, 118t
 physical properties, 123–124t

Abbreviations: t = table; f = figure

Solvent Microextraction: Theory and Practice, By John M. Kokosa, Adrzej Przyjazny, and Michael A. Jeannot
Copyright © 2009 John Wiley & Sons, Inc.
Aldehydes:
 as analytes, 59, 109, 185, 204–205, 227
 as biomarkers, 204–205
derivatization of, 112t
Setschenow constant, 90
Algae, 176, 182t
Aliphatic hydrocarbons:
 as SME solvents, 40, 116t
 physical properties, 122t
Alkaloids, 145
Alkanes, see Aliphatic hydrocarbons
Amines, 69
 aromatic, 105, 192
derivatization of, 109, 111, 112t
Amino acids, 109
derivatization of, 112t
Ammonia, 198, 208, 211, 212
as biomarker, 205
Ammonium pyrrolidine dithiocarbamate, 197t
Amyl acetate:
 as SME solvent, 119t
 physical properties, 124t
Analyte binding, 88, 206, 223
Analyte enrichment, 20, 115, 128, 148, 152
Anisole:
 as SME solvent, 119t
 physical properties, 124t
APDC, see Ammonium pyrrolidine dithiocarbamate
Aromatic hydrocarbons:
 as analytes, 173, 179, 212
 as SME solvents, 40, 117t
 physical properties, 123t
Arsenic, 196, 197
Arson accelerants analysis, 281–284
Atomic absorption spectrometry, 29, 34, 80, 114, 127, 197
Automation, 54, 109, 174
Autosampler, 22, 24, 27, 32, 63, 67, 69, 74, 107, 109, 175
Basic analytes, 145, 193, 262t, 264, 288, 310
Beer, 212, 213t
Benzene:
 as analyte, 7, 30, 59, 87, 88, 93, 173, 179,
 264–266, 267–268, 277–278
 as SME solvent, 117t
detection limits, 183t
kinetic studies, 226
physical properties, 123t
Setschenow constant, 90
Benzo(a)pyrene, 72, 214, 285
Benzo(b)fluoranthene, 293
Benzoic acid, 43–44
Benzophenone-3, 131t
Benzoylacetonate:
 as SME solvent, 119t
 physical properties, 125t
Benzy alcohol:
 as SME solvent, 33, 118t
 physical properties, 123t
Beverages, 198, 211–215
Bioactive plant components, 283
Biological fluids, 11, 206–207
Biomonitoring, 204
Blood, 23, 175, 204, 205t, 206
 plasma, 62, 103, 175, 205t, 206
 serum, 23, 175, 205t, 206
Bovine milk, 214
Bovine serum albumin, 225
4-Bromofluorobenzene
 as internal standard, 69, 78, 269
BTEX, 173, 179, 220, 222, 226, 266, 267–268, 293
1-Butanol:
 as SME solvent, 118t
 physical properties, 123t
Butyl acetate:
 as SME solvent, 119t
 physical properties, 124t
 polarity index, 121
1-Butyl-3-methylimidazolium hexafluorophosphate:
 as SME solvent, 120t
 physical properties, 125t
Cadmium, 11, 196, 197t
Caffeine, 214
Calibration, 14
curve, 150, 151
 external, 150, 175
 methods, 62–63
Capillary electrophoresis, 29, 34, 80, 114, 127, 142, 194, 198
Carbon disulfide:
 as SME solvent, 11, 24, 69, 120t, 291
 physical properties, 126t
Carbon tetrachloride:
 as analyte, 219
 as SME solvent, 11, 24, 69, 115, 117t, 121, 291
 physical properties, 97t, 122t
Carbonyl compounds, 109, 110, 112t, 211
Carboxylic acids, see Acids, carboxylic
Carrier-mediated transport, 60–61, 105, 174, 195
Carryover, 7, 78, 105
Centrifugation, 22, 115, 175
Certified reference materials, 175
Chlorinated hydrocarbons:
 as SME solvents, 117t
 physical properties, 122–123t
Chlorobenzene:
- as analyte, 273f, 277
- as SME solvent, 11, 69, 117t, 121
- physical properties, 123t

