Index

a
Abbe errors, 201
abrasive in toothpaste, 423
absorption, distribution, metabolism, and
excretion (ADME), 375
accelerating voltage
– electron properties, 220
acoustic noise, 208
active nanomaterials, 142
active pharmaceutical ingredient (API), 142
active surface area, 155
additive layer manufacturing (ALM), 436
adhesive forces, 232
adsorption, 140
adsorption, distribution, metabolism, and
excretion (ADME), 530
Advanced Industrial Science and Technology (AIST), 397
adverse outcome pathway, 392
aerodynamic diameter, 137
aerogel, 440
aerosolization, 493
– techniques, 488
aerosols, 488
– to liquid particle extraction system
(ALPXS), 178
aerosols science, 25
– usage of particle, 25
AEROXIDE®-fumed titanium dioxide, 450
AFM technique, 205
agglomerates, 28, 29, 30, 31, 33, 107, 131, 133
agglomeration, 30, 108, 165, 166, 179, 181, 252, 343, 372
– status, 178
aggregates, 28, 30, 31
aggregation, 30
aging, 123
Ag⁺ ions, 338
Ag nanowires, 423
Ag/Pt nanoparticles
– with nanoparticles of TiO₂, 256
agrochemicals, 182
Ag–sulfides or Ag–carbonates in wastewater samples, 181
airborne particles, properties determined for, 159
air-liquid interface (ALI), 374
air pollution, 364
alum–sulfides or Ag–carbonates in wastewater
samples, 181
Al₂O₃-supported nano-NiO catalysts, 511
aluminum nanoparticles, 66
aluminum oxide, 32, 151
American Association of Textile Chemists and Colorist (AATCC), 565
American Chemistry Council’s NanoTech Panel, 23
American National Standards Institute’s Nanotechnology Standards Panel Database, 12
American Society for Testing Materials. see ASTM
Ames test, 370
Amontons’ law, 232
amorphous materials, 142
amorphous phases, 81
amplitude modulation (AM), 216
analytical electron microscopy (AFM), 222
analytical nanoscopic techniques, 16, 211
– historical overview of, 212, 213
– nanoscopic and microscopic analytical techniques, 212
– nanotechnology, 211
anisotropy, 60
annealing, 510
ANSI-Nanotechnology Standards Panel (ANSI-NSP), 132
Index

antibody, 109
antiferromagnetism, 540, 543, 544
application-specific ISO committees, 264
aqueous environment, 108
article counting, by microscopy, 103
Article 18 of the Regulation (EU) No 1169/2011, 527
asbestos, 365
asbestosis, 143
Aspergillus niger, 94
Aspergillus oryzae, 94
assay using magnetic nanoparticles, 553
assuming spherical particles, 103
ASTM’s ILS Program, 270
ASTM International, 3, 270
– history/scope/membership, 270
– ILS program, 270
– ISO/TC-38 Textiles, 565
– standards development process, 270
– types of standards, 274
ASTM International Standards, 3, 5, 270, 272
– E2490 guide, 152
– Standard Test Method E2864, 156
ASTM Technical Committee E56, 146, 270, 271, 273, 276, 277
– collaboration areas, 273
– future technical focus areas, 276
– on nanotechnology, 160, 271, 276, 497
– standard, 269, 273, 274, 276
– pioneering standards, 275
– scope and membership, 271
– structure, 272
– subcommittee structure, 273
– subjects of, 274
– use of, 276
asymmetric flow-field flow fractionation, 176
atmospheric contamination, 89
atmospheric scanning electron microscopy (ASEM), 183
atomic absorption spectroscopy (AAS), 157
atomic force microscopy (AFM), 137, 159, 164, 185, 199, 213, 231
atomic hydrogen bonding, 514
atom probe field ion microscope (AP-FIM), 224
atom probe tomography (APT), 224
Auger electrons, kinetic energy, 225
Auger electron spectroscopy (AES), 89, 141, 158, 159, 218, 224
autofluorescence, 190
automotive coatings, 363
Azadiracta indica, 94

b
Babel Tower syndrome, 500
backlighting using quantum dot devices, 509
bactericides, 144
ball milling high-energy, 89
ball mills, kinetic energy of, 87
band gap, 22, 508
barriers for implementation, 473
– consumer perspective, 475
– uncertainty in properties and impact, 474
– uncertainty in regulation, 475
BaTiO3 ferroelectric thin films, 79
BCR-261 T (tantalum pentoxide on tantalum foil), 159
beam-based techniques, 93
beam insensitive, 164
beam scanning, 80
big data, 43
binormal distribution functions, 256
biological properties, 61
biomass, 510
– gasification, 511
biomedical compatibility, 66
biomedical device fabrication, 69
bionanocomposites, 68
biopersistence, 167, 168
biopersistent materials, 365
– high aspect ratio nanomaterials, 142
blank detail specification (BDS), 283
block assembly, 86
blood-brain barrier, 118
blood-nerve barriers, 118, 119
blood-retinal barriers, 118
π-π bonding, 109
boride microplasma surface alloying, 68
bottom-up techniques, 75
bottom-up/top-down methods, 76
bovine serum albumin (BSA), 374
Bowden microtribology, 233
Bragg’s law, 167
British Standards Institute (BSI), 262, 289
Brownian motion, 104, 135
Brownian rotation, 547
Brunauer–Emmett–Teller (BET), 179
 – equation, 156
 – method, 108, 109
bulk analytical techniques, applicable for ENMs, 157
bulk chemical composition, 157
bulk gold, 102
Bundesanstalt für Materialforschung und -prüfung (BAM), 323
Bureau International des Poids et Mesures (BIPM), 324
1,3-butanediol dimethacrylate, 531
cadmium chalcogenide (CdTe, CdSe, and CdS) quantum dots, 161
calcium carbonate nanoparticles, 161
calcium silicate hydrate (CSH), 438
calibration techniques, 145
Canadian General Standards Board (CGSB), 567
Canadian supporting documents, 34
Candida glabrata, 95
capillary forces, 232
carbon-based nanomaterials in organic environments, 187
carbon black, 30, 33, 131, 137, 390, 531
 – particles, nanosized, 142
carbon nanomaterials, 56, 67, 69
 – categorization of, 339
 – MWCNT, 56
 – SWCNT, 107, 176
Cartesian coordinates, to describe shape, 25
case studies
 – composite systems, 426
 – glass ceramics, 428, 430
 – amorphous phase decomposition of the glass, 430
 – crystallization of LAS crystals, 431
 – nucleation, 431
 – nanoeenabled batteries, 432
 – nanoeenabled batteries oxide dispersion strengthened alloys, trends and innovations, 435
 – nanoeenabled batteries performance and safety of electrodes, 434
 – nanoeenabled batteries performance and safety of electrolytes, 433
 – nanoeenabled batteries performance and safety of separators, 434
 – rubber nanocomposites, 426
 – nanoporous systems, 440
 – – nanoeenabled materials for the energy turn, 440
 – – water purification by ultra- and nanofiltration membranes, 442
 – – desalination vs. water reuse, 447
 – – emerging membranes, 447
 – – membranes in development, 447
 – – pollutant selectivity, 446
 – – water-energy nexus, 446
 – – particle-based systems, 447
 – – liquid crystal displays with enhanced brilliance by nanoeengineered color filters, 455
 – – nanomedicine, nanoparticles in medicine, 451
 – – silica as free-flow and anticaking agent, 447
 – – fine powders, 448
 – – keeping fire extinguishers functional, 449
 – – manufacturing process, 450
 – – soft powders, 449
 – – wet powders, 449
CAS registry number, 489
categorization
 – important use of, 330
 – of nanomaterials, 329
caveolae-mediated endocytosis, 121, 122
cDTe or CdSe quantum dots, 338
CEA tech, 498
cell death, 61
cellular membrane, 21
cellular toxicity, 102
cellular uptake, 122, 124, 166
cellulose nanofiber, 57
Center for the Environmental Implications of Nanotechnology (CEINT), 41
centrifugal liquid sedimentation (CLS), 104, 202, 526
centrifugal sedimentation, 159
centrifugation, 168, 182
ceramic materials, 66
ceramic matrix nanocomposite (CMNC), 62, 478
ceramic nanostructured materials, 62
ceramic oxides, 80
ceramics, 54, 62, 487
CERAN® cooktop panels, 432
certified reference material (CRM), 308
certified reference material (CRM), 153, 217
challenges confronting nanotechnology, 9
 – competing priorities, 11
 – data and information gaps, 9
 – knowledge of standards availability and their use, 11
characterization need, examples of, 152
Index

