Contents

About the Authors xv
Series Preface xvii
Preface xix
List of Abbreviations xxiii
About the Companion Website xxvii

1 Introduction 1
1.1 Image Content and Image Quality 2
1.1.1 Color 3
1.1.2 Shape 8
1.1.3 Texture 10
1.1.4 Depth 11
1.1.5 Luminance Range 12
1.1.6 Motion 15
1.2 Benchmarking 18
1.3 Book Content 22
Summary of this Chapter 24
References 25

2 Defining Image Quality 27
2.1 What is Image Quality? 27
2.2 Image Quality Attributes 29
2.3 Subjective and Objective Image Quality Assessment 31
Summary of this Chapter 32
References 33

3 Image Quality Attributes 35
3.1 Global Attributes 35
3.1.1 Exposure, Tonal Reproduction, and Flare 35
3.1.2 Color 39
3.1.3 Geometrical Artifacts 40
3.1.3.1 Perspective Distortion 40
3.1.3.2 Optical Distortion 42
3.1.3.3 Other Geometrical Artifacts 42
3.1.4 Nonuniformities 43

COPYRIGHTED MATERIAL
Contents

3.1.4.1 Luminance Shading 45
3.1.4.2 Color Shading 45
3.2 Local Attributes 45
3.2.1 Sharpness and Resolution 45
3.2.2 Noise 49
3.2.3 Texture Rendition 50
3.2.4 Color Fringing 50
3.2.5 Image Defects 51
3.2.6 Artifacts 51
3.2.6.1 Aliasing and Demosaicing Artifacts 52
3.2.6.2 Still Image Compression Artifacts 53
3.2.6.3 Flicker 53
3.2.6.4 HDR Processing Artifacts 55
3.2.6.5 Lens Ghosting 55
3.3 Video Quality Attributes 56
3.3.1 Frame Rate 56
3.3.2 Exposure and White Balance Responsiveness and Consistency 58
3.3.3 Focus Adaption 58
3.3.4 Audio-Visual Synchronization 58
3.3.5 Video Compression Artifacts 59
3.3.6 Temporal Noise 60
3.3.7 Fixed Pattern Noise 60
3.3.8 Mosquito Noise 60
Summary of this Chapter 60
References 61

4 The Camera 63

4.1 The Pinhole Camera 63
4.2 Lens 64
4.2.1 Aberrations 64
4.2.1.1 Third-Order Aberrations 65
4.2.1.2 Chromatic Aberrations 66
4.2.2 Optical Parameters 67
4.2.3 Relative Illumination 69
4.2.4 Depth of Field 70
4.2.5 Diffraction 71
4.2.6 Stray Light 73
4.2.7 Image Quality Attributes Related to the Lens 74
4.3 Image Sensor 75
4.3.1 CCD Image Sensors 75
4.3.2 CMOS Image Sensors 77
4.3.3 Color Imaging 81
4.3.4 Image Sensor Performance 82
4.3.5 CCD versus CMOS 89
4.3.6 Image Quality Attributes Related to the Image Sensor 90
4.4 Image Signal Processor 91
4.4.1 Image Processing 91
4.4.2 Image Compression 98
4.4.2.1 Chroma Subsampling 98
4.4.2.2 Transform Coding 98
4.4.2.3 Coefficient Quantization 99
4.4.2.4 Coefficient Compression 100
4.4.3 Control Algorithms 101
4.4.4 Image Quality Attributes Related to the ISP 101
4.5 Illumination 102
4.5.1 LED Flash 103
4.5.2 Xenon Flash 103
4.6 Video Processing 103
4.6.1 Video Stabilization 103
4.6.1.1 Global Motion Models 104
4.6.1.2 Global Motion Estimation 105
4.6.1.3 Global Motion Compensation 106
4.6.2 Video Compression 107
4.6.2.1 Computation of Residuals 107
4.6.2.2 Video Compression Standards and Codecs 109
4.6.2.3 Some Significant Video Compression Standards 110
4.6.2.4 A Note On Video Stream Structure 111
4.7 System Considerations 111

Summary of this Chapter 112

References 113

5 Subjective Image Quality Assessment—Theory and Practice 117
5.1 Psychophysics 118
5.2 Measurement Scales 120
5.3 Psychophysical Methodologies 122
5.3.1 Rank Order 123
5.3.2 Category Scaling 123
5.3.3 Acceptability Scaling 124
5.3.4 Anchored Scaling 125
5.3.5 Forced-Choice Comparison 125
5.3.6 Magnitude Estimation 125
5.3.7 Methodology Comparison 126
5.4 Cross-Modal Psychophysics 126
5.4.1 Example Research 127
5.4.2 Image Quality-Related Demonstration 128
5.5 Thurstonian Scaling 129
5.6 Quality Ruler 131
5.6.1 Ruler Generation 134
5.6.2 Quality Ruler Insights 135
5.6.2.1 Lab Cross-Comparisons 135
5.6.2.2 SQS2 JND Validation 136
5.6.2.3 Quality Ruler Standard Deviation Trends 139
5.6.2.4 Observer Impact 141
5.6.3 Perspective from Academia 142
5.6.4 Practical Example 144
5.6.5 Quality Ruler Applications to Image Quality Benchmarking 147
5.7 Subjective Video Quality 148
5.7.1 Terminology 149
5.7.2 Observer Selection 149
5.7.3 Viewing Setup 150
5.7.4 Video Display and Playback 151
5.7.5 Clip Selection 152
5.7.6 Presentation Protocols 154
5.7.7 Assessment Methods 156
5.7.8 Interpreting Results 158
5.7.9 ITU Recommendations 159
5.7.9.1 The Double-Stimulus Impairment Scale Method 160
5.7.9.2 The Double-Stimulus Continuous Quality Scale Method 160
5.7.9.3 The Simultaneous Double-Stimulus for Continuous Evaluation Method 160
5.7.9.4 The Absolute Category Rating Method 161
5.7.9.5 The Single Stimulus Continuous Quality Evaluation Method 161
5.7.9.6 The Subjective Assessment of Multimedia Video Quality Method 161
5.7.9.7 ITU Methodology Comparison 162
5.7.10 Other Sources 162

