CONTENTS

CONTRIBUTORS xxi

FOREWORD xxiii

ACKNOWLEDGMENTS xxv

CHAPTER 1 INTRODUCTION 1

Mircea Eremia, Chen-Ching Liu, and Abdel-Aty Edris

PART I HVDC TRANSMISSION

Mircea Eremia

CHAPTER 2 POWER SEMICONDUCTOR DEVICES FOR HVDC AND FACTS SYSTEMS 11

Remus Teodorescu and Mircea Eremia

2.1 Power Semiconductor Overview 12

2.1.1 Not-Controllable Power Semiconductor Devices 13

2.1.2 Semicontrollable Power Semiconductor Devices 13

2.1.3 Fully Controllable Power Semiconductor Devices 17

2.1.3.1 Gate Turn-Off Thyristor 18

2.1.3.2 Integrated Gate-Commutated Thyristor 18

2.1.3.3 Isolated Gate Bipolar Transistor 18

2.1.4 Power Semiconductor Parameters 20

2.1.4.1 Steady-State Parameters 20

2.1.4.2 Switching Characteristics 20

2.1.5 Future Power Semiconductor Devices 21

2.2 Converter Types 21

2.3 HVDC Evolution 23

2.3.1 Line-Commutated HVDC Converters (LCC/CSC–HVDC) 24

2.3.2 Capacitor-Commutated Converter (CCC–HVDC) 26

2.3.3 Voltage Source Converter VSC–HVDC 28

2.3.3.1 VSC–HVDC Based on Two-Level Converters 29

2.3.3.2 VSC–HVDC Based on Multilevel Converters 29

2.3.3.3 Limitations of VSC Transmission 30

2.4 FACTS Evolution 30

References 33
CONTENTS

CHAPTER 3 CSC–HVDC TRANSMISSION 35
Mirea Eremia and Constantin Bulac

3.1 Structure and Configurations 35
 3.1.1 Structure of HVDC Links 35
 3.1.2 HVDC Configurations 40

3.2 Converter Bridge Modeling 47
 3.2.1 Rectifier Equations 47
 3.2.1.1 Ideal Converter Bridge Operation 47
 3.2.1.2 Commutation Process or Overlap 52
 3.2.1.3 Equivalent Circuit of the Rectifier 56
 3.2.2 Inverter Equations 57

3.3 Control of CSC–HVDC Transmission 59
 3.3.1 Equivalent Circuit and Control Characteristics 59
 3.3.1.1 Equivalent Circuit of DC Transmission Link 59
 3.3.1.2 Voltage–Current Characteristics 62
 3.3.2 HVDC Control Principles 64
 3.3.2.1 State Variables of a HVDC Link 64
 3.3.2.2 Basic Control Principles of the DC Voltage and DC Current 65
 3.3.2.3 Control Modes 67
 3.3.3 HVDC Control Strategies 69
 3.3.3.1 Rectifier Control Strategy 69
 3.3.3.2 Inverter Control Strategy 71
 3.3.4 Hierarchical Control of a HVDC Link 72
 3.3.4.1 Master Control 72
 3.3.4.2 Pole Control 74
 3.3.4.3 Firing (Valve) Control 78
 3.3.4.4 Telecommunications 78
 3.3.4.5 Measurement Transducers 78

3.4 Reactive Power and Harmonics 78
 3.4.1 Reactive Power Requirements and Sources 78
 3.4.2 Harmonics and Filters 83
 3.4.2.1 The Source of AC Harmonic Currents 83
 3.4.2.2 The Effect of Y/Δ Transformation on AC Harmonic Current 85
 3.4.2.3 Higher Pulse Operation Using Multiple Bridges and Transformers 86
 3.4.2.4 Elimination of Harmonics 86

3.5 Load Flow in Mixed HVAC/HVDC-CSC Systems 91
 3.5.1 Steady-State Model 91
 3.5.1.1 The Extended Variables Method 93
 3.5.1.2 The Sequential Method 94
 3.5.1.3 The Eliminated Variables Method 94

3.6 Interaction Between AC and DC Systems 96
 3.6.1 AC Systems Stabilization 96
 3.6.2 Influence of AC System Short-Circuit Ratio 96
 3.6.3 Effective Inertia Constant 99
 3.6.4 Reactive Power and the Strength of the AC System 100

