Index

a
Absolute time of occurrence 206
Acceleration factors 340
AC filters 283
impulse 65
power supply 283
system faults 214
voltage, peak value of 221
Acquisition device 102, 103
Actuation performances 2
Adjustable time-frequency window 322
Air gap 21
Air permeability 207
Alternative Transient Program (ATP) 231
American Institute of Electrical Engineers 342
Amplitude error 208
Analog operational amplifier 208
ANSOFT field simulation 84
ANSOFT Maxwell 85
Ant colony algorithm 337
Arc extinction 247
Arc grounding overvoltages 38
Arc-quenching angle 287
capability 37
chamber 220
performances 33, 37, 232
Arc reignition 30, 31, 216, 280
overvoltage 247
Armature reaction 54
Arrester protection level 215
Arresters 30, 184
Arrester stray capacitance 75
Asymmetrical faults 248
Asymmetrical short circuit 252
Asymmetrical short-circuit faults 47
Asymmetric grounding faults 254
Asymmetric grounding overvoltages 342
recognition of 342
Asymmetric grounding short-circuit 330
Asynchronous self-excitation 52
Atmospheric overvoltage 16, 258
Attenuation coefficient 27, 182
Attenuation of the voltage and current travelling waves 182
Attraction effect 22
Automatic excitation regulations 63
Automatic reclosing 28
Automatic safety devices 2
Average absolute value 321
Average development rate 18
Average singular value 329
Average thunderstorm day 18
Average thunderstorm hour 18
Average value 320, 321, 330, 334
Azimuth angle 204

b
Back flashover 16, 310, 344
Back flashover overvoltages 320
Backup protection 30
Bandwidth 198
Bergeron equivalent circuit 13
equivalent network 14
method 12, 301
Best fitness 340
BGO (Bi$_4$Ge$_3$O$_{12}$) 93
Biaxial crystals 93
Big data theory 345
Biological evolution processes 337
Bound charges 21
Breakdown of internal insulation and flashover of external insulation 196
Breaker gap 38
restrike 34
trips 196
Broadband antenna system 204
BSO (Bi12SiO20) 93
Bulk-oil circuit breakers 37
Bushing tap 65
circuit 67
Bus module 277
parameters 277
positive-sequence impedance 278
zero-sequence impedance 278

