Contents

List of contributors, xiii
Preface, xix

Topic 1: Characterization of modified polymers and their use in encapsulation processes, 1

1 Tailor-made novel polymers for hydrogel encapsulation processes, 3
 Artur Bartkowiak, Katarzyna Sobecka, and Agnieszka Krudos
 1.1 Introduction, 3
 1.2 Well-known and commonly used polymers, 16
 1.2.1 Carbohydrate polymers, 16
 1.2.2 Proteins, 16
 1.3 Novel polymers, 16
 1.3.1 Zein, 16
 1.3.1.1 Origin and structure, 16
 1.3.1.2 Properties, 16
 1.3.1.3 Application of zein in the encapsulation process, 18
 1.3.2 Inulin, 23
 1.3.2.1 Origin and structure, 23
 1.3.2.2 Properties, 24
 1.3.2.3 Application in the encapsulation process, 25
 1.3.3 Angum gum, 26
 1.3.3.1 Origin and structure, 26
 1.3.3.2 Properties and application in the encapsulation process, 26
 1.3.4 *Opuntia ficus-indica*, 26
 1.3.4.1 Origin and structure of mucilage, 26
 1.3.4.2 Properties and application of mucilage in the encapsulation process, 27
 1.3.5 Shellac, 27
 1.3.5.1 Origin and structure, 27
 1.3.5.2 Properties, 28
 1.3.5.3 Application in the encapsulation process, 28
 Acknowledgments, 29
 References, 29
2 High-pressure-treated corn starch as an alternative carrier of molecules of nutritional interest for food systems, 35
Lorena Deladino, Aline Schneider Teixeira, Antonio Diego Molina García, and Alba Sofia Navarro
2.1 Introduction, 35
2.2 Trends in nutraceutical foods, 36
 2.2.1 Natural antioxidants from yerba mate extracts, 37
 2.2.2 Micronutrients: Magnesium and zinc, 39
2.3 Starch as a carrier for bioactive compounds, 40
 2.3.1 Starches treated by high-hydrostatic-pressure technology, 43
 2.3.2 Morphology of corn starch carriers, 45
 2.3.3 Porosity characteristics of treated starch granules, 47
 2.3.4 Gelatinization properties after high-hydrostatic-pressure treatment, 49
 2.3.5 Crystalline structure of starch granules affected by high pressure, 50
 2.3.6 Loading of active compounds in bioactive starches, 51
2.4 Conclusions, 52
References, 53

3 Protein-based nanoparticles as matrices for encapsulation of lipophilic nutraceuticals, 59
Adrián A. Perez, Osvaldo E. Sponton, and Liliana G. Santiago
3.1 General aspects of encapsulating lipophilic nutraceuticals, 59
3.2 Polyunsaturated fatty acid encapsulation systems, 60
 3.2.1 Native globular proteins as carriers of polyunsaturated fatty acids, 61
 3.2.2 Protein aggregates as carriers of polyunsaturated fatty acids, 63
 3.2.3 Biopolymer nanoparticles as carriers of polyunsaturated fatty acids, 65
3.3 Conclusions, 67
Acknowledgments, 68
References, 68

4 Surface modifications that benefit protein-based nanoparticles as vehicles for oral delivery of phenolic phytochemicals, 73
Zheng Li
4.1 Overview, 73
4.2 Fabrication of protein-based nanoparticles, 75
 4.2.1 Desolvation method, 75
 4.2.2 Heating gelation, 78
 4.2.3 Self-assembly, 78
4.3 Obstacles to protein-based nanoparticles as oral delivery vehicles, 79
 4.3.1 Physiology of the gastrointestinal tract, 79
 4.3.2 pH effect, 80
4.3.3 Ionic strength effect, 81
4.3.4 Digestive enzyme effect, 82
4.3.5 Mucus barriers, 83
4.4 Surface modifications of protein-based nanoparticles for better delivery, 84
 4.4.1 Noncovalent coating, 84
 4.4.1.1 Chitosan, 85
 4.4.1.2 Polylysine, 86
 4.4.1.3 η-α-Tocopheryl polyethylene glycol succinate, 87
 4.4.2 Covalent conjugation, 87
 4.4.2.1 Dextran, 89
 4.4.2.2 Polyethylene glycol, 90
 4.4.2.3 Folate, 91
4.5 Summary, 92
References, 92

Topic 2: Stability of nutraceutical compounds encapsulated with modified polymers, 97