3.7 Comparison Between DC and AC Transmission 101

3.8 Application on a CSC–HVDC Link 109
 3.8.1 Solution 111
Appendix 3.1 CSC–HVDC Systems in the World 118
References 123

CHAPTER 4 VSC–HVDC TRANSMISSION 125
Mircea Eremia, José Antonio Jardini, Guangfu Tang, and Lucian Toma

4.1 VSC Converter Structures 126
 4.1.1 Half-Bridge VSC or Two-Level Pole 126
 4.1.2 Full-Bridge Single-Phase VSC 128
 4.1.3 Three-Phase Two-Level VSC 128
 4.1.4 Three-Level Pole VSC 129
 4.1.5 Multimodule VSC Systems 131
 4.1.6 Multilevel VSC Systems 132
 4.1.7 Modular Multilevel Converter 138
 4.1.7.1 Half-Bridge Modular Multilevel Converter 140
 4.1.7.2 Full-Bridge Modular Multilevel Converter 143
 4.1.7.3 The MMC–HVDC INELFE Project 144
 4.1.8 Cascaded Two-Level Converters 147

4.2 Modulation Techniques 151
 4.2.1 PWM Techniques 151
 4.2.1.1 PWM Principle 151
 4.2.1.2 PWM Strategy Control of a Half-Bridge Converter 155
 4.2.1.3 Three-Phase Bridge Inverter with Sinusoidal PWM 159
 4.2.2 Modulation Techniques for Multilevel Converters 163
 4.2.2.1 PWM Algorithms for Multilevel Converters 163
 4.2.2.2 Space Vector Modulation Algorithms 165
 4.2.2.3 Other Modulation and Control Algorithms for Multilevel
 Converters 165

4.3 DC/AC Converter Analysis 166
 4.3.1 Operation Modes of the Switched-Inductor Cell 166
 4.3.2 Ideal DC/AC Half-Bridge Converter 168
 4.3.3 Averaging Models 173
 4.3.3.1 Circuit/Switch Averaging of DC–DC Converters 176
 4.3.3.2 State-Space Averaging of DC–DC Converters 177
 4.3.3.3 AVM of DC–AC Converters 178
 4.3.4 Detailed and Averaged Models for MMC–HVDC Systems 180
 4.3.4.1 Detailed Equivalent Models 181
 4.3.4.2 AVM of MMC–HVDC Using Voltage- and
 Current-Controlled Sources 183

4.4 VSC Transmission Scheme and Operation 188
 4.4.1 Power Equipment 188
 4.4.2 Principles of Active and Reactive Power Control 192
 4.4.3 VSC Transmission Control 196
 4.4.3.1 VSC Converter Control Using the Vector Control Strategy 196
 4.4.3.2 Levels of Control 199
 4.4.3.3 Coordination of Controls 200

4.5 Multiterminal VSC–HVDC Systems and HVDC Grids 203
 4.5.1 On the Conventional Multiterminal HVDC Configurations 203
 4.5.2 Multiterminal HVDC Grid Configurations 204
 4.5.3 Meshed HVDC Grid Configurations 209
CONTENTS

4.5.4 Need for Fast and Low Loss HVDC Breakers 211
 4.5.4.1 Preconditions 211
 4.5.4.2 Schemes for the Current Zero Formation 212
 4.5.4.3 Types of DC Circuit Breakers 214
4.5.5 HVDC Grid Protection 218
4.6 Load Flow and Stability Analysis 221
 4.6.1 Load Flow in Meshed AC/DC Grids 221
 4.6.1.1 Generalities 221
 4.6.1.2 Load Flow Calculation in a DC Grid 223
 4.6.1.3 Application 227
 4.6.2 Dynamic Stability in Meshed AC/DC Grids 231
 4.6.2.1 Generalities 231
 4.6.2.2 Description of the VSC Model for Stability Analysis 233
 4.6.2.3 Control Models 235
 4.6.2.4 P–V Droop Control 237
 4.6.2.5 Current and Voltage Limits 237
 4.6.2.6 RMS Model Testing 238
 4.6.2.7 Simulations on an AC/DC Meshed Grid 239
4.7 Comparison of CSC–HVDC Versus VSC–HVDC Transmission 246
 4.7.1 Differences Resulting from the Commutation Principle 246
 4.7.2 Differences Resulting from the Converter Type 248
4.8 Forward to Supergrid 249
 4.8.1 Challenges and Solutions for Developing Supergrid 249
 4.8.1.1 Connecting Renewable Energy Sources and Increased Transmission System Capacity 250
 4.8.1.2 Compensating Reactive Power 250
 4.8.1.3 Maintaining System Stability 252
 4.8.2 Hybrid AC and DC Systems 252
 4.8.3 Supernodes 254
 4.8.4 Stepwise Development of the European Supergrid 255
 4.8.5 Steps Toward a Planetary Supergrid 258
 4.8.6 VSC Multiterminal in China 260
Appendix 4.1 VSC–HVDC Projects Around the World 261
Appendix 4.2 Examples of VSC–HVDC One-Line Diagrams 263
References 263