charge-charge interactions, 109
Charles Coulomb’s research, 230
chemical-based categorization, 340
chemical beam epitaxy, 83
chemical categories, 330
chemical composition, 123, 185, 338
– data, 348
chemical conversion of biomass, 511
chemical energy, 69
chemical fixation, 188
chemical notification process, 370
chemical products, 489
chemical reactivity, 363
chemical separation techniques, 168
chemical solid-state reaction, 88
chemical substance poses, “no unreasonable risk” (EPA), 44
chemical vapor deposition (CVD), 78, 426
– disadvantage of, 83
chemisorption, 140, 514
– induced segregation, 140
chiral molecule, 142
chromatic aberration, 221
Cinnamomum camphora, 94
circularity, 139
civil society organizations, 18
clothespin- and caveola-mediated endocytosis, utilize clathrin-coated pits, 122
clothespin/caveola-independent endocytosis, 121
clothespin-mediated endocytosis, 121
clearance, 124
cloud-point extraction, 168
CNT spinning processes, different types of, 564
CODATA-VAMAS working group, 102
Code of Federal Regulation (CFR), 567
cold-wall reactors, 83
collaboration area (CA), 273
collective protective equipment, 494
colloidal AgCl, 85
colloidal dispersion, 83
colloidal stability, 166
– of nanomaterial suspensions, 109
colloidal suspensions, 84, 110, 141
color-rendering properties, 285
commercialization, 6, 24, 382
– basic supply chain for, 472
– of nanomaterials, 381
– nanotechnology applications, 412
– status, terminology, 419
commercial nomenclature, 36
communication, 2, 499
– engage in public debate through information meetings, 499
– explain benefits of nanotechnologies, 499
– improve provision of information in the supply chain, 499
– inform, educate, and train all players, 499
– competitive cost, 423
compositions, 363
condensation particle counter (CPC), 177
conducting polymers, 509
conductive carbon nanotubes, 509
conductivity, 34, 66, 423
confocal electron microscopy, 134
confocal scanning microscope, 178
constant diameter
– nanofiber/tubes of, 255
constituent particle, 28
consumer acceptability, 70
consumer exposure to nanomaterials, 491
contact AFM, 216
contact potential difference (CPD), 217
contaminants in water treatment applications
– and separation scales of membrane processes, 444
contraptions, 2
control chart, showing scattering intensity-weighted harmonic mean diameter, 310
controlling agglomeration, 107
control nanocrystallite size distribution, 81
cooling of cast ZERODUR® glass block, 432
copper, 346, 566
– nanoparticles, 346
– product lifecycle, 346
core-shell geometry, 510
corrosion protection, 78
cosmetics regulation, 369
covalent bonds, 165
covalent organic framework (COF), 514
crystallinity
– of calcium carbonate nanoparticles, 166
crystallite size, 166
crystal size, key properties of pigments for LCD screens, 456
crystal structure, 166, 338
– determined using, 167
CuInS2/ZnS quantum dots, 508
Cu/Nb multilayers, 79
Curie temperature, 542
CVD deposition oven, schematics, 82
CVD films, 83
cyclic extrusion compression (CEC), 90
cylindrical mirror analyzer, 225
Czech standardization body, 294
damaging effects, 502
data generation, and expertise
 implementation, 492, 496
de Broglie relation, 220
de Broglie wavelength, 222
decorative coatings, 78
dedicated ceramic container, 79
DEFRA Voluntary Reporting Scheme for Manufactured Nanomaterials, 393
degradation, 123
dehydration, of sample, 188
dendrimers, 57, 67, 186
Department of Energy (DOE), 514
DF4nanoGrouping, 142
2D grating transfer standard, 200
diagnostic imaging, 66
dialysis, 168
diamagnetism, 540, 541
dicalcium silicate, 438
dielectric constant, 66
diesel combustion exhaust, 151
differential mobility analysis, 134
diffraction, 202
 – gratings, for calibration, 154
digital imaging, 139
dilatation, 201
dip coating sol-gel process, 562
Directorate General for Research (DGR), 290
direct techniques, measuring nanoparticle size, 201
dispersed phase, 83
dispersibility, 332
dispersion, 133, 165, 166
 – forces, 217
 – medium, 83
dissemination into environment, risk of
 – avoided by measures, 494
dissolution, 167, 337
distribution
 – functions, 255, 256
 divinylbenzene, 531
0D nanostructures, classification, 51
1D nanostructures, classification, 51
2D nanostructures, classification, 52
3D nanostructures, classification, 53
DNA properties, 43
double-wall carbon nanotubes, 338
drug delivery, 66, 67, 154
drug, "safe and effective"(FDA), 44
dry milling, 87
dry nanomaterials, 108
2D triboindenter transducer, 239
dynamic AFM, 216
dynamic light scattering (DLS), 22, 104, 132, 145, 159, 161, 177, 202, 372
e56 ASTM International standard, 42
ECAE/P process, 91
EC Mandate M/461 Master List, 297
ecotoxicity, 488
ecotoxicological
 – data, 371
 – information, 371
ECs scientific committees
 – recommend characterization parameters
 similar to ISO/TR 13014, 22
Electrical and Electronic Products and Systems (IEC/TC 113), 280
electrical mobility analyzers, 155
electrical properties, 59, 66
electrical resistance, 66
electrical sensing zone, 136
electrochemical batteries, 511
electrochemical capacitor (EC), 512, 513
electrochemical devices, 125
electrochemical reaction, 509
electrode, 511
electroluminescence, 508
electrolyte, 511
electromagnetic lenses, 221
electron- and ion-based methods, 93
electron beam melting (EBM), 436
electron diffraction analysis, 167
electronic noise, 208
electron microscope (EM), 136, 166, 188, 211, 221
 – applications, in nanomaterials, 221
 – principle of, 219
 – standardization of, 222
electron probe microanalyzer (EPMA), 221
electron spectroscopy for chemical analysis (ESCA), 141, 158
electrophoretic mobility, 109, 165
electrospinning, 563
electrostatic force microscopy (EFM), 217
electrostatic precipitators, 178
electrostatic stabilization, 141
electrotechnical industry, 281
eLLpmetry, 132
emerging nanocharacterization techniques
 – atom probe field ion microscope, 224
 – electron emission microscopy, 226
 – nano SIMS, 226
Index