Chlorobenzenes, as analytes, 131t, 273f, 292f

Chloroform:
- as analyte, 30, 218, 219, 269–270, 273f, 277
- as SME solvent, 97, 117t
- physical properties, 97t, 122t
- polarity index, 121

Chlorophenols, 109, 192, 204
- derivatization, 112t
- extraction-derivatization, 195

Chromium, 196, 197t

Cloud point extraction, 305

Clove buds, 212

Cobalt, 196, 197t

Coffee, 213t, 214

CombiPal autosampler, 109, 222

Consolute solvent volume, 130t

Consumer products, 216–220

Continuous flow microextraction, 103, 114, 115, 191, 306–307

Cyanide:
- free, 198
- weak acid dissociable, 198

Cycle Composer software, 109, 222

Cycle flow microextraction, 306–307

β-Cyclodextrin, 34, 286, 287

Cyclohexane:
- as analyte, 277
- as SME solvent, 116t, 121
- physical properties, 122t

Cyclopentane:
- as SME solvent, 116t
- physical properties, 122t

p-Cymene:
- as SME solvent, 118t, 187t, 212
- physical properties, 123t

DDTC, see Diethyldithiocarbamate

Decafluorobiphenyl, as internal standard, 69, 263, 269

Decane:
- as SME solvent, 69, 115, 116t
- impurity in tetradecane, 263
- physical properties, 32t, 78t, 122t

Derivatization, 109–113
- acetylation, 112t, 194
- alkylation, 112t, 194
- complexation, 113
- concurrent with extraction, 111
- esterification, 112t, 185
- hydrazone formation, 112t, 186
- in-drop, 111
- in-fiber, 111
- in-injection port, 112
- in-sample, 111
- in-syringe, 111
- in-vial, 111
- iodination, 112t
- mechanistic aspects, study of, 226–228
- oxime formation, 185–186, 287–288
- pentafluorobenzylolation, 185–186
- postextraction, 111–113
- preextraction, 110–111
- Schiff base reaction, 112t
- silylation, 112t, 186, 195
- summary of reactions, 112t
- tosylation, 112t

Detection limit:
- instrument, 150
- method, 150

Detection limits:
- for metals, 197t
- for pesticides, 203t
- for priority pollutants, 183t

Detector:
- electron capture, 32, 80, 110, 114, 127, 184
- flame ionization, 80, 127
- flame photometric, 127
- mass spectrometric, 80, 127
- nitrogen-phosphorus, 127
- pulsed discharge helium ionization, 207
- UV/VIS, 127

α-Dibutyl phthalate:
- as SME solvent, 119t
- physical properties, 124t

Dibutyl phthalate:
- as analyte, 218
- as SME solvent, 118t
- physical properties, 124t

1,2-Dichlorobenzene:
- as analyte, 273f, 292f
- as SME solvent, 117t
- physical properties, 122t

1,2-Dichloroethane:
- as SME solvent, 117t
- physical properties, 122t

DDTC, see Diethyldithiocarbamate

Decafluorobiphenyl, as internal standard, 69, 263, 269

Decane:
- as SME solvent, 69, 115, 116t
- impurity in tetradecane, 263
- physical properties, 32t, 78t, 122t

Derivatization, 109–113
- acetylation, 112t, 194
- alkylation, 112t, 194
- complexation, 113
- concurrent with extraction, 111
- esterification, 112t, 185
- hydrazone formation, 112t, 186
- in-drop, 111
- in-fiber, 111
- in-injection port, 112
- in-sample, 111
- in-syringe, 111
- in-vial, 111
- iodination, 112t
- mechanistic aspects, study of, 226–228
- oxime formation, 185–186, 287–288
- pentafluorobenzylolation, 185–186
- postextraction, 111–113
- preextraction, 110–111
- Schiff base reaction, 112t
- silylation, 112t, 186, 195
- summary of reactions, 112t
- tosylation, 112t

Detection limit:
- instrument, 150
- method, 150

Detection limits:
- for metals, 197t
- for pesticides, 203t
- for priority pollutants, 183t

Detector:
- electron capture, 32, 80, 110, 114, 127, 184
- flame ionization, 80, 127
- flame photometric, 127
- mass spectrometric, 80, 127
- nitrogen-phosphorus, 127
- pulsed discharge helium ionization, 207
- UV/VIS, 127