C
Cables 4
Calculating transient torque 2
Capacitance effect 256
graded bushing 217
voltage-dividing transducer 217
Capacitive bushing taps 196
current 44
reactance 49
voltage dividers 198
CE (Carrier Ethernet) Changing rates 1
Characteristic quantity extraction and recognition algorithms 319
Characteristic values 335
Characteristic vectors 335
Chopped impulse wave
preliminary discharge time of 200
Chopped voltage 216
Chopped wave
transposition coefficients at zero point of 200
Circuit breaker 29, 31, 54
Circuit closing and reclosing 213
Clearance 334
Clearance factor 322, 330
Clock calibration errors 208
calibration technologies 207
synchronization 207
Closing moment 29
overvoltage 26, 236
phase angle 236
resistors 247
Cloud charges 176
Cloud-to-cloud lightning 203
Cloud-to-ground discharge sites 203
discharge 19, 259
lightning 203
Coaxial cable 69
Combined overvoltage (COV) 16
Commutation failures 215
Compensating capacitance 46
Compensating system 46
Compensation degrees 43
Complete and accurate component model base 231
Completely continuous type 199
Completely kink type 199
Comprehensive location method 205
Compressed-air circuit 37
Conductor corona 181
dc resistance 232
inner diameter 232
leakage resistance 28
outer diameter 232
resistance 181
terminals 21
type 171
Conductor-to-ground capacitance 40
conductance 181
Connecting leader 18
Constantly expanding scale 1
Converter stations 213
Converter transformers 213, 283, 288
Converter transformers and smoothing reactors
shielding effects of 213
Converter valve 213, 283
Copper loss 36
Core flux 243
Core saturation 61
Corona 17, 50
loss 27
Corona-caused loss 33
Corresponding voltage 1
COTs (Central office terminals) 118
Countermeasures 1
Coupling coefficient 22, 306
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance matrix</td>
<td>335</td>
</tr>
<tr>
<td>Crest factor</td>
<td>330,334</td>
</tr>
<tr>
<td>Critical electric field</td>
<td>258</td>
</tr>
<tr>
<td>Cross Validation (CV)</td>
<td>336</td>
</tr>
<tr>
<td>Crystal design</td>
<td>93</td>
</tr>
<tr>
<td>Crystallographic axis</td>
<td>94</td>
</tr>
<tr>
<td>Cumulative probability distribution</td>
<td>28</td>
</tr>
<tr>
<td>Current chopping</td>
<td>35</td>
</tr>
<tr>
<td>differential protection</td>
<td>208</td>
</tr>
<tr>
<td>dispersion effect</td>
<td>306</td>
</tr>
<tr>
<td>Error Controllers (CEC)</td>
<td>292</td>
</tr>
<tr>
<td>flowing</td>
<td>30</td>
</tr>
<tr>
<td>iteration times</td>
<td>340</td>
</tr>
<tr>
<td>overview</td>
<td>208</td>
</tr>
<tr>
<td>Current transducer models</td>
<td></td>
</tr>
<tr>
<td>installation site of</td>
<td>316</td>
</tr>
<tr>
<td>Cutoff overvoltages</td>
<td>245</td>
</tr>
<tr>
<td>Cutoff value</td>
<td>37</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Damped factor</td>
<td>30</td>
</tr>
<tr>
<td>Damped resistance</td>
<td>63</td>
</tr>
<tr>
<td>Dashed box</td>
<td>78</td>
</tr>
<tr>
<td>Data-loading interface</td>
<td>122</td>
</tr>
<tr>
<td>Data management system</td>
<td>314</td>
</tr>
<tr>
<td>Data sampling theory</td>
<td>107</td>
</tr>
<tr>
<td>Db4 wavelet</td>
<td>324</td>
</tr>
<tr>
<td>Dc filters</td>
<td>283</td>
</tr>
<tr>
<td>DC-side grounding short-circuit faults</td>
<td>215</td>
</tr>
<tr>
<td>Deblocking test</td>
<td>223</td>
</tr>
<tr>
<td>results of</td>
<td></td>
</tr>
<tr>
<td>De-energizing unload line</td>
<td>30</td>
</tr>
<tr>
<td>Detection station, structure of</td>
<td>208</td>
</tr>
<tr>
<td>Dielectric</td>
<td>4</td>
</tr>
<tr>
<td>breakdown</td>
<td>29</td>
</tr>
<tr>
<td>constant</td>
<td>76</td>
</tr>
<tr>
<td>materials polypropylene</td>
<td>70</td>
</tr>
<tr>
<td>tests</td>
<td>198</td>
</tr>
<tr>
<td>Different lightning incoming waveforms</td>
<td></td>
</tr>
<tr>
<td>time-domain and frequency-domain characteristics of</td>
<td>343</td>
</tr>
<tr>
<td>Digital simulation by computers</td>
<td>16</td>
</tr>
<tr>
<td>Dimensional time-domain characteristic values</td>
<td>320</td>
</tr>
<tr>
<td>Dimensionless time-domain characteristic values</td>
<td>322</td>
</tr>
<tr>
<td>Direct connection mode</td>
<td>288</td>
</tr>
<tr>
<td>Direct lightning</td>
<td>174,344</td>
</tr>
<tr>
<td>Direct lightning overvoltages</td>
<td>16,262,343</td>
</tr>
<tr>
<td>Direct lightning strokes and back flashover</td>
<td>214</td>
</tr>
<tr>
<td>Discharge gap</td>
<td>68</td>
</tr>
<tr>
<td>Discharge tubes</td>
<td>67</td>
</tr>
<tr>
<td>Disconnecting convertor transformers</td>
<td></td>
</tr>
<tr>
<td>test results of</td>
<td>219</td>
</tr>
<tr>
<td>Dispersive lightning wave</td>
<td>170</td>
</tr>
<tr>
<td>Distributed parameters</td>
<td>2,301</td>
</tr>
<tr>
<td>circuits</td>
<td>49</td>
</tr>
<tr>
<td>line model with lumped resistors</td>
<td>251</td>
</tr>
<tr>
<td>Distribution networks</td>
<td>267</td>
</tr>
<tr>
<td>Double exponential wave</td>
<td>19,169,179</td>
</tr>
<tr>
<td>Double tuned filters</td>
<td>285</td>
</tr>
<tr>
<td>dc filter banks</td>
<td>218</td>
</tr>
<tr>
<td>Downward stepped leader</td>
<td>259</td>
</tr>
<tr>
<td>Dynamic error correction</td>
<td>70</td>
</tr>
<tr>
<td>Dynamic voltage sharing</td>
<td>286</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Earth resistivity</td>
<td>171</td>
</tr>
<tr>
<td>Effective average value</td>
<td>334</td>
</tr>
<tr>
<td>Effective value</td>
<td>330</td>
</tr>
<tr>
<td>Effective value min</td>
<td>334</td>
</tr>
<tr>
<td>EHV transmission lines</td>
<td>34</td>
</tr>
<tr>
<td>Electrical equipment internal insulation</td>
<td></td>
</tr>
<tr>
<td>electrical aging mechanisms of</td>
<td>345</td>
</tr>
<tr>
<td>Electrical schematic diagrams</td>
<td>231</td>
</tr>
<tr>
<td>Electric energy loss</td>
<td>182</td>
</tr>
<tr>
<td>Electric field distribution</td>
<td>85</td>
</tr>
<tr>
<td>Electric field energy</td>
<td>182</td>
</tr>
<tr>
<td>Electromagnetic and electromechanical parameters</td>
<td>1</td>
</tr>
<tr>
<td>Electromagnetic component</td>
<td>169</td>
</tr>
<tr>
<td>interferences</td>
<td>2</td>
</tr>
<tr>
<td>oscillation</td>
<td>31,247</td>
</tr>
<tr>
<td>PT</td>
<td>34</td>
</tr>
<tr>
<td>radiation</td>
<td>203</td>
</tr>
<tr>
<td>shielding</td>
<td>66</td>
</tr>
<tr>
<td>transient disturbance falls</td>
<td>135</td>
</tr>
<tr>
<td>transient phenomenon</td>
<td>248</td>
</tr>
<tr>
<td>transient process</td>
<td>1</td>
</tr>
<tr>
<td>transient processes</td>
<td>1,54</td>
</tr>
<tr>
<td>wave velocity</td>
<td>4</td>
</tr>
</tbody>
</table>
Electro Magnetic Transient in DC System (EMTDC) 231
Electron avalanches 17
Electro-optical Kerr effect 93
Electrostatic and electromagnetic induction 177
Electrostatic induction 179
Embedded ARM controller 208
Embedded measurement system 314
Emergency switch-off 214
Energizing ac and dc filters 215
Energy quality estimation 333
Entity dynamic simulation platform 16
Entrance impedance 52
Equilibrium point 60
Equipment insulation level 2, 230
Equipment internal insulation 342
Equivalent circuit 2, 232
Equivalent inductance 30
Equivalent wave impedance of the substance 171
Error analysis 207
Excitation current 35
Excitation inductance 35, 220
Excitation inductor 34
Excitation parameters 269
Expert experience 319
External clearances in air 198
External overvoltages 99, 320
External power sources 14
External wiring 36