- scanning Auger microscopy, 224
- scanning helium ion microscopy (SHIM), 222
- endocytosis, 116
 - types of, 121
- energy, 508
- energy conversion technologies, cost effective, 505
- energy dispersive X-ray spectroscopy (EDS), 221
- energy-dispersive X-ray spectroscopy (EDX), 178, 189, 348
- engineered nanomaterials (ENMs), 151, 343, 347, 355, 465
 - in agri/food/feed products, current trends in use of, 520
 - base oral medications, 119
 - binding
 - to biomolecules, 120
 - with biomolecules, 120, 124
 - biodistribution, 119
 - biological processes on the fate, 117
 - biological properties, 116
 - cellular uptake, 124
 - characterization, 123, 158
 - clearance/excretion/degradation, 122
 - containing environments, 117
 - definitions of common types of size used to describe, 160
 - endocytosis of, 122
 - entry into cell, 121
 - humans and animals, 115
 - immune/inflammatory responses, 120
 - mechanistic studies, 124, 125
 - metrics and instrumentation, for characterization, 154
 - metrology and standardization of, 123
 - morphology, 163
 - penetration into biological barriers/biodistribution, 118, 124
 - physicochemical properties, 123, 155
 - physiological/pathological conditions, 117
 - product lifecycle, exposure at each stage of, 348
 - end-of-life, 353
 - formulation and manufacture, 350
 - pristine nanomaterial production, 350
 - use scenarios, 351
 - properties, characterization of, 152
 - routes of exposure/administration, 117, 118
 - shape, influence uptake by cells and mechanisms of toxicity, 163
- size, techniques to measure, standards for, 160
- stability in biological fluids, 124
- surface area, direct measurement of, 156
- engineered nano-objects, 489
- engineered nanoparticles (ENP), 175, 185
 - biodistribution, 185
 - in soils and sediments, reported methods for measuring, 190
- ensemble-based techniques, 135
- enumeration of meaningful characteristics, 39
- environmental conditions, error sources in microscopy, assessment of, 208
- Environmental Defense Fund, 23
- environmental erosion, 175
- environmental, health, and safety (EHS), 4, 382
- environmental or atmospheric scanning electron microscopy (ESEM or ASEM) circumvents, 188
- Environmental Protection Agency (EPA), 17, 22, 144, 330, 382
 - EPA’s definition of a nanoscale material, 22
 - proposed rule on reporting and record keeping requirements for chemical substances, 5
- environmental release, of engineered nanomaterials, from common nano-enabled products, 354
 - food container products, 355
 - paint products, 355
 - sunscreen products, 356
 - textile products, 354
- environmental vibrations, 208
- environment, health, and safety (EHS), 197
- E42 on Surface Analysis, 146
- equal channel angular pressing (ECAP), 63, 90
- equivalent diameter, graphical explanation of variability, 251
- ERM-FD102 (a mixture of two sizes of nanoparticles in aqueous solution), 162
- ERM-FD304 (near-spherical amorphous silica nanoparticles in aqueous suspension), 162
- error sources in microscopy, assessment of, 207
 - type A (random) uncertainties, 207
 - type B (systematic) uncertainties, 208
- E2996-15 Standard Guide for Workforce Education in Nanotechnology Health and Safety, 146
- E3001-15 Standard Practice for Workforce Education in Nanotechnology, 146
- E56 standards, 274
- etching, uses in micronanofabrication, 93
European Centre for Ecotoxicology and Toxicology of Chemical (ECETOC), 142
European Chemicals Agency (ECHA), 17, 521, 528
European Commission (EC), 290
 – definition of nanomaterial, 22
 – definition of nanoscale, 19
 – issued the second nanotechnology-related standardization mandate M/461, 6
 – scheduled to reconsider definition of nanomaterial, 17
European Commission D.G. Research and Innovation, 498
European Commission Joint Research Center (EC-JRC), 265
European Commission published a Recommendation for nanomaterial definition (2011/696/EU), 528
European Commission’s Recommendation on the Definition of Nanomaterial, 5
European Committee for Electrotechnical Standardization (CENELEC), 289
European Committee for Standardization (CEN), TC 352 145, 244, 265, 289, 293, 294, 501
European Food Information Regulation (EU) No 1169/2011, 530
European Free Trade Association (EFTA), 290
European Medicines Agency (EMA), 528
European nanotechnology standardization program, mandate for, 291
European Pharmacopoeia (EP), 143
European REACH regulation, 489
European Reference Material ERM®, 308
European Regulation on Novel Food, (EC) No 2015/2283, 528
European Standard (EN), 567
European Standardization Organization (ESO), 293
 – final output, 293
 – interim output, 293
European standardization work, for nanotechnologies, 290
European standards on nanotechnologies, mandate for developing, 293
European Standards Organization (ESO), 6
European Telecommunications Standards Institute (ETSI), 289
European Union (EU), 290
European Union, the Novel Foods Regulation (EU 2015/2283), 400
EUs 7th Framework Programme project “NanoLye”, 526
evaporation process, 78
evaporation system
 – schematic of, 78
exclusion line, 254
Executive Subcommittee, 273
 fabricated nanomaterials, 418
fabrication method, 251
feature size of importance, in nanocomposite systems, 477
Fe3B/Nd2Fe14B nanocomposite microstructure, 68
FeCrAl alloy, 436
feedback loop controls, 237
feedback signal, 216
Feret’s diameter, 137
ferrimagnetism, 540, 544
ferromagnet, 542
ferromagnetic and antiferromagnetic configurations, 555
ferromagnetism, 540, 542
fibroblasts, 372
field flow fractionation, 104, 134, 159
Field ion microscopy (FIM), 212
Fischer-Tropsch process, 511
FKT (Frenkel–Kontorova–Tomlinson) model, 234
flight tube, 81
flow cytometry, 185
flow- field flow fractionation (F-FFF), 176
focused ion beam (FIB), 189, 222
Food and Drug Administration (FDA), 152, 276, 520
Food and Drug Administration’s Recognized Consensus Standards Program and industry, 5
Food Information for Consumer Regulation (EC) No 1169/2011, 527
Frenkel–Kontorova model, 231
frequency modulation (FM), 213
friction coefficient, 237, 238
friction force, 233
friction measurements, 246
friction stir processing (FSP), 90
F. solani, 94
fuel cells, 281, 509
 – markets, 510
Fukushima nuclear reactor, 556
fullerenes, 67, 69, 106, 179, 363, 369
fumed and precipitated silica marketplace, characteristics, 38
fumed silica, 137
functionality, 411
functional MRI, 549
funding agencies, 18
Fusarium oxysporum, 94

g
gas adsorption, 156
gas field ion source (GFIS), 222
gasification, 511
gas injection system (GIS), 223
gas phase electrophoretic mobility molecular analyzer (GEMMA), 526
gel permeation chromatography, 134
genetically modified (GM) food, 521
geographic information system (GIS), 144
geometrical size, 202
giant magnetoresistance (GMR), 554
glass ceramics, 423, 430
glasses, 487
globally harmonized system (GHS), 398
Global Summit for Regulatory Science Research (GSRS15), 528
gold colloids, 144, 151
gold nanoparticles (AuNPs), 54, 60, 105
– different shapes and morphologies, 106
– fluorescence emission, 61
– high-resolution transmission electron microscopy images, 250
Google-Scholar database, 232
graphene, 67, 69, 151, 217, 419, 466
– aerogel (GA), 513
– flakes, 107
– nanosheet grown, 225
graphite furnace atomic absorption spectrometry (GFAAS), 181
gross domestic product (GDP), 229
guidelines, for good practices in handling and processing nanomaterials, 495

