INDEX

A
ABC (avidin-biotin complex) peroxidase, 229–230
AbouHaidar, M.G., 113
Activity biomarkers, 95
Acute lymphoblastic leukemia (ALL), 170
Adams, J., 155, 156
Adenomas, 8–9
Adjei, A.A., 177
Affymetrix, 60, 65, 76, 77, 115, 116
Aghajanian, C., 156
Agilent Technologies, 114, 115
Agulnik, M., 151
Akiyama, T., 39
Alba, R., 211
Albain, K., 151
Albanell, J., 146, 148, 149, 155, 156, 255
Amado, R.G., 13
Anai, S., 197
Anderson, K., 60
Anderson, W.F., 196
Andre, F., 48, 65
Andrew, A.S., 120
Androgen receptors, 27
Angiogenesis, 161–162. See also Antiangiogenic therapy
Animal toxicity studies, 85, 86
Anscumb, A., 233
Antiangiogenic therapy, 28–29, 93, 207–208
Antibodies, primary vs. secondary, 228–229
Antimitotics, 24, 25, 28
Antonescu, C.R., 181
AQUA technology, 295–333
advantages over traditional
immunohistochemistry, 296–297
and tissue microarrays, 301
application to drug discovery and
companion diagnostics, 325–327
how it works, 298–308
image acquisition, 301–302
image analysis, 303–308
image validation, 302–303
localization capabilities, 321–322
multiparametric analysis, 322–324
pathway diagnostics, 325
quantitative, 314–321
standardizing results, 308–313
tissue staining, 298–301
Arpino, G., 315
Arteaga, C.L., 176, 177
Artificial neural networks (ANN), 125,
126, 127
Asano, M., 208
Atkins, M.B., 157
Aurora kinases, 28
Automated fluorescence microscopy, 35,
296, 301–302
Avastin. See Bevacizumab
Ayers, M., 70

Molecular Pathology in Drug Discovery and Development, Edited by J. Suso Platero
Copyright © 2009 John Wiley & Sons, Inc.
INDEX