f
Fake strike point 205
Fast Excitation regulations 63
Fast-front overvoltage (FFO) 16
Fast winding coil saturation 245
Fault diagnosis 333
distance 208
location 208, 322
overview 208
properties, recognition of 203
recorder information 208
sites, fast query of 203
wave recording 216
wave recording at PT recording 216
Faulty tower number 210
Ferranti effect 28, 51
calculation of 248
Ferromagnetic components 60, nonlinear characteristic of
Ferro resonance 223
Ferro-resonance 44, 133
Ferro-resonance (nonlinear resonance) 56
Ferro-resonance overvoltage 232, 267
Ferro-resonance overvoltage and other temporary overvoltages 342
Fielding failure 211, 344
Field records 256
Filter bank 215
Final steady voltage-dividing ratio 69
First-level sorter 329
First-order and second-order singular value 331
First stroke 18
First stroke current 18
Fish swarm algorithm 337
Flashover discharge channel 211
Flashover to ground 21
Flux density 222
Flux linkage conversation 54
Forced phase shift 227
Forward travelling voltage wave 171
FOTs (fiber optic transceivers) 118
Fourier transform 322
Fractional-frequency resonance 61
Frequency band and intrinsic restrictions 342
Frequency-dependent electromagnetic field 182
Frequency-dependent model 172
Front and tail time 343
Front steepness 19
Front time 19, 343
Full compensation 44
Full-waveform optical online monitoring technology 93
Full-wave or chopped-wave lightning impulse tests 199
Function optimization 337
Fundamental resonance 61
Index 355

g
- Gap breakdown 31, 33
- Gapless metal oxide arrester (MOA) 65
- Gapless MOA voltage transducers 72
- Gas discharge tube 68
- Gas Insulated Switchgear (GIS) 280
- General packet radio service (GPRS) 114
- Generator shafting 2
- Genetic Algorithm (GA) 336, 337, 340
- Global system for mobile communications (GSM) 113
- GPRS-based system 115
- GPS frequency calibration and data transmission 203
- Graphic user interface 231
- Ground flash density 19
- Grounding devices 344
- Ground losses 181
- Ground operation to metallic operation 215
- Ground pole lines 215
- Ground poles 215
- Ground wires 344
- Group extremum 340
- GSM networks 113

h
- Half amplitude decay time 343
- Harmonic filters 291
- High arc-quenching capabilities 220
- High-frequency resonance 61
- High pass filters 285
- High-precision non-contact passive overvoltage transducers 345
- High-voltage winding 199
- HV transformers 36
- HV voltage dividers 65
- Hyperbolic curve 204
- Hysteresis loop of the transformer core 235
- Hysteresis saturation effect of 235