α-Dibutyl phthalate:
- as SME solvent, 119t
- physical properties, 124t

Dibutyl phthalate:
- as analyte, 218
- as SME solvent, 118t
- physical properties, 124t

1,2-Dichlorobenzene:
- as analyte, 273f, 292f
- as SME solvent, 117t
- physical properties, 122t

1,2-Dichloroethane:
- as SME solvent, 117t
- physical properties, 122t
INDEX

Dichloromethane:
 as analyte, 220, 277
 as SME solvent, 117t
 physical properties, 122t
Dielectric constant, 40, 121
Diethyl phthalate:
 as analyte, 218
 physical properties, 78t
Diethyldithiocarbamate, 197, 197t
Diffusion, 46, 47
 diffusion coefficient, 46, 51, 52, 55, 56, 58, 62, 105, 115
 diffusive mass transfer, 46–47
Dihexyl ether:
 as SME solvent, 119t, 121, 194
 physical properties, 124t
Dibutyl ketone:
 as SME solvent, 119t
 physical properties, 125t
Disocyanates, 110, 130t, 172
Dimethylformamide:
 as SME solvent, 120t
 physical properties, 126t
Dinitrophenols, 130t, 193
Dinitrophenylhydrazine, 287
Dioxane, 277
Dipole moment, 40
Direct immersion microextraction, 21, 22–30, 69, 72, 114, 121, 174, 209
 solvents used, 115
Direct on-line coupling, 201, 203, 222, 223
Directly suspended droplet microextraction, 115, 138, 142, 143, 144, 307
Disperser solvent, 111
 volume, 132t, 141
 and derivatization, 111
 calculation examples, 87–89
 extractant volume, 212
 solvents used, 121
Distribution coefficient, see Distribution constant
Distribution constant, 38, 59, 60, 63, 107
 effect of ionic strength, 42
 effect of temperature, 41–42
DLLEME, see Dispersive liquid-liquid microextraction
Dodecane:
 as SME solvent, 115, 116t, 261
 physical properties, 78t, 122t
Dodecyl acetate:
 as SME solvent, 119t
 physical properties, 124t
 donor phase, 60, 62
 drain water, 181t
 drinking water, 180t, 269–270
 drop dissolution, 40, 114
 drop volume, 114, 202, 262, 263
 optimization, 130t
 drop-to-drop microextraction, 23, 103, 207, 214, 307
Drug-protein binding, 224–226
Drugs:
 anabolic steroids, 110
 analgesics, 209
 antacids, 209
 antiarhythms, 209
 antibiotics, 209
 anticoagulants, 209
 antidepressants, 209
 antidiarrheal agents, 209
 antiemetics, 209
 antiepileptics, 209
 antiinflammatories, see NSAIDs
 antimalarials, 209
 antinauseants, 209
 antiparasitics, 209
 antitussives, 209
 basic, 105
 β-blockers, 209
 bronchodilators, 209
 coronary therapeutics, 209
 decongestants, 209
 diuretics, 209
 gastrointestinal, 209
 H1 antagonists, 209
 H2 antagonists, 209
 illicit, 209
 local anesthetics, 209
 polar, 468
 psychoactive, 209
 uricosurics, 209
Dust, 182t
 model, 54–55, 56
 optimization, 149–150
 typical parameters, 133t
Edible oils, 174, 211, 213t, 214, 219
Electromembrane extraction, 29, 62, 105, 208, 309–310
 preferred solvents, 115
Endocrine disruptors, 111, 189
Engine oil, 174, 217t, 220, 264–267
Enrichment factor, 60, 127, 152
Environmental applications of SME, 178–204
Environmental samples, 178–179
Equilibration time, 142–143
Equilibria:
 multiphase, in matrix, 223
 multiple, 175
Equilibrium:
 amount of analyte extracted, 86, 91, 95
 analyte concentration in organic phase, 39, 50
detail distribution isotherm, 38
drug-protein, 224–226
extraction, 106, 107
in dynamic SME, 55
solvent losses, 44
Essential oil components, 130t
Esters:
 as analytes, 185, 211, 212
 as SME solvents, 119t
 physical properties, 124t
Ethanol:
