Contents

Foreword XXVII
Preface XXIX

1 Introduction: An Overview of Nanotechnology and Nanomaterial Standardization and Opportunities and Challenges 1
 Ajit Jilavenkatesa
 1.1 Standards and Standardization 1
 1.2 Nanotechnology Standardization 2
 1.2.1 Technology Standardization 2
 1.2.2 Development of Standards for Nanotechnology 3
 1.2.3 Nanotechnology Standards Development in Europe 6
 1.2.4 Working with the Organization for Economic Cooperation and Development 7
 1.3 Nanomaterial Standardization 8
 1.4 Challenges 9
 1.4.1 Data and Information Gaps 9
 1.4.2 Competing Priorities 11
 1.4.3 Knowledge of Standards Availability and Their Use 11
 1.5 Opportunities 12
 1.6 Summary 13

Part One Nanotechnology Basics: Definitions, Synthesis, and Properties 15

2 Nanotechnology Definitions at ISO and ASTM International: Origin, Usage, and Relationship to Nomenclature and Regulatory and Metrology Activities 17
 Frederick C. Klaessig
 2.1 Introduction 17
 2.2 Context based on Size, Property, and Regulatory Framework 19
 2.2.1 Nanoscale 19
 2.2.2 Properties 21
2.2.3 Nanotechnology Description and Regulatory Framework 23
2.3 Nano-objects: Particles, Shapes, and Shape Descriptors 24
2.3.1 Particle and Nanoscale 25
2.3.2 Cartesian Coordinates to Describe Shape 25
2.3.3 Shape Descriptors (Object, Particle, Fiber, and Plate) 27
2.4 Collections of Nano-Objects 27
2.4.1 Aggregates and Agglomerates 28
2.4.2 Nanostructured 30
2.4.3 Dispersions and Composites 31
2.5 Layers and Coatings as Surface Chemistry 31
2.6 National Definitions 32
2.7 Nomenclature 34
2.7.1 Background Considerations 34
2.7.2 Commercial Nomenclature 36
2.7.3 Nomenclature as Enumeration 39
2.7.4 Focus, Categories, and Data Sets 41
2.8 Terminology as a Controlled Vocabulary and Nomenclature as Knowledge Organization 42
2.9 Concluding Remarks 44
Acknowledgments 44
References 45

3 Engineered Nanomaterials: a Discussion of the Major Categories of Nanomaterials 49
Marcel Van de Voorde, Maciej Tulinski, and Mieczyslaw Jurczyk
3.1 Description of Nanotechnology and Nanomaterials 49
3.2 Nanomaterials’ Morphologies 49
3.2.1 Zero-Dimensional Nanomaterials 51
3.2.2 One-Dimensional Nanomaterials 51
3.2.3 Two-Dimensional Nanomaterials 52
3.2.4 Three-Dimensional Nanomaterials 52
3.3 Types of Nanomaterials 53
3.3.1 Inorganic 53
3.3.1.1 Metal Nanoparticles 53
3.3.1.2 Other Inorganic Nanoparticles 54
3.3.1.3 Ceramics 54
3.3.1.4 Semiconductors 55
3.3.1.5 Inorganic–Organic Nanomaterials 55
3.3.2 Organic 56
3.3.2.1 Carbon Nanomaterials 56
3.3.2.2 Other Organic Nanomaterials 57
3.3.3 Nanocomposites 57
3.4 Properties of Nanomaterials 58
3.4.1 Mechanical Properties 59
3.4.2 Electrical Properties 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3</td>
<td>Magnetic Properties</td>
<td>59</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Thermal Properties</td>
<td>60</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Optical Properties</td>
<td>60</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Biological Properties</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Applications of Nanomaterials and Nanocomposites</td>
<td>61</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Nanodispersions</td>
<td>63</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Nanocrystalline Solids</td>
<td>63</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>Nanostructured Titanium</td>
<td>63</td>
</tr>
<tr>
<td>3.5.2.2</td>
<td>Nanostructured Stainless Steel</td>
<td>65</td>
</tr>
<tr>
<td>3.5.2.3</td>
<td>Other Nanometals</td>
<td>65</td>
</tr>
<tr>
<td>3.5.2.4</td>
<td>Nanoceramics</td>
<td>66</td>
</tr>
<tr>
<td>3.5.2.5</td>
<td>Carbon Nanomaterials</td>
<td>67</td>
</tr>
<tr>
<td>3.5.2.6</td>
<td>Dendrimers</td>
<td>67</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Nanocomposites</td>
<td>68</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>Hydrogen Storage</td>
<td>68</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>Bionanocomposites</td>
<td>68</td>
</tr>
<tr>
<td>3.5.3.3</td>
<td>Hard RE-3d Magnets</td>
<td>68</td>
</tr>
<tr>
<td>3.5.3.4</td>
<td>Polymer Nanocomposites</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions and Outlook</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>70</td>
</tr>
</tbody>
</table>

