Subject Index

Accumulation analysis, 221
Adjacent-categories logit model, 88–96
adjacent-categories logits, 45
Bayesian fitting, 333
cumulative logit model comparison, 95
linear-by-linear model connection, 150
paired preferences, 253–258
R function, 353
random effects, 303
random intercept, 283
references, 115
row effects, 90, 155
SAS, 346
stereotype model connection, 105–107, 110, 111, 114, 115
uniform association, 90
AIC, 69, 75
Alpha see Stochastic superiority, 13
Association models, 145–183
Bayesian fitting, 335
correlation models similarity, 173–176
infinite estimates, 151
multiway table, 160–167
R function, 354
SAS, 347
Stata program, 355
Autocorrelated errors, 279, 293
Baseline-category logit model, 91–92
adjacent-categories logit connection, 91, 283
baseline-category logits, 45
random intercept, 283
stereotype model connection, 103–115
Bayes’ factor, 318
Bayesian confidence interval, 318
Bayesian inference, 315–344
BUGS, 358
R functions, 355
references, 343
SAS, 349
vs. frequentist inference, 341–342
Beta distribution, 319
Between-cluster effects, 264, 311
Bradley–Terry model, 252
BUGS, 358
Canonical correlation model, 172
Category choice, 37–40
effect of number, 37, 82, 191
invariance with cumulative link model, 56
Cauchit link function, 119, 330
Classifying observations, 66, 86
Cluster-specific models, 233
Clustered data, 262–274, 280–312
between-cluster effects, 285, 311
CMH tests, 164–167, 205, 247
SAS, 348
Cochran–Armitage trend test, 85, 205
Coefficient of concordance, 252
Column effects association model, 155
as stereotype model, 160
Complementary log-log link function, 119, 126
random intercept model, 312
Composite likelihood, 279, 293
Composite link function, 47
Compound model, 86, 87
Concordance index, 65
Concordant and discordant pairs, 22–23, 184–192, 219
testing independence, 196, 223
Wilcoxon test, 200
Conditional association, 35–40
models, 161–163
Conditional association (Continued)
summary measures, 36
Conditional independence, 35
generalized CMH tests, 164–167, 348
testing with concordant and discordant pairs, 198
testing with ordinal models, 82–84, 163–166
Conditional inference, 85, 212
Conditional models, 233
Conditional symmetry model, 238–240, 260
stochastic ordering, 258
Contingency coefficient, 193
Continuation odds ratios, 24
Continuation-ratio logit model, 96–103
Bayesian fitting, 334–335
continuation-ratio logits, 45
R functions, 354
random effects, 300–302
references, 116
SAS, 347
Stata program, 355
Correlation, 192–194
intraclass, 283
linear-by-linear model, 150, 151
predictive power in ordinal model, 65
rank, 192
testing independence, 197
working, 268–269
Correlation models, 171–176
association models similarity, 173–176
Correspondence analysis, 181
Count data, 291
Credible interval, 318
Cumulative link model, 118–122
Bayesian fitting, 328–333
negative effect parameterization, 55
R functions, 353
random effects, 284
references, 140
ROC curves, 133
SAS, 346
SPSS, 356
Stata program, 354
Cumulative log-log link, 125–130
Cumulative logit model, 46–87
adjacent-categories comparison, 95
Bayesian fitting, 328–333
cumulative logits, 44
cumulative probit comparison, 123
fitting and inference, 58–67
goodness-of-fit tests, 67–74
infinite estimates, 64–65
invariance to response categories, 56
marginal for multiway table, 241–243
marginal for square table, 231–235, 258
marginal regression model, 263, 272
model checking, 67–75
multiple random effects, 294–306
negative effect parameterization, 49
nonparametric methods, 80
nonproportional odds, 75–80, 86
paired preferences, 253–254
partial proportional odds, 77–79
R functions, 353
random intercept, 282–293
references, 85