B
Baken, K.A., 134
Baker, A.F., 321
Bamias, A., 300, 314
Banked tissue, use of . . . , 11–12
Barash, Y., 118
Barnes, D.J., 182
Barrett’s esophagus, 10
Bartram, C.R., 182
Baselga, J., 13, 15, 27, 146, 148, 150, 151, 152, 154, 162, 163, 176, 177
Battifora, H., 227
Baudhuin, L.M., 4
Bauman, G.S., 173
BCR-ABL protooncogene, as cause of chronic myeloid leukemia, 182–184
Bead arrays, 114, 115, 116
Bell, G.W., 121
Bello, M.J., 173
Bepler, G., 319, 321
Berger, A.J., 296, 300, 314, 321
Berman, D.M., 172
Bertucci, F., 169, 172
Betensky, R.A., 51
Bevacizumab, 29, 144, 163
Bibby, M.C., 38
Bild, A.H., 57, 72
Bilous, M., 170
Biochemical assays, 34–36
Biologic license applications (BLAs), 133, 134
Biological markers. See Biomarkers
Biomarkers
activity, basis for developing, 95
changing paradigm, 53–55
developing multigene predictors of chemotherapy response, 66–74
development and validation using microarray analysis, 59–62
dosage, 49, 50
gene expression profiling as clinically utilizable tool, 75–77
identifying individual genes as, 64–66
in clinical trials, 16–17, 24, 48–50
mechanism of action, 15, 21, 25, 47, 50, 53, 87, 96
neoadjuvant chemotherapy as developmental model, 62–64
pharmacodynamic, 49, 50, 90, 102, 255, 256
practical applications, 172–184
predictive, 16, 48, 49, 50, 51, 56–58, 69, 255
prognostic, 48, 170, 174, 178, 320
reasons to include in clinical trial design, 51–53
response/efficacy, 49, 50
surrogate endpoints, 50
Biopharmaceutical therapy, 106–109
Biotinylation, 55–56
Bischoff, J.R., 197
Bishop, C.M., 125
Blaauboer, B.J., 130
Blocking reagents, 227–228
Blume-Jensen, P., 176
Boess, F., 130
Bonferroni correction, 119, 201
Borlak, J., 129
Bosco, E.E., 197
Botstein, D., 55
Boughhey, J.C., 62
Bova, G.S., 301
Brabender, J., 177
Brain tumors, 173, 174, 177. See also Glioblastoma multiforms (GBM);
Gliomas; Oligodendrogliomas
Braña, M.F., 23
Branford, S., 28, 183
Braun, A.H., 176
Brazma, A., 121
Brown, C.S., 118
Brown, P.O., 55
Brugal, G., 260
Buchholz, T.A., 69, 70
Burger, P.C., 173
Burris, H.A., 159
Burtness, B., 18
Bushel, P.R., 125
Busse, D., 148
Butler, J.N., 113
Byrnes, A.P., 202
C
Cacev, T., 171
Cairncross, J.G., 173
Calhoun, R., 319
Calza, S., 118
Camp, R.L., 296, 298, 300, 301, 302, 310, 314, 316
Cancer. See also Chemotherapy;
Colorectal carcinomas (CRC)
breast cancer, 47–48, 50, 51, 52, 56–59, 72–74
histopathologic assessment, 1–2
history of drug discovery, 22–25
increase in antitumor agents, 53–54
molecular pathology role in drug
development and use, 13, 39–41
molecular pathology role in drug
discovery, 13, 29–34
pathway-specific therapy, 39–41
target-based drug discovery, 26–29
Cancer genome atlas, 11
Cao, Y., 208
Caprioli, R.M., 100, 104
Carmeliet, P., 161
Casado, E., 152
Castanotto, D., 209
Cavazzana-Calvo, M., 210
CDER (Center for Drug Evaluation and
Research), 256
Cell scoring, 285–287
Cella, D., 150
Cervantes, A., 154
Cetuximab, 146, 148, 152–155, 177, 179.
See also Erbitux
CGLPs (current Good Laboratory
Practices), 238–239
Chahlavi, A., 173
Chatterjee, S.J., 197
Chaurand, 2006, 104
Chemotherapy. See also Cancer
adjuvant compared with neoadjuvant, 62–64
developing multigene predictors of
response, 66–74
history, 22–25
neoadjuvant, advantages and
disadvantages, 62–63
neoadjuvant, as model for biomarker
development, 62–64
Chen, H., 3
Chen, L.L., 181
Chen, Y., 206, 209
Chen, Z., 71
Cheng, S.Y., 208
Chetty, R., 171
Chou, C.C., 116
Chromogen
role of DAB in IHC assays, 223, 224, 228, 230, 254, 256
separation, 276–284
absorption coefficient, 282–283
applying Lambert-Beer law,
276–278
generating artificial marker images,
283–284
linear algebraic equations, 280–281
shading correction, 278–280
Chromogenic in situ hybridization
(CISH), 170, 174, 178, 179, 262
Chronic myeloid leukemia (CML), 10, 14, 28, 40, 182–184
Chung, G.G., 296, 300, 314
Chung, K.Y., 177
Churchill, G.A., 116, 117
Ciechanover, A., 155
Cilley, J.C., 29
Circulating tumor cells (CTC), 50, 172
Class comparison studies, 61
Class discovery studies, 61
Class prediction studies, 61
Claudio, P.P., 211
Clayman, G.L., 196, 197
Clinical Laboratory Improvement
Amendments (CLIA), 239
Clinical trials
molecular therapy, 209–211
novel approaches to Phase II design, 72–74
outsourced to CROs, 241–252
pharmacooncologic, 52
phases, 15–17
recent oncology drug development,
54–55
tandem, two-step phase II design, 73
Cluster analysis, 61, 121–122, 123
Cobleigh, M.A., 295
Colorectal carcinomas (CRC)
and EGFR, 18, 152, 176, 177
and radiation cytotoxicity, 203
role of molecular pathology, 8–10, 40
Colorimetric image analysis, 268–276
Colorimetric immunohistochemistry
camera technologies, 271–272
cell scoring, 285–287
cromogen separation, 276–284
embedding biomarkers, 287–293
image analysis overview, 268–272
image segmentation, 285–287
measuring information, 272–276
quantification, 259–294
Comparative genomic hybridization