h
hamper innovation, 382
hard RE-3d magnets, 68
hazard-based category, 338
hazards, 491
– assessments, 381
– associated, with nanomaterials, 329
health assurance, 70
Henry function, 165
heterocoagulation, 181
heterogeneous catalysts, 66
hierarchical macro- and mesoporous graphene aerogels (GA)-SiO2 frameworks, fabrication of, 512, 513
high-definition television (HDTV), 456
high-efficiency particulate air (HEPA), 397
high-energy ball milling (HEBM), 89
high-energy milling (HEM), 436
high-power short-pulsed laser radiation, 80
high-pressure freezing (HPF), 180
high-pressure torsion (HPT), 90
high-resolution electron microscope (HREM), 221
high-temperature superconductor (HTS), 426
high-throughput screening (HTS) experiments, 391
high-voltage electron microscope (HVEM), 220
homoaggregation, 29
homogeneity, 123
homogeneous ITO films, 422
HOMO-LUMO gap, 509
Hooke’s law, 216
Horizon 2020 programme, 498
hot isostatic pressing (HIP), 87
House of Lords S&T Committee, 21
human gingival fibroblasts, 68
hybrid electric vehicles, 433
hydride vapor phase epitaxy (HVPE), 83
hydrodynamic chromatography (HDC), 183
hydrodynamic diameter, 185, 202
– determined for, 159
hydrogen storage, 68, 513
– in chemical and complex hydrides, 515
– materials, 514
hydrolysis, of chlorosilanes, 450
hydrometallurgical technique, 350
hydrophilicity, 109
– hydrophilic interactions, 109
hydrophobicity, 109, 185, 332
hydrothermal synthesis, 85
hydrothermal technique, 85
hypothesis-driven research, 43
hysteresis loop, 545
– natural mica, a typical paramagnet due to its individualized iron impurities, 542
– superparamagnet, 547
– synthetic mica – a typical diamagnet, 540
– thin film of Co, a typical ferromagnet, 543

i
microemulsion process, 86
IEC publications, 279
IEC’s International Standards, 279
IEC standards, 283
IEC/TC 113, 281, 282, 283, 285
 – documents, 286
 – and liaison committees and organizations, 284
 – by working group, 285
IEC/TC 113 Standards, 5, 282, 284
 – Blank detail specifications, 283
 – detail specifications, 284
 – key control characteristics standards, 284
 – reliability standards, 284
IEC Technical Committee 113, 265, 280
 – committee structure and liaison, 281
 – graphene, 283
 – history/scope/membership, 280
 – luminescent nanomaterials, 283
 – nanoenabled energy storage, 283
 – nanoenabled photovoltaics, 283
 – reliability, 282
 – standardization priorities, 281
IEC/TR 62834, 282
 – IEC Nanoelectronics Standards
 Roadmap, 281
iGloss™, 423
ill-designed experimental procedure, 252
immune cells, 124
impulse transfer, 79
indirect techniques, measuring nanoparticle size, 202
induction plasma system, 81
Inductively Coupled Plasma Mass Spectrometry (ICP-MS), 157, 177, 374
inductively coupled plasma optical emission spectroscopy (ICP-OES), 157
industrialists, engage in communication, 499
industrial nanomaterials and nano-objects
 Roadmap, 502
innovation, 519
inorganic carbon, 337
inorganic nanomaterials, 53
inorganic nanoparticles, 54
inorganic nutrients, 520
inorganic-organic nanomaterials, 55
inorganic QDs, 509
installation qualification, 145
Institute for Reference Materials and Measurement (IRMM), 145, 159
instrument calibration, reference materials for, 310
intensity-weighted distributions, 104
intensity-weighted equivalent hydrodynamic diameter, 104
interlaboratory studies, 144
International Association for Testing Materials, 3
International Carbon Black Association, 23
International Electrotechnical Commission (IEC), 4, 243, 263, 279, 292, 324
 – international standard, 279
 – publicly available specification, 279
 – technical report (TR), 280
 – technical specification, 279
International Organization for Standardization (ISO), 1, 49, 102, 154, 211, 243, 261, 383
 – Committee on Reference Materials (ISO/REMCO), 308
 – define nanomaterial, 23, 559
 – draft technical report 19057–Nanotechnologies, the Use and Application of Acellular In Vitro Tests and Methodologies to Assess Nanomaterial Biodurability, 168
 – Guide 30, 307, 308
 – Online Browsing Platform, 12
 – Technical Committee 229 (ISO/TC 229) on Nanotechnologies, 102, 106, 107, 262, 264, 269, 289, 302, 304, 488, 495
 – documents under development, 267
 – history and scope, 262
ISO/TC 229 SG, 264
 – Joint Working Group on Measurement and Characterization (JWG2), 7
 – for nanomaterials and nano-objects, 495
 – published documents, 265
 – standards development, 265
 – structure and collaboration, 263
 – supports, 265
 – TG 02, 264
 – TG 03, 264
 – Web site, 282
 – Working Groups, 265
International standards (IS), 279
 – related to characterization, single-walled carbon nanotube morphology using SEM and TEM, 164
International System of Units (SI), 199
International Telecommunications Union, 3
International Union of Pure and Applied Chemistry (IUPAC), 299, 424
interoperability, 2
intrinsic hazards, of nano-object, 495
ionic conductivity, 141
ion implantation, 80, 81
ion implantation techniques, 81
iron oxide-based ceramics (ferrites), 66
iron oxide nanoparticles, 54
ISA-TAB-nano for queries, 43
IUPAC in Nanotechnology, future of, 302
 – anticipated scope of work, 302
 – customers and users, 304
 – description of recommendations under development (work items), 304
 – existing nomenclature systems, relevant to development of nomenclature for nanomaterials, 303
IUPAC organization, 299
 – history, 300
 – impact on industry and regulatory bodies, 302
 – membership, 300
 – organization, 301
 – scope, 299
IUPAC Web site, 302

Japan Pharmacopeia (JP), 143
Joint Research Centre (JRC), 145
joint working groups (JWG), 265

kaolin, 531
Kelvin probe force microscopy (KPFM), 217
key control characteristic (KCC), 283
kinetic properties, 142
Knudsen effect, 420, 440
KPFM measurement, 217
Krypton gas adsorption, 156
Kupffer cells, 122