4 Nanomaterials Synthesis Methods 75

Maciej Tulinski and Mieczyslaw Jurczyk

4.1 Classification 75

4.2 Physical Methods 78
4.2.1	Physical Vapor Deposition	78
4.2.2	Pulsed Laser Deposition	80
4.2.3	Ion Beam Techniques	80
4.2.4	Plasma Synthesis	81

4.3 Chemical Methods 82
4.3.1	Chemical Vapor Deposition	82
4.3.2	Epitaxial Growth	83
4.3.3	Colloidal Dispersion	83
4.3.4	Sol–Gel	84
4.3.5	Hydrothermal Route	85
4.3.6	Microemulsions	85
4.3.7	Polymer Route	86

4.4 Mechanical Methods 87
4.4.1	Milling Processes	87
4.4.1.1	Mechanical Alloying	87
4.4.1.2	High-Energy Ball Milling	89
4.4.1.3	Mechanochemical Synthesis	89
4.4.1.4	Mechanochemical Activation Synthesis	90
4.4.2	Severe Plastic Deformation	90
4.4.2.1	Equal Channel Angular Pressing	90
Part Two Metrology for Engineered Nanomaterials 129

7 Characterization of Nanomaterials 131
 Alan F. Rawle
 7.1 Introduction 131
 7.2 Size 133
 7.3 Shape 136
 7.4 Surface 139
 7.5 Solubility 142
 7.6 International Standards and Standardization 144
 7.7 Summary 146
 Acknowledgments 146
 References 147

8 Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials 151
 Aleksandr B. Stefaniak
 8.1 Introduction 151
 8.2 ENM Metrics and Instrumentation for Characterization 154
 8.2.1 Surface Area 155
 8.2.2 Bulk Chemical Composition 157
 8.2.3 Surface Chemistry 158
 8.2.4 Particle Size 159
 8.2.5 Particle Size Distribution 162
 8.2.6 Morphology/Shape 163
 8.2.7 Surface Charge 164
 8.2.8 Agglomeration/Aggregation State 165
 8.2.9 Crystal Structure 166
 8.2.10 Solubility 167
 8.3 Summary 169
 List of Abbreviations 169
 Disclaimer 170
 References 170

9 Analytical Measurements of Nanoparticles in Challenging and Complex Environments 175
 Bryant C. Nelson and Vytas Reipa
 9.1 Introduction 175
 9.2 Nanoparticle Measurements in Soils and Sediments 175
 9.3 Nanoparticle Measurements in Air 177
 9.4 Nanoparticle Measurements in Cosmetics 179
 9.5 Nanoparticle Measurements in Aquatic Environments 180
 9.6 Nanoparticle Measurements in Foods 182
 9.7 Nanoparticle Measurements in Biological Matrices 184
9.8 Key Challenges for Characterizing Nanoparticle Sizes and Shapes in Biological Matrices 184
9.9 Key Challenges in the Quantitative Measurement of Nanoparticles in Biological Matrices 186
9.10 Key Challenges for Determining Nanoparticle Dose/Concentration in Biological Matrices 187
9.11 Key Challenges in Measuring Nanoparticle Agglomeration in Biological Matrices 188
9.12 Notable Instrumentation for Characterizing Nanoparticles in Biological Matrices 188
9.13 Concluding Remarks 190
NIST Disclaimer 191
List of Acronyms 191
References 192