(CGH), 170–171, 174, 262
Conforti, R., 75
Contract research organizations (CRO)
choosing and working with, 240–246
drug development company
relationships with, 239–246
evaluating, 240–243
immunohistochemistry assays in drug
development, 221–258
reasons for outsourcing IHC studies,
232–240
steps in running and managing
outsourced clinical studies, 241–252
Cooke, T., 177
Coons, S.W., 197
Copois, V., 113, 114
Corless, C.L., 181
Cortes, J., 182, 183
Coukos, G., 206
Cragg, G.M., 24
Cristofamilli, M., 50
Crocker, J., 170, 171
Crombet, T., 155
Curtis, R.K., 71, 74, 75
Cytogenetic analysis, 170
D
Dahlquist, K.D., 74
damn Dambach, D.M., 37
Daniele, L., 170
Dasatinib, 14, 28, 183, 184
Dassonville, O., 27
Dawood, S., 50
Dead compound, defined, 112
Debiec-Rychter, M., 181
DeGeorge, J.J., 38
Dei Tos, A.P., 177
Deisseroth, A., 207
DeLongueville, F., 129
Densmore, C.L., 196
Development candidates, defined, 112
DeVita, V.T., Jr., 24
Discovery. See Drug discovery
Divito, K.A., 296, 300, 314
DNA (deoxyribonucleic acid). See also
Gene expression analysis; RNA
(ribonucleic acid)
and protein changes, 7–8
chromogenic in situ hybridization,
170–171
collection with RNA, 171, 172
forensic STR testing, 6–7
microarray-based gene expression
profiling, 171–172
polymorphisms, 6–7
role in history of cancer drug discovery,
23, 24
sequencing, 3, 171–172
short tandem repeats, 6–7
translocation, 5, 6
Dolled-Filhart, M., 296, 314, 321, 323
Dolma, S., 31
Donato, N.J., 183
donson, A.M., 205
Dosage biomarkers, 49, 50
Dowsett, M., 255, 296, 315
Drevs, J., 39
Drude, I., 208
Drug development
and molecular pathology, 1–20
application of toxicogenomics, 127–129
approval process, 17
clinical trials, 15–17
contract laboratories vs. in-house,
232–240
defined, 112
empirical vs. target-based cancer-drug
discovery, 24–25
gene therapy in, 202–204
history of cancer drug discovery, 22–25
identifying drug candidates, 14–15
identifying need, 12–14
immunohistochemistry in, 88, 89–92
international considerations, 17, 133
life-cycle management, 17–18, 169–193
major regulatory developments related
to toxicogenomics, 132–134
nonclinical safety assessment, 86, 87–91
preclinical optimization, 15
step-by-step process, 12–18
target-based discovery [overview], 26–29
toxicogenomics in, 111–141
Drug discovery
application of AQUA technology, 325–327
application of toxicogenomics, 127–128
defined, 86, 112
major regulatory developments related to toxicogenomics, 132–134
nonclinical safety assessment, 86, 92–106
work flow, illustrated, 21, 23
Drug-drug interaction (DDI), 37
Druggable targets, 26–27, 32, 93
DrugMatrix database, 121
Druker, B.J., 183
Duda, R.O., 122, 125
Dudley, A.M., 117
Dudoit, S., 68
Dufva, M., 115
Duhl, D.M., 28
Dupuy, A., 68
E
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), 48, 54, 314
Earp, H.S., 177
Eastham, J.A., 196
Edelstein, M.L., 210
Edgar, K.A., 13, 31
Efron, B., 68
EGFR. See Epidermal growth factor receptor (EGFR)
Eisen, M.B., 61
Electropherograms, 114, 115
Emile, J.F., 181
Emily, M., 289
Eosinophilia, 89, 90
Epidermal growth factor receptor (EGFR)
and colon cancer, 13, 18
as druggable target for cancer drug discovery, 27–28
biology, 7, 146–148
case studies, 178–180
cetuximab and other monoclonal antibody studies, 152–155
efficacy biomarker, 49
erlotinib treatment, 151
expression as significant biomarker, 175–180
gefitinib treatment, 148–151
overexpression, 177
targeted therapies, 145–148
Erbitux, 13, 15, 17–18, 27. See also Cetuximab
Erlichman, C., 152
Erlotinib, 27, 146, 151, 163
Estrogen receptors, 27, 48, 52, 224
European Agency for the Evaluation of Medical Products (EMEA), 17, 133
European Bioinformatics Institute, 121
European Research Consortium for Informatics and Mathematics (ERCIM), 259
F
Faderl, S., 182
Familywise error rate, 119
Fan, J., 117, 118
Farcomeni, A., 119
Farkas, D., 130
Feldkamp, M.M., 177
Feldman, A.L., 208
Felsberg, J., 173
Ferrara, G., 177
Ferrara, N., 29
Ferretti, G., 48
Fiebig, H.H., 38
Fielden, M.R., 125, 129
Fischer, A., 210
Fisher, B., 50
Fletcher, C.D., 181
Fluchter, S.H., 27
Fluorescence in situ hybridization (FISH), 170, 174, 175, 178, 262–263, 265
Fluorescence microscopy, 35, 296, 301–302
Foekens, J.A., 58
Fogt, F., 10
Folkman, J., 28
Food and Drug Administration (FDA)
biopharmaceutical studies, 107
current Good Laboratory Practices, 238–239
Immunohistochemistry (IHC)
applications in drug discovery and
development process, 253–257
assay basics, 225–231
assay development, 231–232
assays in drug development performed
by contract research laboratories,
221–258
background, 222–225
colorimetric, 259–294
in drug development, 88, 89–92
lymphocyte subpopulation
identification, 89–92
reasons for outsourcing studies,
232–240
running and managing outsourced
clinical studies, 247–252
standardizing results, 308–313
traditional, AQUA advantages over,
296–297