Lactobacillus strains, 94
LAL Assay, 266
laser-assisted APT, 224
laser beam, 80
laser diffraction, 136, 145, 159
laser Doppler electrophoresis, 165
lateral force microscope (LFM), 229, 236, 240
lateral force signals, 237
layer-by-layer process showing consecutive adsorption of polyanions and polycations, 562
layers and coatings as, surface chemistry, 31
lead acid gel batteries (LAB), 433
leading edge distortion, 208
legal systems, 32
lethal dose 50, 143
life cycle analysis, for safer nano-objects, 501
library and information science (LIS), 43
life cycle assessment (LCA), 387
life cycle risk assessment framework (LCRA), 387
ligand, 109
light emitting diode (LED), 507
light scattering, 134, 135, 202
Li-ion battery, 435
limiting oxygen index (LOI), 566
limit of detection (LoD), 526
Li2O-Al2O3-SiO2 system (LAS), 430
liposomes, 186
liquid crystal display (LCD), 425
liquid-liquid extraction, 168
liquid measurement techniques, 160
liquid phase epitaxy (LPE), 83
Lisbon strategy, 292
lithium aluminosilicate, 66
lithium-ion (Li-ion) battery, 511
lithium titanate Li4Ti5O12, 434
lithography, 93
 – based manufacturing, 93
 – local density of state (LDOS), 214
low-energy electron microscopy (LEEM), 226
lubricant film, 426
luminescent electron microscopy (LEEM), 226
 – emission properties, 108
machinery tribology, 232
macrophages, 124, 365
macropores, 513
macrotribology, 232
maghemite (γ-Fe2O3), 544
magnesium-based hydrogen storage alloys, 68
magnetic data storage, 85
magnetic field application
 – in situ operation, 217
magnetic force microscopy (MFM), 217
magnetic nanomaterials, 402
magnetic nanoparticles, 546, 556, 557
magnetic particle imaging (MPI), 549, 550
magnetic properties, 59, 154
magnetic random access memory (MRAM), 557
magnetic resonance imaging (MRI), 67, 547
magnetism, 540
magnetite (Fe3O4), 544
magnetite (Fe3O4) nanoparticles, 54
magnetization, 544, 545, 546
 – curves, 546
 – vs temperature measurement, 544
magnetron sputtering system, 79
– schematic diagram, 79
manganese zinc ferrites, 66
manufactured nanomaterials, 466
– expert meeting on categorization of, 333
MA process, schematic cross-sectional representation, 88
Martinobacter pelagius, 94
Martin's diameter, 137
masking material, 94
mass equivalent diameter (MED), 526
mass-selected ions, 81
material bulk flow (MBF), 349
material characterization, 363
material interaction, 132
materials according to dimensionality of nanostructures, classification of, 50
matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS), 184
matrix reference materials, 319
mean multipoint BET (MP-BET), results for all reporting laboratories, 313
mean of laboratory mean values, obtained with specific particle size analysis methods, 315
measurement protocol, error sources in microscopy, assessment of, 208
mechanical alloying (MA), 87, 88, 436
mechanical milling, 87
mechanical properties, 59
mechanical separation techniques, 168
mechanical strength, 363
mechanochemical activation synthesis (MCAS), 90
mechanochemical processing (MCP), 87
mechanochemical synthesis (MCS), 89
membrane application, in international markets, 445
mercaptosuccinic acid (MSA), 181
mesopores, 513
metal alloys, 337, 487
metal clusters, 303
metal injection molding (MIM), 436
metallic nanomaterials, 65
– applications, 61
– usage various forms, 62
metallic nanoparticles
– eco-friendly synthesis, 94
metalloid nanoparticles, 337
metalloid oxides, 337
metal matrix nanocomposite (MMNC), 62, 478
metal nanoparticles, 53, 69
metal organic framework (MOF), 514
metal organic vapor phase epitaxy (MOVPE), 83
metal oxide nanomaterials, 123
metal oxide nanoparticles, 54, 85
metal oxides, 337, 487
metal-polymer nanocomposites, 69
metal salts, 337
method-dependent determination of average particle size, 161
method validation, reference materials for, 312
1-methyl-2-pyrrolidinone, 445
metrological AFM, 200
metrological evaluation, 208
MgH2 nanoparticle, 515
microbeam analysis, published ISO standards of TC202, 223
micromaterials, 69
microcrystalline powders, 88
microelectromechanical system (MEMS), 93, 229, 240
microemulsions, 85
– method, 85
microfluidic devices, 125
micrographs covering, 254
micromachining flow chart, 93
micromotors, 240
micro/nanotechnology, international standardization, 243
– area of tribology, 243
– ISO/TR 11811 Technical Report, 245
– Technical Report ISO/TR 11811, 244
micron scale, 143
micropinocytosis, 121
micropores, 513
microscale properties, 365
microscopy-based methods, 161
microscopic observations, 252
microscopy-based techniques, 201, 202, 209
microtribology, 229, 231
– testing, 229
microwave-assisted chemical digestion, 182
miniaturization, 363
miniaturized multiplexing spectrometer, enabled by quantum dots, 458
minimum ignition energy (MIE), 398
mobility analyzers, 159
mobility-based surface area, 155
mode of action (MOA), 332
modern communication, 474
molecular adhesion, 230
molecular beam epitaxy (MBE), 83
molecular dynamic (MD), 231
molecular susceptibilities
– with temperature dependence for typical
diamagnets and paramagnets, 541
monocytes, 124
monodispersity, 123
mononuclear phagocyte system, 119
morphology, 163
– determination, by microscopy, 164
mucociliary action, 168
multiangle light scattering (MAL), 176
multiaxial compression (MAC), 92
– forging, 90
multilayer coating, 66
multiwall carbon nanotube (MWCNT), 176, 338