 as analyte, 220, 282
 as disperser solvent, 11
Ethers:
 as SME solvents, 119t
 physical properties, 124t
Ethyl acetate:
 as analyte, 212
 as SME solvent, 119t, 201
 physical properties, 124t
Ethylbenzene:
 as analyte, 59, 173, 179, 264–266, 267–268, 273f
detection limits, 183t
 kinetic studies, 226
Ethylene glycol:
 as SME solvent, 118t
 physical properties, 124t
Exhaustive extraction, 39, 51, 106, 111, 138, 173
Experimental design:
 application in SME, 127–131
 Box-Behnken design, 128, 130t
 central composite design, 128, 130t
 Doehlert design, 128, 130t
 D-optimal design, 128
 factorial design, 129, 131t
 fractional factorial design, 129, 130–131t
 mixed-level factorial design, 131t
 mixed-level orthogonal array design, 131t
 modified simplex optimization, 129, 130t
 multifactorial screening, 130t
 orthogonal array design, 131t
 Plackett-Burman design, 129, 130–131t
 response surface modelling, 128, 130t
three-variable Doehlert matrix design, 130t
 type III screening, 130t
Extractions:
 classical and SME, comparison of, 20
efficiency, 30
equipment requirements, 20
 kinetics, 226
 liquid-liquid, 3, 13
 liquid-solid, 5
 micro liquid-liquid, 4–5
 mode, selection of, 102–107
 modes, 21–31
 optimization of parameters, 129, 134–150
 parameters, 21, 261–264, 262t
 parameters, typical ranges, 132–133t
 rate, 50, 51, 59, 60, 63
 solid phase, 5–6, 14
 solvent selection, 32–34, 40, 69, 113–121
 solvents, 32–34, 76–78
 temperature, 30, 31, 41–42, 63, 83–84
time, 27, 29, 30, 31, 83–84, 105, 173
time profile, 55, 108
Fat-soluble vitamins, 131t
Fatty acids, see Acids, fatty
Fiber length, 133t, 148–149
Fiber preparation, 26, 289–290
Fick’s law, 46–47
Field sampling, 8, 107, 111, 171, 173, 189, 221–222
Film theory, 51–52, 226
Filtration, 175
Final determination method, selection of, 121, 127
Fish, 182t
Flame ionization detector, see Detector, flame ionization
Flame photometric detector, see Detector, flame photometric
Flavor components, 212, 213t
Flow injection analysis, 5
Food analysis, 31, 211–215, 215t
Food dyes, 211
Food flavorings, 8
Food simulants, 218
Forensic analysis, 204–211
Formaldehyde, 205, 211, 227
Fresh water, 180t
Fruit juice, 213t, 214
Fruits, 176, 198, 211, 213t, 214
Gases, 176, 198, 211, 213t, 214
Gas chromatography, 80, 105, 113, 121, 141
 high speed, 154
Gaseous matrices, 171–174
Gaseous samples, 102, 173–174
INDEX 317
Gasoline:
 as arson accelerant, 281
 in engine oil, 31, 220, 264–267
GC interface for ionic liquids, 121, 127
Glycerol:
 as SME solvent, 118t
 physical properties, 124t
Groundwater, 180t
Hair, 176, 204, 205t, 207
Halocarbons, 34
Halogenated alkanes, 72
Halogenated anisoles, 211
Halogenated compounds, 110, 272, 291–292
 Setschenow constant, 90
Halogenated disinfection by-products
 analysis of, 269–271
Halogenated solvents, 32
Halogen-containing anions, 198
Headspace extraction
 static, calculation examples, 95–97
 Headspace SME, 9, 21, 30–31, 41, 42, 69, 72, 102, 113, 308
 calculation examples, 91–93
 concurrent extraction-derivatization, 111
 coupled with hydrodistillation, 176–177
 gas sampling, 171–173
 general mass transfer model, 56–60
 hollow fiber-protected, 31, 172, 308–309
 kinetic studies, 226
 liquid sampling, 174
 mechanistic studies of in-drop derivatization, 226–228
 solid sampling, 176
 solvent requirements, 114