Ino, Y., 174
Investigational new drug applications
(INDs), 133, 134
Iressa, 13, 146. See also Gefitinib
Irwin, R.D., 121
Ivanov, I.G., 113

J
Jackson, S.N., 104
Jain, K.K., 172
Jain, R.K., 161
Janke, M., 205
Jeffery, I.B., 118, 131
Jenkins, R.B., 174
Jeon, Y.K., 174
Jessen, B.A., 130
Ji, Y., 60
Joe, A., 325
Joensuu, H., 48
Johnston, J.B., 27
Jordan, V.C., 27

K
Kadota, K., 118
Kanehisa, M., 74
Kaneko, S., 170
Kang, W.K., 205
Kao, S.C., 209
Karakash, T.K., 116, 118
Kardinal, C.G., 24
Kashani-Sabet, M., 210
Kasof, G.M., 30
Kato, H., 317
Kattan, M.W., 52, 290
Kawakami, Y., 211
Kerr, 2001, 60
Kerr, M.K., 116
Khan, J., 67
Khan, M.Z., 306
Khil, M.S., 203
Khondoker, M.R., 118
Kim, M.J., 75
Kindblom, L.G., 180
Kleihues, P., 175
Ko, L.J., 196
Kobayashi, H., 209
Koehler illumination, 268, 272–274
Koehler, I.B., 118
Koo, D.A., 206
Kopinski, M., 227
Kraus, J.A., 317
Krausz, E., 35
Kreil, D.P., 116
Kroll, T.C., 118
Kros, J.M., 173
Krupinski, E.A., 261
Kuerer, H.M., 50
Kuhn, K., 115
Kultima, K., 134
Kuo, W.P., 60
Kwong, Y.L., 203
Kyoto Encyclopedia of Genes and
Genomes, 74