row effects, 51, 68
SAS, 346
SPSS, 356
Stata program, 355
Cumulative odds ratio, 19–25, 42
inequality-constrained, 208–210
positive regression dependence, 43
uniform association, 50
Cumulative probabilities, 9
Cumulative probit model, 122–125
Bayesian fitting, 328–331
cumulative logit comparison, 123
multivariate, 220, 340
parameter interpretation, 123
R functions, 353
random effects, 284, 293
random effects model implies marginal model, 308
references, 141
SAS, 346
SPSS, 356
Stata program, 355
Cumulative sum diagram, 42
Cutpoints, 54
Delta see Stochastic superiority, 14
Delta method, 194, 224
Dependence ratio, 278
Deviance, 67, 146
Diagonals-parameter symmetry model, 238, 240, 259
Dirichlet distribution, 319
Dirichlet mixture model, 259, 329, 340
Discordant and concordant pairs, 184–192
Discrete choice model, 117
Dispersion effects, 130–132, 134–137
marginal, 278
random effects, 303
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>references, 141</td>
<td></td>
</tr>
<tr>
<td>software, 347, 355</td>
<td></td>
</tr>
<tr>
<td>Efficiency robustness, 220</td>
<td></td>
</tr>
<tr>
<td>Empirical Bayes estimation, 322–324</td>
<td></td>
</tr>
<tr>
<td>Entropy, 173</td>
<td></td>
</tr>
<tr>
<td>Exact inference</td>
<td></td>
</tr>
<tr>
<td>confidence interval for odds ratio, 33–35</td>
<td></td>
</tr>
<tr>
<td>ordinal tests, 211–214, 222</td>
<td></td>
</tr>
<tr>
<td>SAS, 348</td>
<td></td>
</tr>
<tr>
<td>StatXact and LogXact, 357</td>
<td></td>
</tr>
<tr>
<td>Extreme value distribution, 125</td>
<td></td>
</tr>
<tr>
<td>Factor analysis, 312</td>
<td></td>
</tr>
<tr>
<td>Fisher scoring algorithm, 59</td>
<td></td>
</tr>
<tr>
<td>Flattening constant, 320</td>
<td></td>
</tr>
<tr>
<td>Floor effect, regression with ordinal data, 5</td>
<td></td>
</tr>
<tr>
<td>Friedman test, 259</td>
<td></td>
</tr>
<tr>
<td>Gamma (Goodman and Kruskal), 186–188</td>
<td></td>
</tr>
<tr>
<td>category choice, 191</td>
<td></td>
</tr>
<tr>
<td>conditional association, 219</td>
<td></td>
</tr>
<tr>
<td>Fisher transform, 217</td>
<td></td>
</tr>
<tr>
<td>standard error, 216</td>
<td></td>
</tr>
<tr>
<td>Gauss–Hermite quadrature, 286</td>
<td></td>
</tr>
<tr>
<td>GEE see Generalized estimating equations, 268</td>
<td></td>
</tr>
<tr>
<td>General Social Survey, 11</td>
<td></td>
</tr>
<tr>
<td>Generalized estimating equations, 268–274</td>
<td></td>
</tr>
<tr>
<td>R functions, 354</td>
<td></td>
</tr>
<tr>
<td>references, 278</td>
<td></td>
</tr>
<tr>
<td>SAS, 349</td>
<td></td>
</tr>
<tr>
<td>SPSS, 357</td>
<td></td>
</tr>
<tr>
<td>Generalized linear mixed model, 282</td>
<td></td>
</tr>
<tr>
<td>Generalized loglinear model, 179, 264</td>
<td></td>
</tr>
<tr>
<td>R function, 355</td>
<td></td>
</tr>
<tr>
<td>Gibbs sampling, 317</td>
<td></td>
</tr>
<tr>
<td>Global odds ratio, 19–31, 38–40, 176–179</td>
<td></td>
</tr>
<tr>
<td>inequality-constrained, 208–210</td>
<td></td>
</tr>
<tr>
<td>model, 176–179, 267</td>
<td></td>
</tr>
<tr>
<td>positive quadrant dependence, 43</td>
<td></td>
</tr>
<tr>
<td>uniform association, 177, 267, 273</td>
<td></td>
</tr>
<tr>
<td>GoldMineR, 358</td>
<td></td>
</tr>
<tr>
<td>Heterogeneous linear-by-linear association model, 161, 164, 183</td>
<td></td>
</tr>
<tr>
<td>Hierarchical Bayesian estimation, 324–327, 339</td>
<td></td>
</tr>
<tr>
<td>Hierarchical model, 305–306</td>
<td></td>
</tr>
<tr>
<td>Bayesian inference, 324–327, 339</td>
<td></td>
</tr>
<tr>
<td>Highest posterior density confidence region, 318</td>
<td></td>
</tr>
<tr>
<td>Homogeneous association model, 160</td>
<td></td>
</tr>
<tr>
<td>Homogeneous linear-by-linear association model, 161, 163, 166, 167, 183</td>
<td></td>
</tr>
<tr>