i
- Ideal lossless transmission lines 181
- Impedance matching 65
- Impulse corona 9, 160, 301
- Impulse factor 322, 330, 334
- Impulse response characteristics 71
- Incoming lightning waves 344
- line bushing 197
- line side of the transformer 197
- surges 155, 186, 187, 213
- voltage wave 6
- wave steepness 11
- Increasingly complex structure 1
- Indirect lightning 174
- Individual extremum 340
- Induced charges 176
- Induced lightning of the return stroke channel 174
- Induced lightning overvoltage 20, 21, 262, 343
- Induced overvoltages 301
- Induce potentials 243
- Inductive components 55
- Inductive reactance 49
- Industrial personal computers (IPC) 103
- Inertia weight 340
- InfiniBand network 121
- InfiniBand Technology QDR 120
- Infinitely long rectangular wave 8
- Influencing factors 1
- Information extraction 208
- Information processing 337
- Inherent defects of transformer insulation 344
- Initial frequency 232
- Initial impulse wave 169
- Initial voltage-dividing ratio 69
- Input phase angle of circuit breakers 215
- Inrush current 222, 243, 245
- Inspection groups 210
- Instrument transformer 266
- Insulation breakdown of the high-voltage winding 169
- Insulation coordination 343, 344
- damage 14
- defects 239
- design 345
- determination 152
- guardrail 81
- levels 48, 198
Insulation coordination (contd.)
 strength 39
 thickness 200
Insulation coordination for lightning overvoltages 152
Insulation coordination for switching overvoltages 152
Insulator flashover 169, 170, 344
 string flashover 173, 190
Intelligent overvoltage monitoring centers 99
Interference due to spatial electromagnetic fields 218
Interference-free line-plate model 86
Intermediate line 10
Intermittent arc grounding overvoltages 141, 320, 330
Internal and external overvoltages 342
Internal insulation 344
Internal overvoltages 320
Internal resistance 223
Interphase coupling 218
 insulation flashover 128
 mutual inductances 304
Intersection method 173
Introduction of parallel reactors 252
Inverse piezoelectric effect 93
Isotropic crystal 94

\(j \)
 JMarti line model 232

\(k \)
 Kernel function 332
 Kink-continuous type 199
 Kurtosis 322, 330
 Kurtosis value 322, 330, 334

\(l \)
 Lagrangian coefficient 332
 Lagrangian multiplier 332
 Large-scale calculation capacity 231
 Laser source 197
 Last breaker trip at the inverter side 216
 LC oscillation 247
 circuit 26, 32
 Leader channel 21, 262
 discharge 259
 method 173
 progresses downward 17
 Leakage current 184
 Leave-One-Out Cross Validation (LOO-CV) 337
 Life evaluation 345
 Lighting overvoltages 125
 activities, frequency of 18
 bypassing overvoltages 320
 channel in the case of shielding failures 316
 current amplitude 19, 259
 current amplitudes
 probability distribution of 208, 260
 current calculation of the peak value of 207
 current polarity 261
 current waveforms 259, 303
 detection network 203
 directly striking the tower, channels of 316
 discharge 16, 17
 discharge electrodes 17
 duration 204
 impulse insulation levels 342
 incoming wave parameters 343
 incoming waves 344
 intensity 19
 leaders 196
 Location System (LLS) 202
 magnitude 301
 overlightning 232
 overvoltage 196, 320
 overvoltage propagating
 characteristics of 196
 parameters 18
 polarity 259
 protection design 19, 344
 protection measures 344
 protection research 261
 rod 344
 signal data acquisition 203
 strike 258
 strike spots 303, 322
 withstand level 155
<table>
<thead>
<tr>
<th>term</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault section</td>
<td>211</td>
</tr>
<tr>
<td>Transformer</td>
<td>198</td>
</tr>
<tr>
<td>Linear flaky and spherical shapes</td>
<td>17</td>
</tr>
<tr>
<td>Linear kernel function</td>
<td>332</td>
</tr>
<tr>
<td>Linear lightning stroke</td>
<td>17</td>
</tr>
<tr>
<td>Linearly non-separable samples</td>
<td>332</td>
</tr>
<tr>
<td>Linear resonance</td>
<td>56</td>
</tr>
<tr>
<td>Linear resonance overvoltages</td>
<td>319</td>
</tr>
<tr>
<td>Line arresters</td>
<td>248</td>
</tr>
<tr>
<td>Capacitance</td>
<td>278</td>
</tr>
<tr>
<td>Inductance</td>
<td>277</td>
</tr>
<tr>
<td>Length</td>
<td>232</td>
</tr>
<tr>
<td>Loss</td>
<td>159</td>
</tr>
<tr>
<td>Parameters</td>
<td>29</td>
</tr>
<tr>
<td>Residual charges</td>
<td>30</td>
</tr>
<tr>
<td>Residual voltage</td>
<td>236</td>
</tr>
<tr>
<td>Resistance</td>
<td>50</td>
</tr>
<tr>
<td>Spacing</td>
<td>171</td>
</tr>
<tr>
<td>Line-to-ground capacitance</td>
<td>31</td>
</tr>
<tr>
<td>LLS query</td>
<td>210</td>
</tr>
<tr>
<td>Load rejection</td>
<td>55</td>
</tr>
<tr>
<td>Local convergence of calculation results</td>
<td>337</td>
</tr>
<tr>
<td>Long air gap breakdown</td>
<td>16</td>
</tr>
<tr>
<td>Long-front-long-tail surges</td>
<td>192</td>
</tr>
<tr>
<td>Long-front-short-tail surges</td>
<td>192</td>
</tr>
<tr>
<td>Long-gap sparks</td>
<td>196</td>
</tr>
<tr>
<td>Longitudinal electro-optical modulation</td>
<td>96</td>
</tr>
<tr>
<td>Lossless with distributed parameters</td>
<td>3</td>
</tr>
<tr>
<td>Low-damping voltage dividers</td>
<td>196</td>
</tr>
<tr>
<td>Low frequency (LF)</td>
<td>203</td>
</tr>
<tr>
<td>Low-frequency oscillation</td>
<td>330</td>
</tr>
<tr>
<td>Low-frequency response circuits</td>
<td>66</td>
</tr>
<tr>
<td>Low-voltage side</td>
<td>38</td>
</tr>
<tr>
<td>Low-voltage winding</td>
<td>169</td>
</tr>
<tr>
<td>Lumped parameter</td>
<td>23</td>
</tr>
<tr>
<td>Lumped parameter capacitor</td>
<td>13</td>
</tr>
<tr>
<td>Lumped parameter model</td>
<td>301</td>
</tr>
</tbody>
</table>