5 Novel polymer systems and additives to protect bioactive substances applied in spray-drying, 99
Artur Bartkowiak, Wioletta Krawczyńska, and Alicja Federowicz
5.1 Introduction, 99
5.2 Spray-drying process, 100
 5.2.1 Preparation of feed solution, 103
 5.2.2 Carriers, 104
 5.2.3 Atomization, 104
 5.2.4 Drying medium, evaporation of solvent, and separation of product, 105
 5.2.5 Properties of the product, 107
5.3 Nutraceuticals in the food industry, 107
5.4 Polymers and novel polymers used in the spray-drying process, 109
 5.4.1 Well-known polymers, 110
 5.4.1.1 Maltodextrins, 111
 5.4.1.2 Gum arabic, 111
 5.4.1.3 Skim milk powder and whey proteins, 112
 5.4.1.4 Modified starch, 112
 5.4.2 Novel polymers and mixtures of polymers, 113
 5.4.2.1 Natural fibers: Inulin and β-glucan, 113
 5.4.2.2 Pectin and its mixtures, 114
Acknowledgements, 115
References, 115
6 The use of encapsulation to guarantee the stability of phenolic compounds, 121
Maria Inês Dias, Cristina Caleja, Isabel C. F. R. Ferreira, and Maria Filomena Barreiro
6.1 Introduction, 121
6.2 Phenolic compounds, 122
 6.2.1 Stability and bioavailability of free phenolic compounds, 122
 6.2.2 Factors leading to degradation of phenolic compounds, 125
6.3 Microencapsulation process, 126
 6.3.1 Techniques and materials used to encapsulate phenolic compounds, 126
 6.3.2 Controlled release and targeted delivery, 133
6.4 Concluding remarks and future perspectives, 135
References, 136

7 Fortification of dairy products by microcapsules of polyphenols extracted from pomegranate peels, 145
Wissam Zam
7.1 Extraction procedure, 145
 7.1.1 Determining total polyphenol content, 145
 7.1.2 DPPH radical-scavenging activity, 146
7.2 Formulation of pomegranate peels’ polyphenol microbeads and their in vitro release, 146
 7.2.1 Capsule formulation, 147
 7.2.2 Loading efficiency, 147
 7.2.3 Optimization of loading efficiency, 148
 7.2.3.1 Sodium alginate concentration, 148
 7.2.3.2 Calcium chloride concentration, 148
 7.2.3.3 Calcium chloride exposure time, 149
 7.2.3.4 Gelling bath time, 149
 7.2.4 Preparation of beads with sodium alginate and pectin blend, 150
 7.2.5 In vitro dissolution studies, 151
7.3 Fortification of dairy products with polyphenol microcapsules, 153
 7.3.1 Shelf life of milk beverages, 153
 7.3.2 In vitro digestibility assay, 155
References, 156

Topic 3: Application of encapsulated compounds with modified polymers in functional food systems, 159

8 Encapsulation technologies for resveratrol in functional food, 161
María Chávarri and María Carmen Villarán
8.1 Introduction, 161
8.2 Functional foods, 162
8.3 Resveratrol, 163
8.4 Encapsulation technology, 165
8.5 Microencapsulation, 168
 8.5.1 Single-emulsion droplet, 169
 8.5.2 Double-emulsion droplets, 169
 8.5.3 Cyclodextrins, 171
 8.5.4 Niosomes, 171
8.6 Nanoencapsulation, 172
 8.6.1 Solid-based nanoparticle delivery systems, 173
 8.6.1.1 Solid lipid nanoparticles, 176
 8.6.1.2 Nanostructured lipid carriers, 176
 8.6.1.3 Lipid-core nanocapsules, 177
 8.6.1.4 Polymeric nanoparticles, 177
 8.6.1.5 Cyclodextrins, 178
 8.6.2 Liquid-based nanoparticle delivery systems, 178
 8.6.2.1 Liposomes, 178
 8.6.2.2 Niosomes, 179
 8.6.2.3 Nanoemulsions, 180
8.7 Conclusions, 182
References, 183

9 Nutraceutical compounds encapsulated by extrusion–spheronization, 195
 Thi Trinh Lan Nguyen, Nicolas Anton, and Thierry F. Vandamme
9.1 Extrusion–spheronization process application for nutraceuticals, 195
 9.1.1 Pellets, 195
 9.1.2 General description of the extrusion–spheronization process
 (wet-mass extrusion), 197
 9.1.3 Process and equipment, 198
 9.1.3.1 Dry mixing and wet granulation, 198
 9.1.3.2 Extrusion, 198
 9.1.3.3 Spheronization, 200
 9.1.3.4 Drying, 202
 9.1.3.5 Screening, 203
 9.1.4 Formulation, 203
 9.1.4.1 Microcrystalline cellulose as a spheronization aid, 203
 9.1.4.2 Alternative excipients for microcrystalline cellulose, 204
 9.1.4.3 Use of other excipients in the extrusion–spheronization
 process, 204
 9.1.5 Evaluation of pellets, 205
9.2 Nanoemulsions for nutraceutical applications, 207
 9.2.1 Introduction, 207
 9.2.2 Method, 209
 9.2.2.1 High-energy approaches, 209
 9.2.2.2 Low-energy approaches, 210
 9.2.3 Materials used in nanoemulsions production, 211
9.3 Nano-size nutraceutical emulsion encapsulated by extrusion–spheronization, 211
 9.3.1 Objective of experimental design, 211
 9.3.2 Daily dosage of nutraceuticals, 215
 9.3.3 Material and methods to prepare nano-size nutraceutical emulsions encapsulated by extrusion–spheronization, 216
 9.3.3.1 Materials and methods, 216
 9.3.3.2 Results and discussion, 219