<td>Homogeneous row effects model, 164, 166</td>
<td></td>
</tr>
<tr>
<td>Hosmer–Lemeshow test, 68</td>
<td></td>
</tr>
<tr>
<td>Hurdle model, 291</td>
<td></td>
</tr>
<tr>
<td>Independence loglinear model, 146</td>
<td></td>
</tr>
<tr>
<td>Independent multinomial sampling, 195</td>
<td></td>
</tr>
<tr>
<td>Indistinguishability of categories, 107, 112, 113</td>
<td></td>
</tr>
<tr>
<td>Information matrix, 59</td>
<td></td>
</tr>
<tr>
<td>cumulative link model, 120</td>
<td></td>
</tr>
<tr>
<td>observed and expected, 59–60</td>
<td></td>
</tr>
<tr>
<td>Interval variable, 2</td>
<td></td>
</tr>
<tr>
<td>Intraclass correlation, 283</td>
<td></td>
</tr>
<tr>
<td>Isotonic regression, 221</td>
<td></td>
</tr>
<tr>
<td>Item response model, 181, 242</td>
<td></td>
</tr>
<tr>
<td>Jeffreys prior, 319</td>
<td></td>
</tr>
<tr>
<td>Jonckheere–Terpstra test, 197</td>
<td></td>
</tr>
<tr>
<td>Kappa (Cohen’s), 250</td>
<td></td>
</tr>
<tr>
<td>Kendall’s tau, 189, 223</td>
<td></td>
</tr>
<tr>
<td>Kendall’s tau-b, 188–191, 219</td>
<td></td>
</tr>
<tr>
<td>category choice, 191</td>
<td></td>
</tr>
<tr>
<td>standard error, 217</td>
<td></td>
</tr>
<tr>
<td>Kruskal–Wallis test, 81, 83, 201–203</td>
<td></td>
</tr>
<tr>
<td>Kullback–Leibler distance, 173</td>
<td></td>
</tr>
<tr>
<td>Latent class model, 312</td>
<td></td>
</tr>
<tr>
<td>Latent Gold, 358</td>
<td></td>
</tr>
<tr>
<td>Latent variable, 4, 5, 11, 53, 97</td>
<td></td>
</tr>
<tr>
<td>agreement model, 252</td>
<td></td>
</tr>
<tr>
<td>Bayesian modeling, 330, 340</td>
<td></td>
</tr>
<tr>
<td>cumulative link model, 119</td>
<td></td>
</tr>
<tr>
<td>latent class model, 312</td>
<td></td>
</tr>
<tr>
<td>motivation for proportional odds, 53–55</td>
<td></td>
</tr>
<tr>
<td>parameter interpretation, 55, 121</td>
<td></td>
</tr>
<tr>
<td>proportional odds, 97</td>
<td></td>
</tr>
<tr>
<td>RC model, 170</td>
<td></td>
</tr>
<tr>
<td>stereotype model, 107</td>
<td></td>
</tr>
<tr>
<td>LEM, 358</td>
<td></td>
</tr>
<tr>
<td>Likelihood-ratio confidence interval see Profile likelihood confidence interval, 30</td>
<td></td>
</tr>
<tr>
<td>Likelihood-ratio test, 29–31, 146, 211</td>
<td></td>
</tr>
<tr>
<td>Likert scale, 2</td>
<td></td>
</tr>
<tr>
<td>LIMDEP, 358</td>
<td></td>
</tr>
<tr>
<td>Linear probability model, 140</td>
<td></td>
</tr>
<tr>
<td>Linear trend test, 152, 223</td>
<td></td>
</tr>
<tr>
<td>Linear-by-linear association model, 147–154, 180</td>
<td></td>
</tr>
<tr>
<td>Bayesian fitting, 337–339</td>
<td></td>
</tr>
<tr>
<td>heterogeneous association, 161, 164</td>
<td></td>
</tr>
<tr>
<td>homogeneous association, 161, 163, 166, 167, 183</td>
<td></td>
</tr>
<tr>
<td>quasi, 240, 249</td>
<td></td>
</tr>
<tr>
<td>smoothing, 323, 339</td>
<td></td>
</tr>
<tr>
<td>Link functions</td>
<td></td>
</tr>
<tr>
<td>cumulative link model, 118–119</td>
<td></td>
</tr>
<tr>
<td>generalized, 129–130, 343</td>
<td></td>
</tr>
<tr>
<td>types of logits, 44–46</td>
<td></td>
</tr>
</tbody>
</table>
Local odds ratio, 19–22, 148
and cumulative odd ratio, 42
and stochastic orderings, 42
conditional, 35, 37
inequality-constrained, 208–211
positive likelihood-ratio dependence, 43
small-sample confidence interval, 33–35
triangular tables, 259
uniform association, 90
Log-log link functions, 126
Logistic-normal distribution, 325–327
Logits for ordinal response, 44
adjacent-categories logits see
Adjacent-categories logit model, 44
continuation-ratio logits see Continuation-ratio logit model, 44
cumulative logits see Cumulative logit model, 44
Loglinear model, 145–167, 180, 324
LogXact, 357
Machine learning, 86, 343
Mann–Whitney test, 200
Mantel correlation test, 164, 166
Marginal effects