PART II FACTS TECHNOLOGIES

Abdel-Aty Edris and Mircea Eremia

CHAPTER 5 STATIC Var COMPENSATOR (SVC) 271
Mircea Eremia, Aniruddha Gole, and Lucian Toma

5.1 Generalities 271
5.2 Thyristor-Controlled Reactor 273
5.3 Thyristor-Switched Capacitor 284
5.4 Configurations of SVC 287
 5.4.1 Fixed Capacitor and Thyristor-Controlled Reactor 287
 5.4.2 The SVC Device (TSC–TCR) 289
 5.4.2.1 V–I Characteristics 289
 5.4.2.2 Operating Domain 290
CONTENTS

5.5 Control of SVC Operation 294
5.5.1 The Voltage Regulator 294
5.5.2 Gate Pulse Generator 296
5.6 SVC Modeling 296
5.6.1 Steady-State SVC Modeling 296
5.6.1.1 Modeling of an SVC That Operates Within or Outside the Linear Control Domain 297
5.6.1.2 Improved Models for SVC Representation 299
5.6.1.3 Newton–Raphson Modified Algorithm to Include the SVCs 305
5.6.2 SVC Dynamic Modeling 307
5.6.2.1 The Basic Dynamic Model 307
5.6.2.2 First-Order Dynamic Model 308
5.6.2.3 Complex SVC Dynamic Models 309
5.7 Placement of SVC 312
5.8 Applications of SVC 314
5.8.1 Maintaining the Voltage Level of a Bus or into an Area 315
5.8.2 Increasing the Transmission Capacity 315
5.8.3 Static and Transient Stability Reserve Improvement 317
5.8.4 Oscillations Damping 322
5.8.5 Reducing the Transient Overvoltages 323
5.9 SVC Installations Worldwide 324
5.9.1 SVC at Hagby, in Sweden 326
5.9.2 SVC at Forbes, in United States 327
5.9.3 SVC in Temascal, Mexico 328
5.9.4 Complex Compensation Scheme in Argentina 329
5.9.5 SVC in the 735 kV Transmission System in Canada 329
5.9.6 SVC at Auas, in Namibia 330
5.9.7 SVC at the Channel Tunnel Rail Link 333
5.9.8 SVC at Harker, in United Kingdom 334
5.9.9 Relocatable SVCs 336
5.9.10 References 337

CHAPTER 6 SERIES CAPACITIVE COMPENSATION 339
Mircea Eremia and Stig Nilsson

6.1 Generalities 339
6.2 Mechanical Commutation-Based Series Devices 339
6.3 Static-Controlled Series Capacitive Compensation 342
6.3.1 GTO-Controlled Series Capacitor 342
6.3.2 Thyristor-Switched Series Capacitor 345
6.3.3 Thyristor-Controlled Series Capacitor 348
6.3.3.1 Basic Structure 349
6.3.3.2 Operating Principles of TCSC, Steady-State Approach and Synchronous Voltage Reversal 351
6.3.3.3 Operation Modes and the Characteristics of the TCSC 357
6.3.3.4 Capability Characteristics of the TCSC 362
6.4 Control Schemes for the TCSC 365
6.4.1 Open Loop Impedance Control 365
6.4.2 Closed Loop Control 366
6.5 TCSC Modeling 370
CONTENTS

6.5.1 Steady-State Modeling of TCSC 370
 6.5.1.1 TCSC Modeling Through Series Variable Impedance 370
 6.5.1.2 TCSC Impedance Modeling as a Function of the Firing Angle 374