9.4 Conclusion, 223
References, 223

10 Biopolymeric archetypes for the oral delivery of nutraceuticals, 231
 Mershen Govender, Miles C. Braithwaite, Pradeep Kumar, Yahya E. Choonara, and Viness Pillay
 10.1 Introduction, 231
 10.2 Monolithic matrix-based systems, 232
 10.2.1 Compressed tablet systems, 232
 10.2.2 Hydrogels, 233
 10.2.3 Protein films, 235
 10.2.4 Formulation coatings, 237
 10.3 Encapsulated systems, 238
 10.3.1 Bead-like conformations, 238
 10.3.2 Microencapsulated systems, 241
 10.3.3 Nanoencapsulated systems: Nanoparticles and nanocapsules, 243
 10.4 Conclusion, 247
Acknowledgments, 247
References, 247

11 Application of microencapsulated vitamins in functional food systems, 251
 Siew Young Quek and Cheng Peng
 11.1 Introduction, 251
 11.2 Common microencapsulation techniques for vitamins, 254
 11.3 Applications of incorporating encapsulated vitamins in dairy products, 255
 11.3.1 Application in cheese, 256
 11.3.2 Application in yogurt, 257
 11.3.3 Application in ice cream, 258
 11.4 Application of microencapsulated vitamins in beverages, 259
 11.5 Application of encapsulated vitamins in bakery products, 263
 11.6 Conclusions, 264
References, 265
12 Application of encapsulated compounds in functional food systems, 269

M. K. Tripathi and S. K. Giri

12.1 Introduction, 269
12.2 Microencapsulation technologies and bioactive food ingredients, 270
 12.2.1 Nonmicrobial products, 270
 12.2.2 Microbial products, 271
12.3 Delivery of bioactive ingredients into foods and to the gastrointestinal tract, 272
 12.3.1 Microbial-containing products, 272
 12.3.2 Nonmicrobial products, 274
12.4 Techniques of microencapsulation, 275
 12.4.1 Emulsion polymerization, 275
 12.4.2 Interfacial polycondensation, 276
 12.4.3 Suspension cross-linking, 276
 12.4.4 Solvent extraction, 276
 12.4.5 Phase separation, 277
 12.4.6 Emulsification, 277
 12.4.7 Coacervation, 278
 12.4.8 Spray-drying, 278
 12.4.9 Spray-cooling, 278
 12.4.10 Fluid-bed coating, 278
 12.4.11 Extrusion technologies, 279
12.5 Materials used for encapsulation, 279
12.6 Selection and safety evaluation of encapsulation materials, 279
12.7 Nutritional and nutraceutical compounds and microencapsulation, 280
 12.7.1 Bioactive food components, 280
 12.7.2 Antioxidants, 283
 12.7.3 Minerals, 283
 12.7.3.1 Iron, 283
 12.7.3.2 Calcium fortification, 284
 12.7.3.3 Vitamins, 284
 12.7.3.4 Polyunsaturated fatty acids, 284
 12.7.4 Polyphenols and carotenoids, 285
 12.7.5 Living bioactive food components, 286
12.8 Spray-drying in microencapsulation of food ingredients, 287
 12.8.1 Food ingredients microencapsulated by spray-drying, 288
 12.8.1.1 Lipids and oleoresins, 288
 12.8.1.2 Flavoring compounds, 290
 12.8.1.3 Other food ingredients, 290
12.9 Nanoencapsulation of food ingredients using lipid-based delivery systems, 290
 12.9.1 Nanoemulsions, 291
 12.9.2 Liposomes, 291
 12.9.3 Solid lipid nanoparticles, 291
 12.9.4 Nanostructure lipid carrier, 292
12.10 New techniques and ingredients that improve effectiveness of encapsulation, 292
References, 294

13 Encapsulation of polyunsaturated omega-3 fatty acids for enriched functional foods, 301
 Jorge Carlos Ruiz Ruiz and Maira Rubi Segura Campos
 13.1 Introduction, 301
 13.2 Functional effects of omega-3 fatty acids, 303
 13.3 Susceptibility to oxidation, 304
 13.4 Methods for encapsulating oil, 304
 13.5 Nonconventional wall materials for encapsulating oil, 305
 13.5.1 Chitosan, 305
 13.5.2 Pullulan, 306
 13.5.3 Salvia hispanica mucilage, 307
 13.5.4 Opuntia ficus-indica, 309
 13.6 Properties of oil as omega-3 polyunsaturated fatty acids capsules, 309
 13.7 Oxidation stability and fatty acid composition of encapsulated vegetable oils, 311
 13.8 Incorporation of long-chain omega-3 polyunsaturated fatty acids in foods, 313
 13.9 Conclusion, 314
Acknowledgments, 315
References, 315
Index, 321