n
nanobiointeractions, 186
nanobots, 143
nanocatalysts, 511
nanoceramics, 66
– products, 66
nanocharacterization, 211, 213
NanoChOp-06
– change of equivalent diameters (as measured
with CLS, DLS and SAXS) and zeta potential
– material, 318
NanoChOp project, 145, 318
NanoChOp test materials, 317
nanocoating, 30
nanocomposite
– textiles, 560
nanocomposite magnets, 68
nanocomposite materials, 57, 62
nanocomposites, 57, 68, 86, 521
– application of, 61
– types, 63, 478
nanocrystalline cellulose, 338
nanocrystalline materials, 88, 505
nanocrystalline solids, 63
nanocrystalline ZrC thin films, 80
nanodimensions, 131, 363
nanodispersions, 63
nanoeffects, 381
nano-EHS, 22
– centers, 44
– testing is not unique to ISO TC-229s working
groups, 22
nano-enabled conventional textiles, 561
– layer-by-layer, 562
– padding process, 561
– sol-gel, 562
nano-enabled PLC, 344
nano-enabled products, 474
nanoenabled products, definition of categories
for, 420
nano-enabled product’s life, 347
nanoenabled products, manufacturing
methods and benefits, 422
– dispersions and emulsions, 423
– fibers and yarns, 423
– nanocomposite systems, 422
– nanoporous systems, 424
– activated carbon-based systems, 425
– inorganic systems, 425
– particle-based systems, 425
– polymer-based systems, 424
– thin films, 426
nanoengineered textiles, 563
– CNT solution spinning and solid-state
spinning, 564
– electrospinning, 563
nanoengineering materials, 514
nanofibers, 151, 487, 505
nanofibrous textiles, 560
nanofillers, used in commercial tires, 429
nanofinished textiles, 560
nanoform, 17
– nanoform of materials, 489
nanofront® product range, 423
nanograins, 249
nanoimprint lithography, illustration, 93
nanolithography, 214
– techniques, 92
nanomagnetism, fundamentals of, 539
nanomagnets, 546
– applications of, 547
– assays, 552
– cell stimulation, 553
– hyperthermia and drug delivery, 551
– magnetic particle imaging, 549
– magnetic resonance imaging, 547
– spintronics, 554
nanomanufacturing facilities, 497
nanomanufacturing standards, 281
nanomaterial, 32, 33, 99, 131, 132, 139, 142,
339, 363, 371, 381, 490, 491, 519
– adjustable properties of, 58
– adoption of a similar approach for, 331
– aggregation/agglomeration, 107
– application, 61
– categories of, 329, 471
– sectors of, 64
– types, 466
– classification by sector, 471
– severe plastic deformation, 90
– methods, 92
– sol–gel process, 84
nanomedicines, 373
– commercially available, 453
– encapsulation of therapeutic/imaging agents for targeted delivery, 455
nanometric powders, 81
nanometry, 211, 213, 522
– in agri/food/feed, 522
nano-NiO/Al₂O₃ catalyst, 511
nano-object, constituent particle, aggregate and agglomerate, 29
nano-objects, 24, 488, 491
– collections of, 28
– dimension, 490
– shapes, 26
nano-objects, aggregates, or agglomerates (NOAA), 30
nanoparticle (NP), 75, 92, 100, 132, 138, 197, 249, 337, 544, 545
– agglomeration in biological matrices, challenges in measuring, 188
– biogenic synthesis methods, 77
– in biological matrices
– – challenges in quantitative measurement of, 186
– – instrumentation for characterizing, 188
– dose/concentration in biological matrices, challenges for determining, 187
– form stochastic populations, 250
– heterogeneous catalysts, 505
– measurements
– – in air, 177
– – in aquatic environments, 180
– – in biological matrices, 184
– – in cosmetics, 179
– – in foods, 182
– – in soils and sediments, 175
– – measuring size of a population by microscopy-based techniques, 201
– size, 275
– – distribution functions, 255
– sizes and shapes in biological matrices, challenges for characterizing, 184
– of TiO₂, 66
– toxicity assessment, 371
– tracking analysis, 135, 161, 183
Nanoparticle Emission Assessment Technique, 178
nanoparticle size, measurement, 201
– direct and indirect measuring techniques, 201
– measuring methods by microscopy-based techniques, 203
– – calibration/metrological characterization of instruments, 204
– – image analysis and data processing, 206
– – measurement principle and acquisition, 205
– – sample preparation, 203
nanoparticle tracking analysis (NTA), 135, 526
nanoparticulate materials, 488
nanopesticide, 531
nanophase ceramics, 66
nanoplates, 151
nanoporous materials, 491
nanoporous membranes, 442
nanopowders, 255
NANoREG project, 370, 500
nanorisks procedures, 499
nanorods, 49
nanosafety platforms, 497
nanoscale, 19, 100, 211
– chemical composition, control for, 508
– definition of, 21
– materials
– – composition, for device platform, 508
– – cost-effective manufacturing, 76
– – measurements, 307
– – oxidation, 214
– – properties, 33
– – – analytical measurement of, 211
– – – phenomena, 33
– – – reproducibility of, 515
– – quantum mechanical effects, 212
– – reinforcements, 68
– – structures, 62
– – technologies, 231
– – upper boundary, suggested by various organizations, 20
Nanoscale Materials Stewardship Program (NMSP), 393
nanoscience, 519
nanoscopic characterization techniques, 211
nanoscopic technologies, 211
nanosheets, 487
nano-sized particles, 142, 519
nano-specific transformation processes, 349
Nanostrand Consortium, 291
nanostructured ferritic alloy (NFA), 436
nanostructured material (NsM), 50, 491, 511
nanostructured MBBT [2,2’-methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol)], 390
nanostructured powder, 30
nanostructured stainless steel, 65
nanostructured titanium (n-Ti), 63, 69
nanostructures, schematic representation, 76
nanosynthesis process, 81
nanotechnology, 212, 213, 363, 485
– commercialization, 474
– critical roles of, 486
– energy, 486
– health, 486
– information and communications technologies, 486
– quality of life, 487
– safety and security, 487
– description and regulatory framework, 23
– development of standards for, 3
– -enabled products, 271
– -related standards activities, 6
– research, 190
– revolution, 143
– standardization, 2, 13
– development, in Europe, 6
– terminology, 17
Nanotechnology Applications and Career Knowledge (NACK), 276
Nanotechnology Characterization Laboratory (NCL), 165
nanotextiles, 354
– classification, 560
– manufacturing processes, 560
– types of, 561
nanothermometer, 60
nano-titanium dioxide, 401
nanotoxicological studies, essential chemical and physical characterization for, 371
nanotoxicology, 184, 364, 365, 372
– approaches to study, 367
nanotoxicology, methods in, 372
– in vtro approach, 374
– in vtro cellular models, 374
– in vtro endpoints, 375
– in vtro NM exposure, 374
– question of dosimetry, 375
– in vivo approach, 372
– animal models, 372
– biological endpoints, 373
– exposure methods, 373
– metrics, 373
– in silico approach, 375
– physiologically based pharmacokinetic (PBPK) models, 375
– (quantitative) structure-activity relationships (QSARs), 376
nanotribology, 229, 231, 232
nanotubes, 25, 49, 69
National Adhering Organization (NAO), 300
National Committees (NC), 279
National definitions, 32
– comparison of, 33
National Institute for Occupational Safety and Health (NIOSH), 178, 397
National Institute of Standards and Technology (NIST), 8, 144, 154, 323, 528
National Library of Medicine (NLM), 144
National mandatory inventories, 370
National Measurement Institute Australia (NMIA), 528
National Metrology Institute (NMI), 104, 154, 219, 323, 528
National Nanotechnology Initiative (NNI), 4, 6
National Nanotechnology Initiative Strategic Plan, 271
National Physical Laboratory (NPL), 323
National Research Council of Canada (NRC)
– cellulose nanocrystal reference materials, 158
National Toxicology Program (NTP), 351
natural nanoparticle, 176
natural organic matter, 181, 389
NCL Method PCC-2
– measuring zeta potential of nanoparticles, 165
near infrared (NIR), 54
near-infrared fluorescence spectroscopy (NIRF), 176
NEAT workplace testing strategy, 178
Néel–Brown model, 545
Néel rotation, 547
neutron activation analysis (NAA), 157
new work item proposal (NWIP), 265
nickel(II)oxide nanomaterials, 153
NIST Gold Nanoparticle Standard Reference Materials, 105
NIST "RM 8027: Silicon Nanoparticles (Nominal Diameter 2 nm)", 162
NIST offering CRM for surface analysis instrument calibration, 159
NIST’s gold nanoparticle Standard Reference Materials, 274
NIST SRM 1980
– material, 145
– positive electrophoretic (+μE) mobility standard, 165
NIST survey findings, 281
NMR (nuclear magnetic resonance), for magnetic NMs, 374
NOAA components, 30
noble metal catalysts, 418
noble metal nanoparticles, 60
nomenclature, 34
– as enumeration, 39
nonequilibrium solid solutions, 81
nongovernmental organizations, 474
non-Newtonian rheology, 31
nonnitride coatings, 66
nonsecured packaging, 493
North American Regulatory context, categorization in, 334
North American Regulatory Frameworks, 338
nuclear magnetic resonance (NMR), 101, 547
– spectroscopy, 157
number-based size distributions, 103
nutritional value, 182

O
ObservatoryNANO project, 428
occupational exposure limit (OEL), 395
occupational health and safety organizations, 492
occupational hygienists, 152
OECD guidelines, 370, 496
OECD testing program, 145
OECD Working Party on Manufactured Nanomaterials (WPMN), 319
Office of Management and Budget (OMB) Circular A-119, 12
oilfield chemical additives, 363
one-dimensional nanomaterials, 51
operational qualification, 145
opportunities, 12
optical detectors, 60
optical particle counter (OPC), 177
optical properties, 60
optical reflection-type AFM, 215
organ distribution, 124
organic aerogels, 421
organic chemical substances, 338
organic-inorganic hybrids, 422
organic/inorganic pigments, as nanomaterials, 418
organic nanomaterials, 56, 57, 521
organic pigments, 338
organic substances, 338
Organization for Economic Cooperation and Development (OECD), 1, 265, 292, 319, 383, 427, 467
Organization for Economic Cooperation and Development Working Party for Manufactured Nanomaterials (OECD WPMN), 7, 333
original source particle, 28
orthogonality error, 201
osteoblasts, 68
oxidation reactions, 509
oxidation states, 185, 189
oxidative stress, 186
oxide dispersion strengthened (ODS), 436