 solvents used, 78t, 115
 temperature effect, 42
Headspace water-based SME, 187
Heavy metals, 196, 204
Henry’s law constant, 12, 30, 41, 56, 63, 71, 91
Heptadecane:
 as SME solvent, 116t
 physical properties, 122t
Heptane:
 as SME solvent, 116t
 physical properties, 122t
1-Heptanol:
 as SME solvent, 118t
 physical properties, 123t
1-Octanol:
 as SME solvent, 119t
 physical properties, 123t
Hydrodistillation, 176–177, 216
Hydrogen bonding, 12, 34
Hydrophilic analytes, 105, 111, 174
Hydrophobic analytes, 62, 105
 adsorption on container walls, 154
Hydrophobic drug-protein interactions, 206
Hydrophobic effect, 40
Hydrophobic ion-pairing reagent, 105
Hydrophobic membranes in SME, 148
Hydrophobicity, octanol-water partition
 coefficient as a measure of, 229
Hydroxyketones, 186
8-Hydroxyquinoline, 197t
Inductively coupled plasma, 127
Industrial effluent, 181t
Industrial hygiene, 222
Injection volume, 261
Inorganic anions, 109, 198
Inorganic compounds, 109, 127, 198
Instrument detection limit, see Detection limit, instrument
Internal standard, 34, 69, 150, 176
Iodine, as derivatizing agent, 194
Ionic liquids:
 as SME solvents, 79, 109, 120t, 121, 187, 223
 physical properties, 125t
Ionic strength, 42, 63, 82
 effect on HS-SDME, calculations, 93–95
 effect on SDME, calculations, 89–91
 effect on solvent water solubility, 97–98
Isooctane:
 as SME solvent, 116t, 121
 physical properties, 122t
1-Isopropyl-4-nitrobenzene:
 as SME solvent, 120t
 physical properties, 126t
Isotopic dilution, 150, 176
Ketones:
 as analytes, 109, 185
 as SME solvents, 119t
 derivatization, 112t
 physical properties, 125t
 Setschenow constant, 90
Kinetics, 46–62
 experimental results, 226
 three-phase, 56–62
 two-phase, 49–56
K_{ow}, see Octanol/water partition coefficient
Landfill leachate, 181t
Large-volume injection, 88, 105, 141
Lead, 196, 197t
Limit of detection, see Detection limit
Limit of quantitation, 151
Linear dynamic range, 151
Liquid food simulants, 217t
Liquid-gas-liquid microextraction, 304, 309
Liquid matrices, see Liquid samples
Liquid samples, 174–176
Liquid-liquid extraction, see Extraction, liquid-liquid
 mass transfer in, 60
Liquid-phase microextraction, 10, 21, 307
LLLME, see Liquid-liquid-liquid microextraction
LPME, see Liquid-phase microextraction
MALDI, see Matrix-assisted laser desorption/ionization
MASE, see Membrane-assisted solvent extraction
Mass spectrometry, 113, 127, 176
Matrix effects, 62, 153, 175, 282
Matrix modification, 214
Matrix-assisted laser desorption/ionization, 127, 221
Membrane-assisted solvent extraction, 105, 109, 174, 191, 310
Mercury, 196, 197t
Metacrate, 131t
Metal ions, 109, 111, 127, 196–197, 207
Metalloids, 109, 113, 127, 196–197
Metals, 113
detection limits, 197t
Methanol:
 as analyte, 220, 277, 282
 as disperser solvent, 24
 as drug-protein interaction suppressor, 206
 as esterification reagent, 185
 as extracting solvent, 177, 207
 as HPLC solvent, 34
 as volatile release agent, 31
Method detection limit, see Detection limit, method
Methyl tert-butyl ether, 4, 189
Methylmercury hydride, 197
N-Methylpyrrolidone:
 as SME solvent, 120t
 physical properties, 126t
Microdrop, 21, 30, 33, 45, 79–80, 172, 177
Microporous membrane liquid-liquid extraction, 200–201, 202, 308
Microsyringe, 54, 70, 79–80, 103, 114, 121, 172, 173, 174