m
- Magnetic energy: 182
- Magnetic energy loss: 182
- Magnetic field energy: 8
- Magnetic flux: 54
- Magnetization curve: 245
- Main discharge: 259

Main discharge channel
- Lighting current of: 259
- Wave impedance of: 259

Main flux 245
- Major disturbances: 2
- Mallat algorithm: 323
- Mallat algorithm theory: 324
- Matched resistance: 65
- Mature overvoltage test methods: 216
- Maximum recovery voltage: 38
- Maximum steepness: 8
- Maximum voltage gradient: 200
- Metal electrodes: 17
- Metal induction plate: 81
- Metal oxide arresters: 248
- Metal oxide arresters (MOAs): 72
- Metal-oxide surge characteristic curve of: 265
- Metal-oxide surge arrester: 265
- Midspan: 23, 24
- Mixed overvoltages: 343
- Modern artificial intelligence methods: 345

Modern lightning telemetry and location technology 203
- Modulation approaches: 96
- Monopole ground operation mode: 215
- Mother wavelet: 324
- Motor transient reactance: 258
- Multi-Class SVM: 333
- Multi-component polycrystalline ceramic semiconductor: 72
- Multi-level transducer networks: 331
- Multi-phase distributed transmission lines: 232
- Multi-phase PI: 231
- Multi-phase transmission lines: 28
- Multiple discharge: 261
- Multiple discharge pulses: 261
- Multiple leader-to-main discharge processes: 260
- Multiple lightning strokes: 259
- Multiple strokes: 18
- Multiple trigger modes: 316
- Multi-wave impedance model: 172
- Mutual inductance: 304
n
National Lightning Detection Network
(DLDN) 203
Neutral displacement 223
Neutral grounding methods 232
Neutral points 47
Non-centrosymmetric crystals 93
Non-contact overvoltage transducers 217
Non-fault phase voltage 54
Nonlinear control 231
Nonlinear inductive branch 235
Nonlinear regression 332
Nonlinear resistor piece 74
Nonlinear resistors and inductors 232
Nonlinear resonance 59, 330
Nonlinear U-I characteristics 184
Non-periodical dc components 245
Non-periodical flux linkage 245
Non-standard lightning waveforms 344
Non-zero initial conditions 26
Normalization 207, 335
Normal switch-off 214

o
Oblique wave 19
Oblique wavefront 16
Occurrence instants 322
Occurrence time of the lightning event 205
Offline electromagnetic transient
simulation program 231
Oil duct height 200
Oil-pressed minimum oil circuit breakers 37
One-versus-rest method 334
Online lightning overvoltage monitoring 65
Online overvoltage monitoring devices
319, 343
systems 99
technology 345
On-load tap changers 198
Open delta 272, 274
Operating parameters 1
conditions 2
mode of the minimum power supply
capacity 250
principles 2
Operational performances of equipment 48
Operational phase voltage 31
Opposite polarities 21
Optical axis direction 93
Optical line terminal(OLTs) 118
Optical receiver 197
Optical transient voltage measuring devices
based distributed capacitance 132
Optimal global solution 337
Optimized magnetism 55
Orientation method 204
Original voltage 30
Oscillating frequency 26, 32
Oscillating voltage signals 221
Oscillation magnitudes 33
Oscillation wave 32
Outgoing lines of substations 184
Over-compensation 44
Over-compensation degree 44
Overcurrents 2, 55
Overhead line 232
transmission line 4, 232
transmission line model 301
Overvoltage coefficients 22
distribution 247
identification 319
magnitude 32
multiple 46
occurrence probability 2
suppression 37
tests at the converter
transformer bushing tap 217
tests for DC filters 218
tests using non-contact passive optical
fibers 217
transducers 345
waveform identification 319
waveform steepness 322
different categories of 14
each type of 213