6.5.2 TCSC Dynamic Models 376
 6.5.2.1 Transient Stability Model 376
 6.5.2.2 Long-Term Stability Model 379

6.6 Applications of TSSC/TCSC Installations 382

6.7 Series Capacitors Worldwide 387
 6.7.1 Kanawha River Mechanically Switched Series Capacitor in United States 387
 6.7.2 Kayenta TCSC in United States 389
 6.7.3 Slatt TCSC in United States 392
 6.7.4 Stöde TCSC in Sweden 396
 6.7.5 Imperatriz-Serra da Mesa TCSC in Brazil 397
 6.7.6 Purnea and Gorakhpur TCSC/FSC in India 400
 6.7.7 Series-Compensated 500 kV Power Transmission Corridors in Argentina 402

Appendix 6.1 TCSC Systems Around the World 404

References 405

CHAPTER 7
PHASE SHIFTING TRANSFORMER: MECHANICAL AND STATIC DEVICES
Mylavarapu Ramamoorty and Lucian Toma

7.1 Introduction 409

7.2 Mechanical Phase Shifting Transformer 410
 7.2.1 Principle of Operation of the PST 410
 7.2.2 PST Topology 412
 7.2.2.1 Direct-Type Asymmetrical PSTs 412
 7.2.2.2 Direct-Type Symmetrical PSTs 414
 7.2.2.3 Indirect-Type Asymmetrical and Symmetrical PSTs 416
 7.2.2.4 Comparison of the Topologies 417
 7.2.3 Steady-State Model of a Mechanical Phase Shifter 418
 7.2.4 Equivalent Series Reactance as a Function of the Phase Shift Angle 420
 7.2.4.1 Symmetrical Phase Shifter 420
 7.2.4.2 Quadrature Booster 424
 7.2.4.3 Asymmetrical Phase Shifter 425
 7.2.4.4 In-Phase Transformer and Symmetrical/Asymmetrical Phase Shifter 426

7.3 Thyristor-Controlled Phase Shifting Transformer 428
 7.3.1 Configurations of the Static Phase Shifter 428
 7.3.1.1 Substitution of Mechanical Tap Changer by Electronic Switches 429
 7.3.1.2 Thyristor-Controlled Quadrature Voltage Injection 429
 7.3.1.3 Pulse-Width Modulation AC Controller 432
 7.3.1.4 Delay-Angle Controlled AC-AC Bridge Converter 433
 7.3.1.5 Discrete-Step Controlled AC-AC Bridge Converter 434
 7.3.1.6 PWM Voltage Source Converter 434
 7.3.2 Modeling of TCPST 436
 7.3.2.1 Model of a Transmission System with a TCPST 436
CONTENTS

7.3.2.2 Line Model with Thyristor-Controlled Phase Angle Regulator 437
7.3.2.3 The Dynamic Model of the Phase Shifter 439

7.4 Applications of the Phase Shifting Transformers 439
7.4.1 Power Flow Control by Phase Angle Regulators 440
7.4.2 Real and Reactive Loop Power Flow Control 442
7.4.3 Improvement of Transient Stability with PST 444
7.4.4 Power Oscillation Damping with PST 446
7.4.4.1 Application to Damp Power Oscillations 448

7.5 Phase Shifting Transformer Projects Around the World 450
References 456

CHAPTER 8 STATIC SYNCHRONOUS COMPENSATOR – STATCOM 459
Rafael Mihalic, Mircea Eremia, and Bostjan Blazic

8.1 Principles and Topologies of Voltage Source Converter 459
8.1.1 Basic Considerations 459
8.1.2 Converter Topologies 464
8.1.2.1 Two-Level Topologies 464
8.1.2.2 Multilevel Topologies 469
8.1.2.3 PWM Converter 471
8.1.3 Switching Function 472

8.2 STATCOM Operation 473

8.3 STATCOM Modeling 476
8.3.1 STATCOM Model for Steady-State Analysis 476
8.3.1.1 Basic Load Flow Equations 478
8.3.1.2 The Single-Phase Voltage-Based Model 480
8.3.1.3 The Single-Phase Current-Based Model 482
8.3.1.4 Three-Phase Voltage-Based Model 484
8.3.1.5 Three-Phase Current-Based Model 487
8.3.2 Dynamic Models of STATCOM 492
8.3.2.1 Simplified Dynamic Model 492
8.3.2.2 Detailed Dynamic Model 494
8.3.3 Control Algorithm 499
8.3.4 STATCOM Model for Unbalanced Operation 501