p
padding process, 562
palladium metal, 164
paramagnetism, 540, 542
parameters used in environmental models, and recommended for toxicity testing,
– comparison of, 21
particle, and nanoscale, 25
particle characterization, 184
particle mass concentration (PMC), 177
particle number concentration (PNC), 177
particle-particle interactions, 141
particle shape, 208
particle size, 7, 29, 66, 132, 136, 137, 140, 159, 166, 177, 183, 185, 347, 365, 508
– accurate characterization of, 159
– distribution, 137, 162, 166, 177, 318, 371
– effect, geometrical explanation, 251
– measurements, 164
– – techniques, 25
– sizing techniques, 145
particles sample
– cascading images, 253
particle surface properties, 185
particle tracking analysis (PTA), 159, 202
particulate matter, 371
passive nanomaterials, 142
patterned nanomagnets, 557
Pauli exclusion principle, 541
PEM fuel cells, 509
performance qualification, 145
personal protective equipment (PPE), 397, 494
pesticides, 182, 521
phosphoric acid, 509
photobleaching, 190
photodetector, 348
photodetector, 216
photodynamic agents, for cancer therapy, 184
photoemission electron microscopy (PEEM)
– excitation source, 226
photon correlation spectroscopy (PCS), 144, 276
photothermal therapy (PTT), 454
photovoltaics (PV), 505
– devices, 281
physical-chemical characterizations, 385
physical-chemical properties, 382
physical properties, 133
physical separation techniques, 168
physical vapor deposition (PVD), 78
physico-chemical characteristics, 370, 371
physico-chemical properties, 319, 339
physicochemical specificities, 371
pico-Newton’s, 237
piezoelectric positioning system, 235
Planetary ball mill, 89
Plank’s constant, 220
plasma process, schematic arrangement, 81
platinum, 510
platinum group metals (PGMs), 510
Pleurotus sajor-caju, 94
P member, 281
polycrystalline materials, 50
polydisperse samples, 105
polyether sulfone (PES), 445
polyethylene, 434
polyethylene glycol ligands
– for biocompatibility, 109
polymer electrolyte membrane (PEM), 509
polymerization, 142
polymer materials, 68
polymer matrix nanocomposite (PMNC), 62, 68, 86
– in situ synthesis of nanoparticles, 86
– nanocomposites, 69, 478
– vs. product value chain, 344
– and properties, 69
polymers, 69, 186, 303, 338
polystyrene latex materials, 144
polyvalent ions, 141
polyvinylchloride, 434
polyvinylpyrrolidone-coated silver nanoparticles, 144
population-wise, 249
pore sizes, 168
porosity, 66, 156
porous membranes, 85
positron emission tomography/computed tomography (PET/CT), 549
precipitation, 166
predicted environmental concentration (PEC), 349
President’s Council of Advisors on Science and Technology (PCAST), 6
prevention principle, 490, 491
primary particle, 28
primary size, 133
pristine nanomaterial, 350
product lifecycle (PLC), 344
product’s lifecycle, stages of, 343
product value chain (PVC), 343
projects NANOSAFE 1 and 2, funded by, 498
properties characteristic, of nanoscale, 528
protein chemistry, 141
protein corona, 109, 141, 185
– in cells and living organisms, 109
– composition, 186
Pt catalysts, 510
Pt nanoparticles, 510
Pt particles, 510
– size, 510
publicly available specification (PAS), 7
public policy-makers, 490
pulsed laser deposition (PLD), 78
– technique, 80
PVD coatings, 78
PYRAN® Platinum fire-resistant glazing, 432
pyrometallurgical, 350
q
qualitative particle size distribution, 136
quality control, reference materials for, 308
– analytical quality assurance, 308
– quality control chart, 309
quantitative characterization, 249
quantitative chemical analysis, 226
quantum confinement, 511
quantum dot (QD), 54, 133, 158, 338, 508
quantum electron tunneling, 213
quantum tunneling, 556
– scanning tunneling microscopy, 215
r
radioactive agents, 189
Rayleigh criterion, 220
– for visible-light microscopy, 220
REACH (Registration, Evaluation, Authorization and Restriction of Chemicals), 370
real-time spectroscopy, 347
reciprocating extrusion compression method, 91
recommended exposure limit (REL), 373
recrystallization of cement, accelerated by, 439
RedNano, 348
reference material (RM), 308
reference materials (RM), 153, 307
– for method validation, 312
– between-lab reproducibility, 312
– between-method equivalence, 314
– within-laboratory method, 315
– production, 307
– for use in environmental and health research, 319
refractive index, 106, 132, 201, 348
Regulatory Cooperation Council (RCC), 336
– categorization approach, 338
– categorization used in, 336
regulatory assessments in Europe, current status of, 530
– contaminants, 533
– feed additives, 532
– food additives, 531
– food contact materials, 531
– novel foods, 532
– pesticides, 530
reinforcing efficiency, 68
relaxation mechanisms, of nuclear magnetic moment, 548
reliability standards, 285
representative test material (RTM) concept, 317
repulsion force, 216
resonant mass measurement, 135
reticuloendothelial system, 186
reverse osmosis (RO), 446
Rhodosporidium diobovatum, 94
rigid nanorods, 151
risk control strategy, 492
risk management, 381, 382, 493
– for manufactured nanomaterials based on basic principles of EHS, 402
RM 8017 standards
– polyvinylpyrrolidone coated silver nanoparticles, 158
RM 8027 standards
– silicon nanoparticles, 158
ROBAX® fire place windows, 432
roughness, 208
– mechanism, 238
rough surface, 238
rubber-coated fabric structure (plies), 427
rubber latex, 29
Ruska’s prototype, 220
s
safe and rational application, of nanomaterials, 368
safe handling and use of nanomaterials, in various settings, select guidance documents for, 396
safety, 423, 492
– demonstration, 381
– emissions, of nano-objects, 493
– glasses, 2
– during maintenance and cleaning operations on installations, 493
– systems, 494
safety data
– for regulatory authorization in Europe, 529
– sheets (SDS), 398, 492
Safety of the Manufactured Nanomaterials, 8
sample characteristics, 208
sample scenarios, of potential impact of nanomaterials on various life forms, 368
tsampling nanoparticles, 252
scanning Auger microscopy (SAM), 224
– schematic representation of, 225
scanning electron microscope (SEM), 137, 157, 178, 199, 221, 222, 348
– image of aerogel structure, 441
– instruments, 164, 208
– techniques, 206
scanning helium ion microscope (SHIM), 188, 222
– schematic representation of principle and design, 224
scanning mobility particle sizer (SMPS), 177
scanning near-field optical microscopy (SNOM), 217
scanning probe microscope (SPM), 164, 213, 244
– atomic force microscopy, 215
– nanoscale property, 217
– scanning tunneling microscopy, 214
– standardization of, 218
– timeline of international standardization, 219
scanning tunneling microscope (STM), 213
scanning tunneling spectroscopy (STS), 214
Schizosaccharomyces pombe, 95
science and technology studies (STS), 43
SDO Committees, 32, 34
secondary ion mass spectrometry (SIMS), 141, 158, 226
secondary particle, 28
sedimentation, 135, 202, 343
selected area electron diffraction (SAED), 167, 180
selected nanomaterial global production volumes, 37
selective laser melting (SLM), 436
semiconductors, 55, 508
– fabrication technology, 240
– quantum dots, 338
– technologies, 131
severe plastic deformation (SPD), 63, 90
index
standards for nanotechnology and nanomaterials, 4
standard test method, 270
– for textiles, 565
statutory mixture rule, 31
stereoisomers, 303
stereology, 249
steric effects, 141
STM/AFM subcommittee, 218
Stokes–Einstein equation, 134, 185, 200
Stokes sedimentation equations, 202
StoTherm In Aevero composite board structure, with nanostructured aerogel particles and organic binder, 443
strategy, based on existing regulations bearing, 492
strategy, for developing manufacturing, commercializing nanomaterials and nano-objects, 495
study groups (SG), 263
Subcommittee E56.01, 275
Subcommittee E56.06
– nano-enabled consumer products, 275
superconductivity, 67
superparamagnetic behavior, 546
superparamagnetic iron, in medicine, 69
superparamagnetism, 22, 544, 545, 546
superplasticity, 418
supplement additives, 520
surface area, 140, 155, 156, 275, 363
– analysis, 137
– determination by real-time instruments
– – advantage, 156
– of ENMs, 155
– measurements, back-calculation from, 159
– by nitrogen gas adsorption, direct measurement of, 156
– on particle-laden filters, determination of, 156
surface charge, 140, 164
surface chemical analysis, 146, 262
surface chemistry, 140, 158, 337, 338, 489
– measurements, 158
– parameters, 32
surface force apparatus (SFA), 229, 240
– schematic measurement, 236
– schematic representation, 235
surface functional groups, 109
surface modifications, 338
surface plasmon resonance (SPR), 54, 60
surface-sensitive techniques, 141
surfactant, 176
synthesize methods, pros and cons, 95
synthesize nanostructured titanium dioxide, 85