p
Parallel capacitance 8, 35
Parallel multi-conductor system 157
Parallel reactors 30, 51
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter coordination</td>
<td>58</td>
</tr>
<tr>
<td>Parametric resonance</td>
<td>56, 62</td>
</tr>
<tr>
<td>overvoltages</td>
<td>63</td>
</tr>
<tr>
<td>Parametric variation</td>
<td>63</td>
</tr>
<tr>
<td>Partial discharge</td>
<td>239</td>
</tr>
<tr>
<td>Particle Swarm Optimization (PSO)</td>
<td>336</td>
</tr>
<tr>
<td>Particle swarm optimization algorithm</td>
<td>337</td>
</tr>
<tr>
<td>Particle velocity</td>
<td>340</td>
</tr>
<tr>
<td>Pattern recognition</td>
<td>333, 337</td>
</tr>
<tr>
<td>Pattern recognition and classification</td>
<td>332</td>
</tr>
<tr>
<td>Peak value</td>
<td>320, 321</td>
</tr>
<tr>
<td>Penalty factor</td>
<td>332, 340</td>
</tr>
<tr>
<td>Penalty parameter</td>
<td>336</td>
</tr>
<tr>
<td>Performances of current dividers and voltage dividers</td>
<td>315</td>
</tr>
<tr>
<td>Peterson principle</td>
<td>5</td>
</tr>
<tr>
<td>Phase positions</td>
<td>221</td>
</tr>
<tr>
<td>Phase voltage</td>
<td>39</td>
</tr>
<tr>
<td>Photoelastic effect</td>
<td>94</td>
</tr>
<tr>
<td>Photoelectric detector</td>
<td>96</td>
</tr>
<tr>
<td>Photoelectric sensors</td>
<td>197</td>
</tr>
<tr>
<td>Physical simulation</td>
<td>16</td>
</tr>
<tr>
<td>Piezoelectric constant</td>
<td>94</td>
</tr>
<tr>
<td>Pilot streamers</td>
<td>17</td>
</tr>
<tr>
<td>Pockels effect</td>
<td>93</td>
</tr>
<tr>
<td>Pockels sensing material selection</td>
<td>93</td>
</tr>
<tr>
<td>Polarizer and polarization beam splitter</td>
<td>197</td>
</tr>
<tr>
<td>Polynomial kernel function</td>
<td>332</td>
</tr>
<tr>
<td>Poly propylene capacitor</td>
<td>70</td>
</tr>
<tr>
<td>Poor arc-quenching performance</td>
<td>280</td>
</tr>
<tr>
<td>Positioning methods</td>
<td>2</td>
</tr>
<tr>
<td>Positive sequence capacitance</td>
<td>278</td>
</tr>
<tr>
<td>Potential and gradient distribution</td>
<td>343</td>
</tr>
<tr>
<td>Potential insulation faults</td>
<td>39</td>
</tr>
<tr>
<td>Potential of the neutral bus of the rectifier station</td>
<td>215</td>
</tr>
<tr>
<td>Potential of these neutral bus</td>
<td>215</td>
</tr>
<tr>
<td>Potential Transformer (PT)</td>
<td>184</td>
</tr>
<tr>
<td>Power control mode</td>
<td>290</td>
</tr>
<tr>
<td>Power electronics simulation</td>
<td>231</td>
</tr>
<tr>
<td>Power frequency overvoltage amplitude of</td>
<td>249</td>
</tr>
<tr>
<td>Power frequency overvoltages</td>
<td>47, 128, 249, 330</td>
</tr>
<tr>
<td>Power frequency voltage amplitude</td>
<td>282</td>
</tr>
<tr>
<td>Power grid</td>
<td>319</td>
</tr>
<tr>
<td>Power network structures</td>
<td>29</td>
</tr>
<tr>
<td>Power source type</td>
<td>290</td>
</tr>
<tr>
<td>Power supply</td>
<td>31</td>
</tr>
<tr>
<td>Power supply leakage</td>
<td>50</td>
</tr>
<tr>
<td>Power System Computer Aided Design (PSCAD)</td>
<td>231</td>
</tr>
<tr>
<td>Power system overvoltage recognition</td>
<td>327</td>
</tr>
<tr>
<td>Power system splitting overvoltages</td>
<td>44</td>
</tr>
<tr>
<td>Practical conditions</td>
<td>304</td>
</tr>
<tr>
<td>Precautionary measures</td>
<td>54</td>
</tr>
<tr>
<td>Predicting accident rates</td>
<td>2</td>
</tr>
<tr>
<td>Preliminary conclusion</td>
<td>210</td>
</tr>
<tr>
<td>Primary coils</td>
<td>243</td>
</tr>
<tr>
<td>Principal Component Analysis (PCA)</td>
<td>334</td>
</tr>
<tr>
<td>Private communication networks</td>
<td>110</td>
</tr>
<tr>
<td>Probability distribution curve for lightning current amplitudes</td>
<td>260</td>
</tr>
<tr>
<td>Protection features</td>
<td>48</td>
</tr>
<tr>
<td>Protection unit</td>
<td>65</td>
</tr>
<tr>
<td>Protective measures</td>
<td>169</td>
</tr>
<tr>
<td>Protective relays</td>
<td>2</td>
</tr>
<tr>
<td>Protective relay unit</td>
<td>68</td>
</tr>
<tr>
<td>PT iron core nonlinear excitation characteristics of</td>
<td>267</td>
</tr>
<tr>
<td>poor frequency response of</td>
<td>216</td>
</tr>
<tr>
<td>PT sampling equipment</td>
<td>132</td>
</tr>
<tr>
<td>Pulse voltage</td>
<td>68</td>
</tr>
</tbody>
</table>