10 Metrology for the Dimensional Parameter Study of Nanoparticles 197
N. Feltin, S. Ducourtieux, and A. Delvallée
10.1 Introduction 197
10.2 Traceability of the Dimensional Measurements at the Nanoscale 198
10.2.1 How to Make the Measurement Reliable and Comparable? 198
10.2.2 Traceability Routes 199
10.3 Measuring the Nanoparticle Size 201
10.3.1 Direct and Indirect Measuring Techniques 201
10.3.1.1 Direct Techniques 201
10.3.1.2 Indirect Techniques 202
10.3.2 Measuring Methods by Microscopy-based Techniques 203
10.3.2.1 Sample Preparation 203
10.3.2.2 Calibration/Metrological Characterization of Instruments 204
10.3.2.3 Measurement Principle and Acquisition 205
10.3.2.4 Image Analysis and Data Processing 206
10.3.3 Assessment of Error Sources in Microscopy 207
10.3.3.1 Type A Uncertainties 207
10.3.3.2 Type B Uncertainties 208
10.4 Conclusions 209
References 209

11 Analytical Nanoscopic Techniques: Nanoscale Properties 211
Daisuke Fujita
11.1 Introduction 211
11.2 Historical Overview of Analytical Nanoscopic Techniques 212
11.3 Scanning Probe Microscopy 214
11.3.1 Scanning Tunneling Microscopy 214
11.3.2 Atomic Force Microscopy 215
16.3 Summary, Conclusions, and Future Focus Areas 286
References 286

17 Standardization of Nanomaterials: Methods and Protocols 289
Dr. Jean-Marc Aublant
17.1 Genesis of CEN/TC 352 289
17.2 Nanostrand: a European Road Map of Standards Needs for Nanotechnologies 290
17.3 Mandate for a European Standardization Program for Nanotechnologies 291
17.4 Mandate for Developing European Standards for Nanotechnologies 293
17.5 Publication and Ongoing Work of CEN/TC 352 294
References 297

18 Nanomaterial Recommendations from the International Union of Pure and Applied Chemistry 299
Elisabeth Mansfield, Richard Hartshorn, and Andrew Atkinson
18.1 IUPAC Organization 299
18.1.1 Scope 299
18.1.2 History 299
18.1.3 Membership 300
18.1.4 Organization 301
18.1.5 Impact on Industry and Regulatory Bodies 302
18.2 The Future of IUPAC in Nanotechnology 302
18.2.1 Anticipated Scope of Work 302
18.2.2 Existing Nomenclature Systems that may be Relevant to the Development of Nomenclature for Nanomaterials 303
18.2.3 Description of Recommendations Under Development (Work Items) 304
18.2.4 Customers and Users 304
18.3 Summary, Conclusions, and Future Focus Areas 304
References 305

19 Reference Nanomaterials to Improve the Reliability of Nanoscale Measurements 307
G. Roebben, V.A. Hackley, and H. Emons
19.1 Introduction 307
19.1.1 Scope 307
19.1.2 Terminology 307
19.2 Reference Materials for Quality Control 308
19.2.1 Analytical Quality Assurance 308
19.2.2 Example: Quality Control Chart 309
19.3 Reference Materials for Instrument Calibration 310
19.4 Reference Materials for Method Validation 312
19.4.1 Example 1: Between-Lab Reproducibility 312
19.4.2 Example 2: Between-Method Equivalence 314
19.4.3 Example 3: Within-Laboratory Method Validation 315
19.5 Outlook/Future Trends 317
19.5.1 The "Representative Test Material" (RTM) Concept 317
19.5.2 Reference Materials for Use in Environmental and Health Research 319
19.5.3 Matrix Reference Materials 319
19.6 Conclusions 320
Acknowledgment 320
Disclaimer 320
References 321