compared to subject-specific effects, 235, 307–310
Marginal homogeneity
generalized CMH tests, 247
multiway tables, 241–247
square tables, 226–230
Marginal likelihood function, 285
Marginal models, 231–235, 262–274, 280
compared to random effects models, 310–312
ML fitting, 264–267
references, 277–278
Markov chain, 276, 293
Markov chain Monte Carlo, 317, 327
Matched pairs data, 225–261
McNemar’s test, 226
Mean response model, 137–140, 172, 223
comparing marginal means, 227, 231, 246–247
R function, 353
references, 142
Measures of association
SAS, 348
SPSS, 356
standard errors, 194, 216–218
standard errors, independent multinomial sampling, 195
Stata program, 355
MidP-value, 214
Midrank, 11, 42, 80, 200, 202
Missing data, 273, 312
Monte Carlo methods, 214, 287, 317, 327
mph.fit (R function), 351
Multilevel model, 303–306
references, 313
Multinomial parameters, 58
Bayesian inference, 319–327
comparing groups, 199–205, 220, 335
order-restricted, 221
Multiple correlation, 65
Multivariate response data
Bayesian inference, 339
marginal models, 263–274
random effects models, 282–313
Newton–Raphson algorithm, 60
Nominal variable, 1
bivariate response with ordinal, 278
Nonparametric methods, 80–81, 86, 184–192,
194–205, 214–216
Normal scores, 11
Odds ratio, 18
Order-restricted inference, 206–211
association models, 157–160, 171
comparing binomials, 206
likelihood-ratio tests, 211
marginal distributions, 258
odds ratios, 208–211
references, 221
Ordered logit model, 53
Ordered probit model, 122
Ordered stereotype model, 106
order-restricted association model, 160
Ordinal agreement model, 249–250
Ordinal data, 1–358
analysis using ordinary regression, 4–8
surveys of ways to analyze, 8
Ordinal odds ratios, 14–26, 37, 42, 208–211,
218, 222
concordance/discordance, 217
confidence intervals, 27
cumulative odds ratio see Cumulative odds ratio, 19
global odds ratio see Global odds ratio, 19
local odds ratio see Local odds ratio, 19
testing homogeneity, 299
Ordinal quasi-symmetry model, 236–238, 259
and bivariate normal, 236, 260
matched pairs, 260
matched sets, 243–246, 259
stochastic ordering, 258
Ordinal Rasch model, 245
Ordinal variable, 1
Orthogonal polynomials, 181, 183
Paired preference models, 252–258, 260
SAS, 349
Palindromic invariance, 84
Parallel log odds model, 90–91
Partial proportional odds model, 77–79, 97
Pearson goodness-of-fit statistic, 67, 146
Penalized quasi-likelihood, 287
Polychoric correlation, 193–194, 220
R function, 354
SAS, 348
Population-averaged tables, 232–233
Positive likelihood-ratio dependence, 43
Positive quadrant dependence, 43
Positive regression dependence, 43
Power
comparing groups, 81, 86, 313
establishing an association, 198
Predictive power, 65
Prior distribution
conjugate, 319
cumulative probabilities, 328
Dirichlet, 319
improper, 327
logistic-normal, 325–327
multivariate normal, 328
Probit link function, 55, 119, 328, 340
Probit model see Cumulative probit model, 55
Profile likelihood confidence interval, 30
in R, 61, 354
in SAS, 61
Proportional hazards model, 116, 128
references, 141
Proportional odds assumption, 53, 97, 118
checking, 70–73, 75–77, 79, 278
Proportional odds model
adjacent-categories logits, 89
continuation-ratio logits, 97
cumulative logits, 53
proportional odds property, 53–55
Quadrature points, 286
Quasi-likelihood, 268
Quasi-linear-by-linear association model, 240, 249
Quasi-uniform association, 239–240
Quasi-independence model, 240, 248
triangular table, 259
Quasi-symmetry model, 236, 244
R (software), 350–355
R + C model, 182
R-squared, 65
Random effects models, 281–314
compared to marginal models, 310–312
nonparametric, 313
predicting random effects, 287