L
Ladner, R.D., 224
Laham, R., 207
Lahaye, T., 183
Lai, E.C., 209
Lakatosová-Andelová, M., 205
Lambert-Beer law, 272, 274, 276–278,
279
Lapatinib, 27, 159–160
Laser capture microdissection (LCM),
103–104, 105, 106
Laser microdissection and pressure
catapulting (LMPC), 104–105,
106
Lasota, J., 180, 181
Lassman, A.B., 177
Laufs, S., 211
Lausted, C.G., 115
Learn, P.A., 48
Lechanteur, C., 203
Lee, J.S., 210
Lee, P.A., 209
Leighton, J.K., 133
Lerut, E., 157
Lesko, L.J., 133
Leung, J.Y., 33
Leván, A., 8
Levenson, R.M., 133
Lightcap, E.S., 155
Ligon, K.L., 173
Liguori, M.J., 129
Lin, J.L., 30
Linear algebraic equations,
280–281
Linear discriminant analysis, 125
Lio, P., 122
Lionberger, J.M., 183
Liu, J., 321
Liu, W.M., 118
Liu, Y., 207
Lockhart, D.J., 55
Logistic regression, 125
Loi, S., 61
Lombardo, L.J., 14
Longo, D.L., 24
Lorenzi, M.V., 30
Lorusso, P.M., 150
Losordo, D.W., 210
Loss of heterozygosity (LOH), 3, 4, 10, 171, 174
Loughrey, M.B., 40
Louis, D.N., 174, 197
Lu, J.J., 30
Lu, Y., 197
Lui, V.W., 209
Lung metagene model, 59
Lynch, F., 253
M
Macdonald, D.R., 173
Machine learning algorithms, 125, 126, 135, 289
Mairinger, T., 260
Maitournam, A., 51
Makinen, M.J., 9
Makris, A., 62
MALDI. See Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry
Malik, S.N., 151
Mallory, A.C., 209
Mammalian target of rapamycin (mTOR), 156–159, 324
Manome, Y., 202
MAQC (MicroArray Quality Control) project, 60–61, 117
Marie, Y., 173
Marshall, J.L., 206
Martinelli, G., 183
Martuza, R.L., 206
Marty, M., 48
Mass spectrometry. See Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry
Matar, P., 154
Matheny, K.E., 148
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry, 100–101, 103–104, 106
Matuzumab, 155
Mau, B.L., 181
Mauriac, L., 62
Mazouni, C., 70
Mazumder, A., 171, 172
McCabe, A., 296, 298, 314, 315
McCarty, M.M., 314
McCarty, K.S., 296
McDonnell, L.A., 104
Mechanism of action biomarkers, 15, 21, 25, 47, 50, 53, 87, 96
Mechanistic risk assessment, 85, 86, 87, 94, 96
Meistermann, H., 104
Mellinghoff, I.K., 177
Melo, J.V., 182
Mendel, D.B., 162
Mendelsohn, J., 13, 15, 27, 146, 177
Mercatante, D.R., 209
Meresse, P., 23
Meropol, N.J., 177
Methotrexate, 23, 124
Mice, genetically engineered, 95
Microarray analysis
analyzing pathways, 120–121
background, 117
biomarker development and validation, 59–62
differences between experimental samples, 118–119
familywise error rate, 119
gene expression profile relatedness, 120, 121–127
normalization and filtering, 117–118
platform characteristics, 115
platform differences, 114, 116
resampling data, 119–120
RNA quality, 113–114
role of gene expression databases, 121
MicroArray Quality Control (MAQC) project, 60–61, 117
Microautoradiography, 99–100
Microdissection. See Laser capture microdissection (LCM); Laser microdissection and pressure catapulting (LMPC)
Microsatellite instability (MSI), 3–4, 7, 8, 171
Microscopes, Koehler illumination, 268, 272–274
Miettinen, M., 180, 181
Millauer, B., 208
Miller, A.D., 196
Miller, C.A., 317
Miller, D.J., 305
Miller, J.C., 39
Miller, L.D., 61, 75
Minimum Information about a Microarray Experiment (MIAME) standard, 121
Minor, L.K., 34, 35
Mitchell, B.S., 156
Miyashita, T., 196
Moasser, M.M., 148
Mocellin, S., 172
Molecular pathology
and drug development, 1–20
and molecular therapy, 195–220
application to colorectal carcinomas, 8–10
background, 195
best example of drug discovery and development impact, 28
deined, 2
forensic identification, 6–7
immunohistochemistry assays in drug development performed by contract research laboratories, 221–258
impact of research on drug development, 10–12
in nonclinical safety assessment, 85–110
loss of gene expression, 3–4
oncology target and drug discovery, 21–45
pathogen detection, 5–6
pharmaceutical process, 12–18
protein changes, 7–8
quantification, using colorimetric immunohistochemistry, 259–294
role in oncology target discovery, 29–34
target drug “hit” identification, 34–39
techniques for tumor analysis, 169–172
transcriptional profiling in early drug development, 47–84
translocation overview, 5, 6
Molecular therapy, 195–220
antiangiogenesis, 207–208
clinical trials, 209–211
engineered RNA, 208–209
in drug development, 202–204
mutation compensation, 196–202
strategies, 196–209
Mollemann, M., 173
Montagut, C., 156
Moolten, F.L., 202
Morimoto, A.M., 162
Morrissey, D.V., 209
Moss, R.B., 210
Mountain, C.F., 58
MRNA (messenger ribonucleic acid), 7–8, 14, 30, 55–56, 65, 76, 93–94, 113, 114, 208–209, 261–262, 322. See also Gene expression analysis;
Transcriptional profiling
INDEX

MTOR (mammalian target of rapamycin), 156–159, 324
Mughal, T.I., 182
Muller, M., 197
Mullis, K.B., 3
Multiparametric analysis, 322–324
Multitarget agents, 159–163
Multityrosine kinase inhibitors. See Sprycel

N
Nagy, H.J., 203
Naidoo, R., 171
Naive Bayesian classification, 125
Nam, S., 71, 183
Naret, C.L., 154
Naruganahalli, K.S., 28
Natali, P.G., 325
National Surgical Adjuvant Breast and Bowel Project (NSABP), 62
Negative predictive value (NPV), in biomarker validation, defined, 68
Nemunaitis, J., 206
Neoadjuvant chemotherapy, 62–64, 65, 66–67, 69–70, 75
Nesbitt, J.C., 58
Netto, G.J., 169, 171
Neural networks, 125, 126, 127
Neve, R.M., 32
New drug applications (NDAs), 133, 134
Ngo, V.N., 31
Nicholson, R.I., 177
Nigro, J.M., 173
Nishikawa, R., 177
Niu, Y., 117, 118
Nix, D., 156
Noble, R.L., 24
Noguchi, M., 205
Nomograms, 52–53
Nonclinical drug development, defined, 85–86
Nordgren, A., 170
Normanno, N., 176
Novina, C.D., 209
Nowell, P., 8