Versailles Project on Advanced Materials and Standards (VAMAS) and its Role in Nanotechnology Standardization 323
Stephen Freiman

20.1 Background 323
20.2 How Does VAMAS Help? 324
20.3 The VAMAS Role in Nanotechnology 325
20.4 Summary 326

Part Four Risk-Related Aspects of Engineered Nanomaterials 327

21 Categorization of Engineered Nanomaterials For Regulatory Decision-Making 329
Maria J. Doa

21.1 Introduction 329
21.2 Chemical Categories 330
21.3 Adoption of a Similar Approach for Nanomaterials 331
21.3.1 OECD Expert Meeting on the Categorization of Manufactured Nanomaterials 333
21.4 Categorization in a North American Regulatory Context 334
21.4.1 US Chemical Regulatory Framework 334
21.4.2 Canada–US Regulatory Cooperation Council’s (RCC) Nanotechnology Initiative 336
21.4.2.1 Carbon Nanotubes 337
21.4.2.2 Inorganic Carbon 337
21.4.2.3 Metal Oxides and Metalloid Oxides 337
21.4.2.4 Metal, Metal Salts, and Metalloid Nanoparticles 337
21.4.2.5 Semiconductor Quantum Dots 338
21.4.2.6 Organics 338
21.4.2.7 Other 338
21.4.3 Future Developments 338
21.5 Physicochemical Properties 339
22 Nano-Exposure Science: How Does Exposure to Engineered Nanomaterials Happen? 343
Christie M. Sayes and Grace V. Aquino
22.1 Introduction 343
22.2 The Stages of a Product's Lifecycle 343
22.3 Product Life Evaluation 344
22.4 Product Lifecycle versus Product Value Chain 344
22.5 Exposure at Each Stage of the ENM Product Lifecycle 348
22.5.1 Stage 1: Pristine Nanomaterial Production 350
22.5.2 Stage 2: Formulation and Manufacture 350
22.5.3 Stage 3: Use Scenarios 351
22.5.4 Stage 4: End-of-life 353
22.6 Environmental Release of Engineered Nanomaterials from Common Nano-enabled Products 354
22.6.1 Textile Products 354
22.6.2 Paint Products 355
22.6.3 Food Container Products 355
22.6.4 Sunscreen Products 356
22.7 Conclusions 356
References 357

23 Nanotoxicology: Role of Physical and Chemical Characterization and Related In Vitro, In Vivo, and In Silico Methods 363
Pavan M. V. Raja, Ghislaine Lacroix, Jacques-Aurélien Sergent, Frédéric Bois, Andrew R. Barron, Enrico Monbelli, and Dan Elgrabli
23.1 Importance of Toxicological Studies – Interaction of Nanoparticles and Living Species 363
23.2 Regulatory Aspects Applied to Nanomaterials 367
23.2.1 Nanomaterial Definition 367
23.2.2 REACh and Nanomaterials 370
23.2.3 Current National Context: Inventories 370
23.2.4 Perspectives 371
23.3 Essential Chemical and Physical Characterization for Nanotoxicological Studies 371
23.4 Methods in Nanotoxicology 372
23.4.1 Introduction: Toxicology and Nanotoxicology 372
23.4.2 In Vivo Approach 372
23.4.2.1 Animal Models 372
23.4.2.2 Exposure Methods 373
23.4.2.3 Metrics 373
23.4.2.4 Biological Endpoints 373
23.4.3 In Vitro Approach 374
23.4.3.1 In Vitro Cellular Models 374
23.4.3.2 In Vitro NM Exposure 374
23.4.3.3 The Question of Dosimetry 375
23.4.3.4 In Vitro Endpoints 375
23.4.4 In Silico Approach 375
23.4.4.1 Physiologically Based Pharmacokinetic (PBPK) Models 375
23.4.4.2 (Quantitative) Structure–Activity Relationships ((Q)SARs) 376
23.5 Conclusions 376
References 376