R function, 355
references, 312
SAS, 349
Stata program, 356
Rank tests, 80–81, 199–204, 214–216
marginal homogeneity, 229–230
marginal models, 278
Rank transform method, 215
Rank-based summaries, 10–18, 42, 80–81, 227–230
Rasch model, 242, 245
Rater agreement, 247–252
modeling, 249, 340, 343
references, 259
weighted kappa, 250–251, 343
RC model, 116, 167–176
as stereotype model, 170
Bayesian inference, 338
homogeneous association, 182
references, 181
RC(M) model, 174, 338
Receiver operating characteristic, 133
Regression model
multinomial mean response, 137–140
OLS with ordinal data, 4–8
Residuals, 73–74
Pearson, 73
standardized, 73
Retrospective studies, 115, 344
Rho-c (Stuart), 222
Ridit scores, 10, 15–17, 41, 42, 80, 215
comparing several groups, 201
comparing two groups, 223
for marginal distributions, 228–229
matched pairs, 192
standard error of mean, 224
ROC curves, 132–137, 141
Row effects
adjacent-categories logit model, 90
association model, 154–160, 180
cumulative link model, 142
cumulative logit model, 51, 68
cumulative probit model, 125
Row effects (Continued)
- homogeneous, 164, 166
- paired preferences 254

Sample size
- comparing groups, 81, 86
- establishing an association, 198
- longitudinal study, 313
SAS, 345–350
- expected and observed information, 60
Score test, 30–31
- generalized CMH test, 165–166
Score test-based confidence interval, 30, 354
Scores
- choice of, 221
- controversy in using with ordinal data, 8
- types of, 9–12
Sensitivity, 188
Sequential logit model see Continuation-ratio logit model, 97
Small-sample inference
- confidence interval for local odds ratio, 33
- ordinal tests, 211–214
Smoothing
- contingency tables, 321–324, 342
- histogram, 325
Software, 345–358
- Somers’ d, 189–191
- standard error, 218
SPSS, 356–357
Square tables, 225–261
- SAS, 349
Stata, 355–356
StatXact, 357
Stereotype model, 103–115
- column effects model special case, 160
- R function, 353
- RC model special case, 170
- references, 116
Stochastic ordering, 24–25
- Bayesian comparison of two groups, 335–337
- correlation model, 175
- cumulative link models, 55, 130
- cumulative logit model, 48
- marginal distributions, 228
- models for square tables, 258
- ordered stereotype model, 106
- references, 221
Stochastic superiority, 13–17, 41
- Bayesian analysis, 337
- confidence intervals, 32, 354
- Mann–Whitney test, 200
- marginal distributions, 228–230
- multiple comparison, 203–204
- nontransitivity, 42
- R functions, 354
- rank transform methods, 215
- ROC curves, 41, 136
- Somers’ d, 190
- standard error, 218
Subject-specific effects, 233
- compared to marginal effects, 235, 307–310
Subject-specific models, 233–235, 241, 281–314
Subject-specific tables, 232–233
SUDAAN, 358
SuperMix, 358
Survival data, 103, 116, 128
Symmetry model, 236, 261

t-distribution approximation of logistic, 330
- Tau see Kendall’s tau, 184
- Tau-b see Kendall’s tau-b, 184
- Tau-c (Stuart), 222
- Tetrachoric correlation, 193, 219
- Thresholds, 54
- Time series, 276, 279, 293
- Transitional model, 274–277
- references, 278
- Trend test, 205, 220
- Triangular tables, 259
Uniform association
- cumulative odds ratios, 42, 50
- global odds ratios, 177, 267, 273
- local odds ratios, 42, 90
Variance component, 283
- testing, 287, 295
VGAM (R library), 353

Wald confidence interval, 29
- test, 29
- Weighted kappa, 250–251, 343
- and correlation, 261
- Weighted least squares, 41
- cumulative logit model, 58
- global odds ratio model, 182
- marginal models, 278
- mean response model, 138
- SAS, 345
- Wilcoxon test, 80–81, 199–201, 223, 337
- clustered data, 220
- Within-cluster effects, 264, 285, 311
Zero-inflated count data, 291–293