q

Quasi-periodic operating state | 55 |

r

Radial basis function networks | 331 |
Radial basis function networks functions | 332 |
Radial basis function networks parameters | 336 |
Radial dimensions | 9 |
Randomness of lightning stroke current | 303 |
Random numbers | 340 |
Rated current | 222 |
Reactive compensation equipment | 214 |
Reactive currents of unloaded transformer and shunt reactors | 247 |
Reactive power balance | 51 |
Index

Real-time C/S remote mode 113
 calibrating technology 208
 monitoring 99
Reasonable and feasible design 2
Recovery voltage 38
Reflected voltage wave 6
Refracted wave 5
 wave amplitude of 171
Relative swing 44
Remote desktop connection 112
 ends mode 288
 terminal analysis system 123
Repeated discharge times 261
Residual charges 34, 280
 flux of the iron core 223
 voltage 26, 280
Resistance loss 27
Resistor loss 32
Resonance circuit 59
Resonance overvoltages 55
 waveforms of 137
Resonance phenomena 55
Resonance range 58
Results of fault inspection 210
Reversing changeover regulation 200
RLC circuits with lumped elements 231
Root-mean-square amplitude 321
Root-mean square value 320, 330
Rotating machinery 1
 Rotation estimation 336
Rough lighting wave shape 301

Safe operation of the electrical equipment 344
 Safety margin 70
 Sampling and recording system 75
 Sampling duration 198
 Sampling plate 77
 Sampling rate 198
Saturable transformer module 276
Saturated degree 223
Saturation characteristic 60
Saturation characteristic parameters 288
Saturation of electromagnetic PT 269
Saturation property 216
Saturation Reactors (SR) 258
Secondary commutation failures 291
Second-level sorter 330
Sectional grounding wire 171
Security prediction 333
Self-excitation 51, 62
Sensor probe 197
Series inductors 7
Series resonance 57
SF6 circuit breaker 215
Shielding angle 25
 effect 21
 enclosure 81
 failure 22, 192, 301
 shell 81
 shell thickness 83
Short-circuit loss 275
Short-front-long-tail surges 192
Short-front-short-tail surges 187, 190
Short messaging service (SMS) 113
Shunt reactors 248
Signal acquisition and processing section 314
 Signal conditioning units 345
 Signal output cable 66
 Silicon bridge 216
 Single chip microcomputers (SCM) 103
 Single-conductor lines 2
 Single-phase grounding 28
 Single-phase grounding faults 248, 254
 Single-phase grounding overvoltages 140
 Single-phase or two-phase voltages 330
 Single-phase short-circuit current 43
 Single tuned filters 285
 Singular Value Decomposition (SVD) 327, 331
Skewness 321
Skin effect 182, 232, 306
Slack variable 332
Slow-front overvoltage (SFO) 16
Smoothing reactors 283, 291
Soil resistivity 232
Sound 203
Spatial electric field intensity 258
Spectrum analysis interface 122
Split-phase recognition 330
Splitting overvoltage 45
Splitting site 47
Stable and efficient computing kernel 231
Static stability 1
Static var compensators (SVC) 55, 258
Static voltage sharing 286
Statistical characteristics 320
Steep rising edge 196
Steep wave overvoltages 213
Step length 17
Stepped leaders 17
Stray capacitance 36, 75, 217
Stray inductance of the current divider and divider 315
Stray reactance 315
Strike spots 16, 301
Strong light 203
Substation ac or dc side 213
Substation arresters 248
Sub-synchronous resonance phenomena 1
Superposition 10
Supply inductance 40
Supply potential 31
Support Vector Machine (SVM) 331, 333
Suppression coils 43
Surge arresters 248
Sustained voltage 14
Swing angle 44
Switchgear 232
Switching and lightning overvoltages 329
Switching impulse test and power frequency overvoltage tests 199
Switching operations 1, 2
Switching overvoltages 26, 221, 232, 320
waveforms of 137
System component 1, 51, 322
System Emergency Switch-Off(ESOF) 214
System faults 1, 2
System line 232
System splitting 45