O
O’Reilly, K.E., 157
Ohgaki, H., 175
Oligodendrogliomas, selecting methylating chemotherapeutic regimen, 172–175
Olsavsky, K.M., 130
Olson, H., 38, 128, 131
Oncology, role of molecular pathology in target and drug discovery, 21–45.
See also Cancer; Chemotherapy
Oncolytic viruses, 206–207
Optimal biological dose (OBD), 144, 145, 148, 150, 152, 155, 162
Orlacchio, A., 209
Orlowski, R.Z., 156
Orr, M.S., 133
Osborne, C.K., 315
Osier, M.V., 64
Osoba, D., 48
Ozanne, B., 177

P
Page, G.P., 131
Paik, S., 296, 314, 324, 325
Papac, R.J., 22
Papandreou, C.N., 156
Paran, Y., 35
Pathogens
role of molecular pathology, 5–6
Pathological complete response (pCR), defined, 50
Pathology, defined, 195. See also Molecular pathology
Patients, developing targeted treatment options for specific subpopulations, 40–41
Pawson, T., 180
Peirson, S.N., 113
Peralba, J.M., 157
Perez, E.A., 296
Perez-Soler, R., 50
Perou, C.M., 56, 57
Perry, A., 173, 317
Petricoin, E.F., 172
Pham, D.L., 285
Pharmacodynamics
and proteasome inhibitors, 155–156
anti-EGFR-targeted therapies, 145–148
background, 144–145
biomarkers, 49, 50, 90, 102, 255, 256
cetuximab and other monoclonal antibodies to EGFR, 152–155
Pharmacodynamics (cont’d)
 gefitinib and erlotinib studies, 148–152
 with rapamycin analogs, 156–159
Pharmacogenomic data
 identifying predictors, 67, 69, 70, 72
 submitting to FDA, 132–134
Pharmacokinetic (PK) studies, 37–38, 99, 144, 151
Piccart-Gebhart, M.J., 48
Pick, E., 314
Pirollo, K.F., 197
Pisters, K.M., 58
Pitterle, D.M., 319
Plate, K.H., 207, 208
Pognan, F., 102
Polymerase chain reaction (PCR), 171
Ponzone, R., 27
Posadas, E.M., 151
Positive predictive value (PPV), in
 biomarket validation, defined, 68
Potti, A., 59, 70
Pozner-Moulis, S., 296, 314
Predictive accuracy, in biomarket
 validation, defined, 68
Predictive biomarkers, 16, 48, 49, 50, 51,
 56–58, 69, 255
Press, W.H., 281
Preto, A., 40
Principal component analysis (PCA),
 122–123
Prives, C., 196
Probability formulas, 290, 291
Prognostic biomarkers, 48, 170, 174, 178,
 320
Progressive scan cameras, 271–272
Prostate-specific antigen (PSA), 2, 206
Proteasome inhibitors, 155–156
Proteins, wild-type, 2, 197–198, 201,
 208
Proteomics, 8, 14, 30, 32–34, 102, 104,
 151, 172
Psyrri, A., 296, 300, 314, 321
Pusztai, L., 56, 64, 69, 72, 74
Q
Quackenbush, J., 118
Quan, A.L., 177
Quezado, M., 170, 177
Quintas-Cardama, A., 182
R
Radinsky, R., 177
Ramswamy, S., 67
Rapamycin analogs, 156–159
Raper, S.E., 210, 211
Rausch, O., 35
Ray, S., 196
Raymond, E., 157
Reed, E., 172
Reed, J.C., 196
Reifenberger, G., 173, 174
Reifenberger, J., 173
Reisdorf, W.C., 121
Renhowe, P.A., 28
Response/efficacy biomarkers, 49, 50
Reyzer, M.L., 104
Richardson, P.G., 156
Riera, J.R., 227
Ries, S.J., 206
Rimm, D.L., 296
RNA (ribonucleic acid). See also Gene
 expression analysis; MRNA
 (messenger ribonucleic acid);
 RNAi (RNA interference)
 comparison with DNA, 171, 172
 engineered, gene therapy, 208–209
 quality control, 113–114
 testing for alterations, 7–8
 visualization, 113–114
RNAi (RNA interference), 31–32, 35, 209,
 211
Robertson, J., 151
Roche, P.C., 296
Rockett, J.C., 128
Rodolfo, M., 208
Rodriguez, R., 206
Rodríguez-Pinilla, S.M., 75
Rody, A., 65
Roizin, L., 2
Rouzier, R., 148, 151, 156
Rom, W.N., 2
Romond, E.H., 48
Rosenberg, S.A., 196, 206, 209
Rosenfeld, M., 210
Rothberg, B.E., 314
Rouse, R., 115
Rousseau, A., 173
Rouzier, R., 52, 57, 64, 65
Rowinsky, E.K., 177
Roylance, R., 170
RTKs (receptor tyrosine kinases), 27
Rubin, B.P., 180, 181
Russ, J.C., 263