Microwave distillation, 216
Microwave-assisted extraction, 178, 216
Milk, 204, 208, 211, 213t
Milk powder, 176
MMLLE, see Microporous membrane liquid-liquid extraction
Mycotoxins, 211, 214
Naphthalene, 87t, 88t, 91t, 93t, 94
 Setschenow constant, 90
Needle, microsyringe, 24
Negligible depletion SME, 225, 230
Nickel, 196, 197t
Nicotine, 172, 173, 215
Nitrophenols, 173, 192
2-Nitrophenyl octyl ether, 62
as SME solvent, 119t
physical properties, 125t
4-Nitro-\textit{m}-xylene:
as SME solvent, 120t
physical properties, 126t
Non-alcoholic beverages, 211, 213t
Nonane, as SME solvent, 116t
1-Nonanol:
as SME solvent, 118t
physical properties, 124t
Non-exhaustive extraction, 179, 224
Nonporous membranes, 7, 148, 149
NSAIDs, 131t
O
\textit{-2,3,4,5,6-(Pentafluorobenzyl)hydroxylamine},
110, 185–186, 211
OCPs, see Pesticides, organochlorine
Octane:
as SME solvent, 116t
physical properties, 78t, 122t
1-Octanol, 29, 31, 32t, 33, 34, 69, 115, 121, 261, 269, 281
as SME solvent, 118t
physical properties, 32t, 78t, 118t, 124t
solubility in water, 97t
Octanol/water distribution constant, 85
Octanol/water partition coefficient, 32, 41, 63, 71, 82
determination by SME, 229–230
1-Octyl-3-methylimidazolium hexafluorophosphate:
as SME solvent, 120t
physical properties, 125t
Off-line analysis, 308
On-line coupling, 201, 308
On-line preconcentration, 192
OPPs, see Pesticides, organophosphorus
Optimization:
agitation method and rate, 132t, 147–148
dynamic mode parameters, 133t, 149–150
dwelling time, 133t, 150
extraction time, 132t, 142–144
general recommendations, 69–70
headspace volume, 69, 132t, 134, 137
ionic strength, 132t, 146
number of cycles, 55, 133t, 149–150
pH of sample and acceptor solution, 132t, 145–146
plunger motion rate, 133t, 149–150
sample and solvent temperature, 132t, 144–145
sample flow rate, 132t, 142
sample volume, 69, 78–79, 129, 132t, 134
SME parameters, 183
solvent volume, 132t, 137, 141–142
water and organic volume, 51
Optimization method:
one-variable-at-a-time, 128
response surface methodology, 128
selection, 127–129
simplex design, 129
Optimization methods, applications in SME,
130–131t
Organic acids, see Acids, organic
Organic solvents:
in pharmaceuticals, 218, 276–281
physical properties, 122–126t
Organomanganese compounds, 196
Organomercury compounds, 196
Organometallic compounds, 109, 196–197
derivatization, 111
Organotin compounds, 196
Oxime formation, see Derivatization,
oxime formation
PAHs, see Polycyclic aromatic hydrocarbons
Palladium, 196, 197t
Partition coefficients, 41, 113
PBDEs, see Polybrominated diphenyl ethers
PCBs, see Polychlorinated biphenyls
Penetration theory, 53
Pentafluorobenzaldehyde, 110
1-Pentanol:
as SME solvent, 118t
physical properties, 123t
Peptides, 110
Persistent organic pollutants, 189
Personal care products, 174
Pesticide residues, 169
Pesticides, 130t, 198–204, 211, 214, 288–291
carbamates, 200
detection limits, 203t
fungicides, 201–202
organochlorine, 198–199, 214, 216
organonitrogen, 202
organophosphorus, 199–200, 214
organosulfur, 202
phenylureas, 202
pyrethroids, 200
PFBay, see Pentafluorobenzaldehyde
PFBHA, see \textit{O-2,3,4,5,6-(Pentafluorobenzyl)hydroxylamine}
pH, 28, 106, 192–193
Pharmaceuticals, 7, 29, 31, 217t, 216–220, 276–281
Pharmacokinetics, 228
Phase ratio, 39, 107, 151, 152