Summary of this Chapter 162
References 163

6 Objective Image Quality Assessment—Theory and Practice 167
6.1 Exposure and Tone 168
6.1.1 Exposure Index and ISO Sensitivity 168
6.1.2 Opto-Electronic Conversion Function 169
6.1.3 Practical Considerations 170
6.2 Dynamic Range 170
6.3 Color 171
6.3.1 Light Sources 171
6.3.2 Scene 174
6.3.3 Observer 176
6.3.4 Basic Color Metrics 178
6.3.5 RGB Color Spaces 180
6.3.6 Practical Considerations 181
6.4 Shading 181
6.4.1 Practical Considerations 182
6.5 Geometric Distortion 182
6.5.1 Practical Considerations 184
6.6 Stray Light 184
6.6.1 Practical Considerations 185
6.7 Sharpness and Resolution 185
6.7.1 The Modulation Transfer Function 186
6.7.2 The Contrast Transfer Function 191
6.7.3 Geometry in Optical Systems and the MTF 193
6.7.4 Sampling and Aliasing 194
Contents

6.7.5 System MTF 195
6.7.6 Measuring the MTF 198
6.7.7 Edge SFR 198
6.7.8 Sine Modulated Siemens Star SFR 201
6.7.9 Comparing Edge SFR and Sine Modulated Siemens SFR 203
6.7.10 Practical Considerations 204
6.8 Texture Blur 204
6.8.1 Chart Construction 206
6.8.2 Practical Considerations 206
6.8.3 Alternative Methods 207
6.9 Noise 207
6.9.1 Noise and Color 207
6.9.2 Spatial Frequency Dependence 209
6.9.3 Signal to Noise Measurements in Nonlinear Systems and Noise Component Analysis 211
6.9.4 Practical Considerations 212
6.10 Color Fringing 213
6.11 Image Defects 214
6.12 Video Quality Metrics 214
6.12.1 Frame Rate and Frame Rate Consistency 215
6.12.2 Frame Exposure Time and Consistency 215
6.12.3 Auto White Balance Consistency 216
6.12.4 Autofocusing Time and Stability 216
6.12.5 Video Stabilization Performance 217
6.12.6 Audio-Video Synchronization 218
6.13 Related International Standards 218

7 **Perceptually Correlated Image Quality Metrics** 227

7.1 Aspects of Human Vision 227
7.1.1 Physiological Processes 227
7.2 HVS Modeling 232
7.3 Viewing Conditions 232
7.4 Spatial Image Quality Metrics 234
7.4.1 Sharpness 235
7.4.1.1 Edge Acutance 235
7.4.1.2 Mapping Acutance to JND Values 237
7.4.1.3 Other Perceptual Sharpness Metrics 239
7.4.2 Texture Blur 239
7.4.3 Visual Noise 240
7.5 Color 244
7.5.1 Chromatic Adaptation Transformations 244
7.5.2 Color Appearance Models 245
7.5.3 Color and Spatial Content—Image Appearance Models 247
7.5.4 Image Quality Benchmarking and Color 249
7.6 Other Metrics 251
9.2.2 Use Cases 313
9.2.3 Observer Impact 314
9.3 Methods of Combining Metrics 315
9.3.1 Weighted Combinations 316
9.3.2 Minkowski Summation 316
9.4 Benchmarking Systems 317
9.4.1 GSMArena 317
9.4.2 FNAC 318
9.4.3 VCX 318
9.4.4 Skype Video Capture Specification 319
9.4.5 VIQET 320
9.4.6 DxOMark 321
9.4.7 IEEE P1858 323
9.5 Example Benchmark Results 324
9.5.1 VIQET 324
9.5.2 IEEE CPIQ 325
9.5.2.1 CPIQ Objective Metrics 327
9.5.2.2 CPIQ Quality Loss Predictions from Objective Metrics 337
9.5.3 DxOMark Mobile 338
9.5.4 Real-World Images 339
9.5.5 High-End DSLR Objective Metrics 339
9.6 Benchmarking Validation 345
Summary of this Chapter 348
References 349

10 Summary and Conclusions 353
References 357

Index 359