24 Minimizing Risk: An Overview of Risk Assessment and Risk Management of Nanomaterials 381
Jo Anne Shatkin, Kimberly Ong, and James Ede
24.1 How Risk Assessment and Risk Management Can Minimize Risk 381
24.2 Risk Assessment of Nanomaterials 383
24.2.1 Needs for Risk Assessment of Nanomaterials 383
24.2.1.1 Physical–Chemical Properties 384
24.2.1.2 Dose Metrics 385
24.2.1.3 Toxicity 386
24.2.1.4 Assay Interference 387
24.2.1.5 Exposure Scenarios 387
24.2.1.6 Uncertainty 389
24.2.2 Strategies to Support Risk Assessment Evaluation 390
24.2.2.1 Weight of Evidence 390
24.2.2.2 Categorization and Grouping 390
24.2.2.3 Alternative Testing Strategies and Methods 391
24.2.3 Frameworks for Risk Assessment 392
24.2.3.1 General Considerations for Nanomaterial-Specific Framework Development 392
24.2.3.2 Regulatory Frameworks for Nanomaterials 393
24.3 Risk Management of Nanomaterials 395
24.3.1 Nanomaterial Risk Management to Protect Workers 395
24.3.1.1 Exposure Limits 397
24.3.1.2 Workplace Controls 397
24.3.1.3 Risk Communication – Safety Data Sheets 398
24.3.2 Nanomaterial Risk Management to Protect Consumers and the Public 399
24.3.2.1 Product Safety 399
24.3.2.2 Cosmetics and Personal Care Products 400
24.3.2.3 Food Safety 400
24.3.3 Nanomaterial Risk Management to Protect the Environment 401
24.3.3.1 Agricultural Use 401
24.3.3.2 Environmental Remediation 401
24.4 Conclusions 402
References 403
25 Nanotechnology-based Products, Applications, and Industry

25.1 General Overview

25.1.1 Definition of Categories for Nanotechnology-based Products

25.1.2 Manufacturing Methods and Benefits of Major Types of Nanotechnology-based Products

25.1.2.1 Composites

25.1.2.2 Dispersions and Emulsions

25.1.2.3 Fibers and Yarns

25.1.2.4 Nanoporous Systems

25.1.2.5 Particle-based Systems

25.1.2.6 Thin Films

25.2 Case Studies: Composite Systems

25.2.1 Rubber Nanocomposites

25.2.2 Glass Ceramics

25.2.2.1 Amorphous Phase Decomposition of the Glass

25.2.2.2 Nucleation

25.2.2.3 Crystallization of LAS Crystals

25.2.3 Nanotechnology-based Batteries

25.2.3.1 Performance and Safety of Electrolytes

25.2.3.2 Performance and Safety of Separators

25.2.3.3 Performance and Safety of Electrodes

25.2.4 Oxide Dispersion Strengthened Alloys: Trends and Innovations

25.2.5 Acceleration of Concrete Hardening by Calcium Silicate Hydrate Seeds

25.3 Case Studies: Nanoporous Systems

25.3.1 Nanotechnology-based Materials for the Energy Turn

25.3.2 Water Purification by Ultra- and Nanofiltration Membranes

25.3.2.1 Pollutant Selectivity

25.3.2.2 Water–Energy Nexus

25.3.2.3 Desalination versus Water Reuse

25.3.2.4 Emerging Membranes

25.3.2.5 Membranes in Development Aid

25.4 Case Studies: Particle-Based Systems

25.4.1 Silica as Free-Flow and Anticaking Agent

25.4.1.1 Fine Powders

25.4.1.2 Wet Powders

25.4.1.3 Soft Powders

25.4.1.4 Keeping Fire Extinguishers Functional

25.4.1.5 Manufacturing Process