8.4 STATCOM Applications 506
8.4.1 Fast Voltage Control and Maintaining Voltage Levels of a Bus or an Area 506
8.4.2 Flicker Compensation 506
8.4.3 Improvement of the Network Transmission Capability 509
8.4.4 Improvement of Static and Transient Stability Reserve 512
8.4.5 Oscillations Damping 514

8.5 STATCOM Installations in Operation 515
8.5.1 ± 80 MVAR STATCOM in Japan 515
8.5.2 ± 100 MVAR STATCOM at Sullivan, in United States 516
8.5.3 +225/–52 MVAR TSC and STATCOM Mixed System at East Claydon, in Great Britain 520
8.5.4 +133/–41 MVAR STATCOM at Essex, in United States 520
8.5.5 STATCOM (+80/–110 MVAR) and Mechanic-Switched Capacitor (~93 MVAR) Mixed System, at Holly, in United States 521
8.5.6 ±100 MVAR STATCOM at Talega, in United States 522

References 524
CONTENTS

CHAPTER 9 STATIC SYNCHRONOUS SERIES COMPENSATOR (SSSC) 527
Laszlo Gyugyi, Abed-Aty Edris, and Mircea Eremia

9.1 Introduction 527
9.2 Architecture and Operating Principles 528
 9.2.1 The Basic Structure and Principles of Operation 528
 9.2.2 Operating Modes of SSSC 530
 9.2.3 The $P_q\delta$ Characteristic of SSSC 532
9.3 Comparison of SSSC with Other Technologies 533
 9.3.1 Comparison with Fixed Series Capacitor 533
 9.3.2 Comparison with Fixed Series Reactor 534
 9.3.3 Comparison with Phase Angle Regulator 534
 9.3.4 Comparison with Thyristor-Controlled Series Capacitor 535
 9.3.5 Comparison with Gate-Controlled Series Capacitor 538
 9.3.6 Dynamic Flow Controller 540
9.4 Components of an SSSC 540
 9.4.1 Overview of the Functional SSSC Components 540
 9.4.2 Control 542
 9.4.3 Protection 545
9.5 SSSC Modeling 546
 9.5.1 Steady-State SSSC Model 546
 9.5.1.1 VSC Controller Load Flow Models 546
 9.5.1.2 Newton–Raphson Load Flow Solution 547
 9.5.2 SSSC Dynamic Model 549
9.6 Applications 551
9.7 SSSC Installation 552
 9.7.1 SSSC in Operation 552
 9.7.2 SSSC for Power Flow Control: A Project in Spain 553
 9.7.2.1 Project Overview 553
 9.7.2.2 Components of the SSSC 554
 9.7.2.3 Location Selection for Prototype Installation 555
References 556

CHAPTER 10 UNIFIED POWER FLOW CONTROLLER (UPFC) 559
Laszlo Gyugyi

10.1 Introduction 559
 10.1.1 UPFC as the Functional Combination of Conventional Transmission
 Controllers 559
 10.1.2 UPFC Directly Providing Line Current Forcing Function 566
10.2 Basic Characteristics of the UPFC 567
10.3 UPFC Versus Conventional Power Flow Controllers 571
 10.3.1 UPFC versus Series Reactive Compensators 571
 10.3.2 UPFC versus Phase Shifters 573
10.4 UPFC Control System 575
 10.4.1 Functional Control of the Shunt Converter 578
 10.4.2 Functional Control of the Series Converter 579
 10.4.3 Stand-Alone Shunt and Series Compensation 580
 10.4.4 Basic Control Structure for the Series and Shunt Converters 580
 10.4.5 Practical Control Considerations 583
References 584
CONTENTS