S
Saad, R.D., 169, 171
Saal, L.H., 40, 41
Safety assessment
for biopharmaceuticals, 106–109
in drug development, 86, 87–91
in drug discovery, 86, 87, 92–106
nonclinical, background, 85–86
testing toxicogenomics, 128
Saiki, R.K., 3
Salazar, R., 155
Salerno, R.A., 133
Salomon, D.S., 177
Saltz, L.B., 154
Sansal, I., 317
Sarcomas, and translocation, 5, 6
Sarlomo-Rikala, M., 181
Sasaki, H., 174
Sauter, B.V., 208
Sauter, G., 41
Scaltriti, M., 159, 176
Scardino, P., 52
Scartozzi, M., 177
Schena, M., 116
Schiffer, C.A., 28
Schittenhelm, M.M., 71, 183
Schmidt, M., 210
Schneider, V., 39
Scholl, S.M., 62
Schoeder, A., 114
Schoenwald, A., 173
Scott, R.B., 22
Sellers, W.R., 317
Sensitivity, in biomarket validation,
defined, 68
Seo, J., 118, 131
Sequencing genome, 29, 30, 32, 34
Shah, P.B., 210
Shalak, D., 55
Shapiro, L.G., 285
Sherlock, G., 122
Shi, L., 117
Shi, S.-R., 227
Shien, T., 148
Shin, D.M., 153
Short tandem repeats (STR), 6–7
Sidransky, D., 196, 197
Signaling pathways, 25, 26–27, 69,
146–148, 151, 153, 156, 159
Simon, G.R., 319
Simon, R., 51, 60, 68, 73, 125
Simon, R.M., 68
Singh, S.S., 37
SiRNAs (small inhibitory RNAs), 31, 33,
209
Sistare, F.D., 38
Slamon, D.J., 40, 48, 51, 295
Sliwkowski, M.X., 176
Smith, J.S., 317
Smyth, G.K., 60
Smyth, M.J., 206
Socinski, M.A., 155
Sommer, G., 180
Sonabend, A.M., 205
Sorlie, T., 54, 56, 57
Sotiriou, C., 57, 59
Specificity, in biomarket validation,
defined, 68
Spector, N.L., 159
Spectral karyotype imaging (SKY), 170
Speed, T., 117
Spitz, F.R., 196, 197
Spotted microarrays, 115, 116
Spry cel, 14, 28, 71–72, 183
Sriram, D., 23
Stathmin (STMN1), 40–41
Staudt, L.M., 172
Steigen, S.E., 171
Stenman, G., 180
Stockman, G.C., 285
Storey, J.D., 64
Strand, C., 113, 114
Stumpf, W.E., 99
Subramanian, A., 75
Sudakin, V., 28
Suggitt, M., 38
Sullenger, B.A., 209
Sumimoto, H., 211
Sun, Y., 205
Sung, C.C., 173
Support vector machines, 125–127
Surrogate endpoints, for biomarkers, 50
Sutent, 162
Swisher, S.G., 196
Syed, S., 177
Symmans, W.F., 63, 64, 65, 66, 76
Szakacs, G., 24