Phase-transfer catalysis, 111
Phenolic compounds, 212
derivatization, 112t
Phenolic endocrine disruptors, 210
Phenols, 105, 192
derivatization, 109, 111
detection limits, 183t
Setschenow constant, 90
Phenoxy acids, see Herbicides, phenoxy acids
Phenylhexane:
as SME solvent, 118t
physical properties, 123t
Phthalate esters, see Phthalates
Phthalates, 130t, 189, 217–218
detection limits, 183t
Physical properties of solvents, 122–126t
Physicochemical applications of SME, 223–230
Plant parts, 215–216, 215t
buds, 212, 215, 215t
flowers, 215, 215t
leaves, 215, 215t, 216
needles, pine, 182t
roots, 215, 215t
seeds, 215, 215t
Plasma, see Blood, plasma
Polar analytes, 28, 40, 60, 174
Polar volatiles, 185–189
Polarity index, 40, 121
Polyamines, 205, 211
Polybrominated diphenyl ethers, 189, 204, 210
Polychlorinated biphenyls, 189, 204, 210, 214
detection limits, 183t
Setschenow constant, 90
Polychlorinated hydrocarbon solvents, detection limits, 183t
Polycyclic aromatic hydrocarbons, 189, 216, 222,
284–287, 291–292
detection limits, 183t
Setschenow constant, 90
Polystyrene, 176, 217t
Porous membranes, 148–149
Potato chips, 212, 213t
Precision, 152–153
inter-day, 152
interlaboratory, 153
intermediate, 152
intra-assay, 152
intra-day, 152
Preconcentration, 63
kinetics, 60
Pressurized hot water extraction, 177, 216
Protein precipitation, 175
Proteins, as matrix components, 44, 224
Purge-and-trap, 3, 6–7, 106, 184
Pyrene:
as analyte, 87t, 88t, 91t, 93t, 94t
Setschenow constant, 90
Pyridine:
as analyte, 218, 277
as SME solvent, 120t
physical properties, 125t
1-(2-Pyridylazo)2-naphthol, 197t
Quantitation methods, 150
Rainwater, 180t, 186
Rate-determining step, 50, 115, 226
Recovery:
absolute, 153
relative, 153
Repeatability, 152
Representative sample, 189
Reproducibility, 153
Residual solvents, 6, 7, 211, 218–220, 276–281
Reverse-phase HPLC, 34, 127
Robustness, 153
Rohrschneider polarity scale, 121
Ruggedness, 152
Saliva, 204, 205t, 207
Salt, 212, 213t
Salted eggs, 212, 213t, 214
Salting out, 146
Sample cleanup, 15, 62, 63, 105, 121
Sampling:
air, 171–174
solids, 176–178
water, 174–176
Sauces, 211, 213t, 214
SDME, see Single drop microextraction
Seawater, 181t
Sediment, 176, 182t, 189, 198
Selectivity, 154
Selenium, 130t, 196
Semivolatile, 22, 33, 56
nonpolar, 69, 103, 189–192
polar, 105, 109–110, 192–196
Sensitivity, 85, 151–152
Serum, see Blood serum
Sewage, 181t
Short-chain fatty acids, 131t
Silicone oil AR 20
as SME solvent, 120t
physical properties, 126t
Silver, 196, 197t
Single drop microextraction, 9, 21, 72, 103, 111, 114, 307
Calculation examples, 84–87
Sodium tetrahydroborate, 197
Soil, 176, 182t, 189, 198, 287–291
Solvation, 40
Solvent bar microextraction, 22, 28, 308
Solvent selection, see Extraction, solvent selection
Solvent evaporation, 44–45
Solvent solubility in water, 44–45, 97–98
Solvent volume, see Optimization, solvent volume
Calculation examples, 95–97
Sudan dyes, 214
Sugarcane juice, 214
Summa canisters, 171
Supported liquid membrane microextraction, 11, 22, 149, 304
Surface tension, 114
Surface water, 180t
Surfactants, 189, 305
Surrogate standards, 34
Tap water, 175, 180t
Tea, 213t
Tedlar bags, 171
Temperature, see Extraction, temperature
Temperature-controlled ionic liquid-dispersive liquid-phase microextraction, 306
Tetrabutylammonium bromide, 194