T
Tabor’s microtribology, 233
task force (TF), 289
task groups (TG), 263
TC-229s taxonomic framework, 43
TC 229 Working Groups, 265
Technical Board (BT), 289
Technical Committee (TC) 229
– nanotechnologies, 160
Technical Committee (TC), 4, 334
Technical Committee Management Group (TCMG), 294
Technical Committee (TC) 352 on Nanotechnologies, 289
Technical Committee (TC) 113 on Nanotechnology Standardization for Electrical and Electronic Products and Systems, 292
technical committees (TC), 279
teachical data sheets, 492
technical reports (TRs), 243
– under the Vienna Agreement, 294
technical specifications (TS), 286
technology innovation, 2
technology-related standardization, 3
technology standardization, 2
telecommunications, 13
tensile strength, 57
term productivity, PAS publicly available specification from BSI and TS specification, 18
test reproducibility, 245
tetramethylammonium hydroxide, 94
textile and clothing, 559
textile industry, 559
therapeutic formulations, 363
thermal drifts, 208
thermal energy, 22, 545
thermal equilibrium, 545
thermal expansion, 57
thermal insulation, 78
thermal properties, 60
thermochemical routes, 511
thermodynamic, 142
thermoelectric power (TEP), 60
ThermoFisher Scientific, 144
thermogravimetric analysis, 157
thermomechanical processing (TMP), 63, 92
thermoplastic, 487
thermosetting, 487
thin-film growth techniques, 80
three-dimensional nanomaterials, 52
Three Letter Acronym (TLA), 137
TiB phase, 82
α-Ti matrix, 82
time-of-flight (TOF) mass spectrometry, 159, 224
Ti_2Ni alloy, 68
titanium dioxide (TiO_2), 109, 337, 356, 466, 566
– nanoparticles, 161, 355
titanium nanorods, 94
titanium nitride nanoparticles, 531
titanium oxides, 69
total surface area, 156
toxicity, 142, 143, 382
toxicological and ecotoxicological data, on nanomaterials, 488
toxicological and ecotoxicological data, on nanomaterials, 488
toxicological evaluations of ENMs, 151
toxicological testing, characterization parameters for, 22
toxicologic screening assays, 265
toxicoLOGY, and nanotoxicology, 372
Toxic Substances Control Act (TSCA), 334, 393
traceability chain for dimensional measurements, of NPs, 200
traceability of dimensional measurements, at nanoscale, 198
– measurement reliable and comparable, 198
– traceability routes, 199
trade associations, 18
TR analyzes, 245
transformation, 343
transition metals, 372
transmission electron micrograph, showing LAS crystal, 431
transmission electron microscope (TEM), 157, 178, 213, 221
– aberration-corrected electron optics, 214
transparency, 493
triboindenter, 230, 240
tribological boundaries
– for macro-, micro-, and nanotribology, 233
tribological characterization, 234
tribological problems, 231
tribology, 229
– characterization, 234
– lateral force microscope, 236
– nano/micro-tribological characterization, 234
– single-crystal silicon tribology at different scales, 240
– surface force apparatus, 235
– triboindenter, 239
– history of, 230
– research, 230
– testing
– scale effects, 232
Trichoderma viride, 94
Triccalcium silicate, 438
UlVAC-RIKO, 236
Uniform Descriptor System (UDS), 102
United States Standards Strategy, 269
University of California-led Center for the Environmental Implications of Nanotechnology (UC-CEIN), 41
US chemical regulatory framework, 334
USDA regulators, 33
UV protection factor (UPF), 568
ultrasonic agitation, 166
ultraviolet photoemission spectroscopy (UPS), 226
ultraviolet protection factor (UPF) classification, 568
ultraviolet protection factor (UPF) classification, 568
ULVAC-RIKO, 236
Uniform Descriptor System (UDS), 102
United States Standards Strategy, 269
University of California-led Center for the Environmental Implications of Nanotechnology (UC-CEIN), 41
US chemical regulatory framework, 334
USDA regulators, 33
UV protection factor (UPF), 568
UV-visible absorption measurements, 108
UV-visible spectrometer, 153
Vacuum chamber, 80
vacuum insulation panel (VIP), 442
VAMAS (Versailles Project on Advanced Materials and Standards), 218, 265
 – activities are conducted through technical working area, 324
 – aids in standardization process, 324
 – contribution, ways for, 325
 – frequently participate in their national standards bodies and, 324
 – funds, 324
 – industrial cooperation and contributions to, 324
 – member countries and elsewhere registered as, 324
 – mission, 323
 – project, 324
 – promotes collaboration among participating materials laboratories, 323
 – role in nanotechnology, 325
 – SPM-related prestandardization research, 218
 – steering, 324
 – – committee members, 324
Versailles Project on Advanced Materials and Standards (VAMAS), 218, 243, 265, 323
Vienna Agreement (VA), 292
Viral scaffolds, 95
visible-light microscopy, 132
visualization, 136, 137
voluntary consensus standards, 269

W
water solubility, 168
weak reversible forces, 166
Wear Test Methods, 243
weathering processes, 175
Web pages, 273
weight-of-evidence (WoE), 382
wettability, 185
wetted-wall cyclone, 178
WG 10 standards, 285

Woodrow Wilson Center’s Nanotechnology Consumer Product Inventory, 11
 working group (WG), 263, 281, 289
Working Party on Manufactured Nanomaterials (WPMN), 265, 496
 – sponsorship testing programme, 340
workplace exposure limit (WEL), 397
World Trade Organization’s Agreement on Technical Barriers to Trade, 12
WWTP efficacy, 355

x
xanthate collection agents, 140
Xe atoms, 213
X-ray absorption near-edge spectroscopy, 153
X-ray absorption spectroscopy (XAS), 189
 – measurements, 189
x-ray crystallography, 19
X-ray diffraction (XRD), 157, 159, 179, 202
 – disadvantages of, 167
X-ray magnetic circular dichroism (XMCD), 226
X-ray photoelectron spectroscopy (XPS), 89, 101, 110, 141, 146, 153, 158
X-ray scattering, 202
X-ray techniques (diffraction, absorption, and fluorescence), 157

y
Young’s moduli, 233
yttrium barium copper oxide (YBCO), 426

z
zeolitic imidazolate framework (ZIF), 514
zero-dimensional nanomaterials, 51
ZERODUR® glass ceramic, 432
zeta potential, 109, 141, 145, 164, 165, 166, 275, 371, 382
 – value, 141
zinc oxide (ZnO), 163, 566
 – material, 466
zinc sulfide, 101
Zn2+ ions, 181