T
Tabernero, J., 157
Tagawa, M., 206
Takahashi, S., 205
Takahashi, Y., 117
Talpaz, M., 183
Tamaki, K., 7
Tammela, T., 27
Tan, A.R., 151
Tan, P.K., 60, 117
Tanabe, T., 209
Tandem mass spectrometry (MS-MS), 101
Tandem, two-step phase II clinical drug trial design, 73
Tannenbaum, S.R., 130
Tarceva. See Erlotinib
Targeted therapies
anti-EGFR, 145–148
multigene predictor of response, 71–72
multitarget agents, 159–163
Taylor, C.R., 295
Therapeutic index (TI), 38–39, 202
Third-party testing, 239. See also Contract research organizations (CRO)
Thomas, D., 125
Thum, T., 129
Thybusch-Bernhardt, A., 209
Tibshirani, R., 64
Tijo, J.M., 8
Tinkelenberg, B.A., 225
Tischkowitz, M., 75
Tissue microarrays (TMAs)
and AQUA technology, 301, 304, 309, 310–311, 314, 317
defined, 287
embedding biomarkers, 287–289
safety concerns, 94–95
Tong, W., 117
Topoisomerase inhibitors, 23
Tordai, A., 57, 66
Torres-Cabala, C., 172
Toxicogenomics
background, 102
defined, 111
drug development application, 127–129
idiosyncratic toxicity, 128–129
in drug development, 111–141
in drug discovery, 102, 127–128
major regulatory developments, 132–134
predictive vs. mechanistic, 102
purpose, 118
safety testing, 128
study design considerations, 129–132
Transcriptional profiling
as discovery approach for new oncology target identification, 32–34
background, 55–56
defined, 55
defining multigene predictors of chemotherapy response, 66–74
identifying individual genes as biomarkers, 64–66
in early drug development, 47–84
role in research, 56–59
Translocations, 5, 6, 14, 28, 35, 36, 170, 171, 174, 182, 184, 325
Trastuzumab (Herceptin), 27, 40, 48, 49, 51, 72, 144, 159, 160, 295
Traxler, P., 162
Trepicchio, W.L., 133
Trusheim, M.R., 24
Tseng, G.C., 60
Tumor genotypes, 33, 38
Tumor suppressor genes, 4, 13, 24, 26, 35, 40, 196–198, 207, 317
Tusher, V.G., 64, 118
Tykerb. See Lapatinib
Tyrosine kinase inhibitors (TKIs), 146, 151, 152, 162, 163, 181
Tyrosine kinase superfamily, 176
Tzai, T.S., 206
Tzen, C.Y., 181
U
Urosevic, M., 205
V
Van ‘t Veer, L.J., 61, 62
Van de Vijver, M.J., 54, 57
Van den Bent, M.J., 173
Van Meir, E.G., 197
Vandetanib, 163
INDEX

Vanhoefer, U., 155
Vascular endothelial growth factor, 29, 89, 90, 144, 161–162, 163, 207–208, 209, 210
Vasselli, J.R., 172
Vattemi, E., 211
Vedani, A., 37
Verma, I.M., 196
Viale, A., 131
Vignot, S., 157
Vinciotti, V., 117
Viruses, role of molecular pathology, 5–6
Vogel, C.L., 295
Vollmer, C.M., 206
Voluntary genomic data submission (VGDS), 133, 134
Von Deimling, A., 196, 197
Von Hippel Lindau syndrome, 10
Vortmeyer, A.O., 10

W
Wajed, S.A., 3
Wakai, T., 181
Wakeling, A.E., 148
Walker, R.A., 295
Wang, H.Y.J., 100
Wang, M., 6
Wang, Y., 57, 58, 76, 171, 172
Waring, J.F., 129
Wavelet analysis, 122, 123
Weinstein, I.B., 325
Weisberg, E., 181
Weiss, B., 209
Weng, D.E., 209
Wentzell, P.D., 116, 118
Westphal, V., 269
Wheat, N.J., 23
Wieczorek, A.M., 197

Wild-type proteins, 2, 197–198, 201, 208
Wilfinger, W.W., 114
Williams, T.M., 259
Wilson, J., 196
Wolf, A.C., 312
Wolf, J., 210
Wolf, S., 118
Wolmark, N., 62
Woods, A.S., 104
Wu, G.S., 197
Wu, L., 90
Wu, M.J., 132
Wu, R.S., 205, 206

X
Xenographs, 14, 38
Xu, J., 253

Y
Yang, Y., 117, 129
Yang, Z., 148
Yarden, Y., 176
Yen, T.J., 28
Yokoo, H., 173
Yu, Z., 300
Yuan, A., 207
Yue, L., 121
Yuen, T., 60

Z
Zellweger, T., 209
Zerkowski, M.P., 296
Zhao, P., 205
Zheng, X., 206
Zheng, Z., 319, 320
Zhuang, Z., 10
Zobel, R., 260
Zubrod, C.G., 24