Tap changer
internal insulation of 199
Tap changers 288
TCP/IP protocol 115
Temporary overvoltage 14, 213, 320, 329
Ten gigabyte 117
Tests of overvoltages across the arrester counter 216
Thermal energy 4, 182
Thermoelectric effect 93
Three-dimensional location 206
Three-phase arrester banks 169
asymmetrical flux 245
breaker 240
inrush current waveforms 245
reclosing 241
synchronization 29
voltage waveforms 245
winding transformers 275
Thundercloud charge neutralization 18
Thundercloud formation and lightning discharge process 258
Thunderstorm day 260
Thunderstorm hours 260
Thyristor Controlling Reactors (TCR) 258
Thyristor Switching Capacitors (TSC) 258
Time calibration 208
Time-domain characteristics 320
Time of arrival (TOA) 203, 205
Time-varying resistors 232
Tower impulse grounding 301
Tower model selection and parameter determination 301
Transformer arrester, counter of 230
bushing taps 65
excitation branch 276
high-voltage side 38
insulation levels 198
leakage reactance 258
properties 234
winding 343
winding connection type 288
winding impulse properties 199
Transient overvoltage (TR.O) 2, 14
Transient overvoltage recognition system 334, 340
Transient power frequency overvoltage 256
Transient spatial electromagnetic field method 281
Transient stability 1
Transition 1
Transition process 1
Transition resistance 322
Transition state 243
Transmission line distributed parameter circuit 181
Transmission units valid 345
Transported charge quantity to ground 261
Transverse electro-optical modulation 96
Travelling current waves 22
Travelling voltage wave 169, 171
attenuation and distortion of 171, 182
Travelling wave distance measurement 208
Travelling wave method 301
Travelling wave process 2
Travelling wave protection 226, 227
Travelling waves
refraction and reflection of 4
Travelling wave signal 170
Tree-shaped hierarchical classification 333
Tree-shaped hierarchical recognition 319
Trigger pulse angle 287
Trigger pulse losses 215
Trigger pulse signal 287
Two-phase grounding faults 255, overvoltages 141

UHV transformer 36
Ultimate voltage
amplitude of 11
Ultra-long air gaps 16
Uman's model 208
Uman's return stroke current model 207
Under-compensation 44
Uniaxial crystal 93
Unified analysis 1
Unipolar repetitive pulses 260
Unloaded current 222
Unloaded transformer 220, 234
Unload lines 30, 247
Unload long lines
capacitance effect of 249
Upward-moving connecting leaders 259
User-friendly interface 231

V
Vacuum circuit breaker 37
Vacuum dielectric constant 76
Valve arresters 51
Valve plate 75
Valve-type magnetic blowout arresters 248
Variable frequency sampling 108
Very Fast Transient Overvoltage (VFTO) 132, 280
Very Low Frequency (VLF) 203
Voltage Dependent Current Order Limiters (VDCOL) 292
Voltage distribution over the winding 199
Voltage dividers 65
dividing capacitance 66
dividing resistance 66
gradient of the tap changer 198
phase angles 29
regulation methods 199
regulation range 199
resonance 57
saltation protection 226, 227
transducers 65
Volt-second characteristics and flashover
criteria for insulators 301

W
Waveform characteristics 36
Wave impedance 4, 251
process 2, 156
velocity 251
Wavelength 19
Wavelet decomposition 323
Wavelet decomposition formula 324
Wavelet transform 323
Wavelet transform analysis 322
Winding arrangement 199
Winding types 199
Wireless public networks 113

Z
Zero-sequence capacitance 278
component 51
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>component of the short-circuit current</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>impedance</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>networks</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>reactance</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>voltage signals</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Zinc oxide (ZnO) arresters</td>
<td>34, 172, 184</td>
<td></td>
</tr>
<tr>
<td>Zinc oxide valve plates</td>
<td>216</td>
<td></td>
</tr>
</tbody>
</table>