Tetrabutylammonium hydrogen sulfate, 196
1,1,2,2-Tetrachloroethane:
 as SME solvent, 117t
 Physical properties, 123t
Tetrachloroethane:
 as SME solvent, 117t
 Physical properties, 122t
Tetrachloroethene:
 as analyte, 183, 219
 as SME solvent, 11, 69, 117t, 291
 Physical properties, 32t, 123t
Tetradecane:
 as internal standard, 264
 as SME solvent, 34, 69, 116t, 261, 269, 272, 291
 Physical properties, 32t, 78t, 122t
 Solubility in water, 97t
Tetrahydrofuran, as analyte, 220
Tetraspirocyclohexylcalix[4]pyrrole, 197t
Thermodynamics of SME, 37–45
THMs, see Trihalomethanes
Time, see Extraction, time
Tin hydride, 197
Tobacco smoke, 172, 173, 182t
Toluene:
 as analyte, 7, 12, 59, 173, 179, 264–266,
 267–268, 273–275
 as SME solvent, 31, 33, 69, 114, 115, 117t,
 121, 261
detection limits, 183t
 Kinetic studies, 226
 Physical properties, 32t, 78t, 123t
 Polarity index, 121
 Solubility in water, 97t
TOPO, see Trioleylphosphine oxide
2,4,6-Tribromoanisole, 130t
Tributyl phosphate:
 as SME solvent, 119t
 Physical properties, 124t
2,4,6-Trichloroanisole, 130t
1,2,4-Trichlorobenzene:
 as SME solvent, 117t
 Physical properties, 123t
1,1,1-Trichloroethene:
 as analyte, 219
 as SME solvent, 117t
 Physical properties, 123t
Trichloroethane, as analyte, 183
Trichloroethene, as analyte, 183, 277
2,4,6-Trichlorophenylhydrazine, 110, 186, 211, 227
Tridecane:
 as internal standard, 263
 as SME solvent, 116t, 261
 Physical properties, 122t
1,1,1-Trifluoroacetacetone, 197t
Trihalomethanes, 4, 131t, 155, 183, 222, 269–271
Trioleylphosphine oxide, 200, 201, 224
Triolein:
 as SME solvent, 119t, 173
 Physical properties, 124t
Ultra performance liquid chromatography, 154
Ultrasound-assisted emulsification-microextraction, 218, 306
Ultrasound-assisted extraction, 203, 216
Undecane:
 as SME solvent, 116t
 Physical properties, 78t, 122t
1-Undecanol, 24, 69
 as SME solvent, 118t
 Physical properties, 32t, 124t
6-Undecanone:
 as SME solvent, 119t
 physical properties, 125t
Uranium, 196, 197t
Urine, 23, 62, 175, 206
U.S. EPA Method 524.2, 7, 184, 272
U.S. EPA Method 525.2, 5
U.S. EPA Method 551.1, 4, 155t, 269
U.S. EPA Method 624, 6
U.S. EPA Method 625, 4
U.S. EPA method detection limits:
 heavy metals, 197t
 pesticides, 203t
U.S. Pharmacopeia Method 467, 6, 7–8, 276
UV/VIS spectrophotometry, 127
Validation, 154–155, 175
Vegetables, 176, 198, 212, 213t, 214
Vodka, 174, 213t
Volatile basic tobacco components, 215
Volatile flavor components, 211
Volatile halocarbons, 183–185, 218
Volatile hydrocarbons, 179, 182, 218
Volatile organic compounds, 215
 SME analysis, 215t, 271–276
Volatile organic solvents, 218
Volatile phenols, 211, 212
Volatile polar solvents, 185–189
Volatile sulfur compounds, 212
Vortex device, 82, 262
Wastewater, 4, 6, 175, 181t
Water:
 as extractant, 177
 as SME solvent, 120t, 187
 physical properties, 78t, 125t
Water analysis, 174–176
Well water, 175, 180t
Whole blood, see Blood
Wine, 212, 213t, 214
m-Xylene:
 as analyte, 266, 267, 277
 as SME solvent, 117t
 physical properties, 123t
o-Xylene:
 as SME solvent, 69, 117t
 physical properties, 32t, 78t, 123t
Xylene:
 as analyte, 59, 218
 as SME solvent, 69
 kinetic studies, 226
 polarity index, 121
Xylenes:
 as analytes, 7, 173, 179, 267–268
 as SME solvents, 12, 118t
 detection limits, 183t
 physical properties, 122t