10.5 Equipment Structural and Rating Considerations 584
 10.5.1 Circuit Structural Considerations 586
 10.5.2 Rating Considerations for Series and Shunt Converters 588
 10.5.2.1 Series Converter Rating to Meet Line Compensation Requirements 588
 10.5.2.2 Shunt Converter Rating to Meet UPFC Operation Requirements 592
 10.5.3 UPFC Rating Optimization by Combined Compensation 594
10.6 Protection Considerations 596
 10.6.1 Protection of the Series Converter 596
 10.6.2 Protection of the Shunt Converter 600
10.7 Application Example: UPFC at AEP’s INEZ Station 600
 10.7.1 Background and Planning Information at the Time of Installation 601
 10.7.2 UPFC Operation Strategy 603
 10.7.3 Description of the UPFC 604
 10.7.4 Performance of the UPFC 607
 10.7.5 Importance of Results and Possible Future Trends 613
10.8 Modeling of the UPFC Device 613
 10.8.1 The Steady-State Model of UPFC 613
 10.8.2 Power Flow and Active Power Balance Restrictions 616
 10.8.3 Implementing the UPFC Model in the Newton–Raphson Method 618
 10.8.4 The Dynamic Model of UPFC 623
References 627

CHAPTER 11 INTERLINE POWER FLOW CONTROLLER (IPFC) 629
Laszlo Gyugyi

11.1 Generalities 629
11.2 Basic Operating Principles and Characteristics of the IPFC 630
11.3 Generalized Interline Power Flow Controller for Multiline Systems 636
11.4 Basic Control System 638
11.5 Equipment Structural and Rating Considerations 640
11.6 Protection Considerations 642
11.7 Application Example: IPFC at NYPA’s Marcy Substation 643
 11.7.1 Background Information, System, and Equipment Requirements 643
 11.7.2 Description of the CSC/IPFC 644
 11.7.3 Importance of the NYPA Installation 645
References 649

CHAPTER 12 SEN TRANSFORMER: A POWER REGULATING TRANSFORMER 651
Kalyan K. Sen

12.1 Background 651
 12.1.1 Traditional Power Flow Controllers 652
 12.1.2 Essential Control Parameters and Their Implementations 655
12.2 The Sen Transformer Concept 656
 12.2.1 Shunt-Series Configuration for ST 657
 12.2.2 Principle of Operation of ST 658
PART III ARTIFICIAL INTELLIGENCE TECHNIQUES
Chen-Ching Liu and Mircea Eremia

CHAPTER 14 ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE: A CHALLENGE FOR POWER SYSTEM ENGINEERS
Chen-Ching Liu, Alexandru Stefanov, and Junho Hong

CHAPTER 15 EXPERT SYSTEMS
Mircea Eremia, Kevin Tomsovic, and Gheorghe Cărtăria

15.1 Fundamental Concepts 731
 15.1.1 Definitions 731
 15.1.2 Expert System Characteristics 732
 15.1.3 Artificial Expertise or Human Expertise? 734

15.2 Architecture of Expert Systems 735
 15.2.1 Knowledge Base 735
 15.2.1.1 Knowledge Representation 735
 15.2.1.2 Facts Database 737
 15.2.1.3 Quality of Knowledge Base 738
 15.2.2 Inference Engine 738
 15.2.2.1 Inference Mechanisms 739
 15.2.2.2 Inference Engine Components 742
 15.2.2.3 Other Modules 743

15.3 Expert Systems Application 745
 15.3.1 Expert System for V–Q Control in Power Systems 745
 15.3.1.1 The Structure of the Expert System 745
 15.3.1.2 The Algorithmic Calculation Module 746
 15.3.1.3 The Heuristic Module 748
 15.3.1.4 Case Study 750
 15.3.2 Other Applications of Expert Systems 751
 15.3.2.1 Expert System for Distribution Networks Reconfiguration 751
 15.3.2.2 Expert System Power System Restoration After Blackouts 753

References 753

CHAPTER 16 NEURAL NETWORKS
Dagmar Niebur, Ganesh Kumar Venayagamoorthy, and Ekrem Gursoy

16.1 Introduction 755

16.2 Neural Network Architectures 755
 16.2.1 Feedforward Neural Networks 756
 16.2.1.1 The Multi-Layer Perceptron 756
 16.2.1.2 Radial Basis Function Networks 757
 16.2.2 Feedback (Recurrent) Neural Networks 758

16.3 Adaptive Critic Designs 759

16.4 Independent Component Analysis 760

16.5 Learning Algorithms: The Determination of Weights 760
 16.5.1 Supervised Learning Objectives 761
18. Decision Trees

18.1 Decision Tree Construction 821

18.2 Decision Tree Pruning 824

- 18.2.1 Reduced Error Pruning 825
- 18.2.2 Pessimistic Error Pruning 826
- 18.2.3 Minimum Error Pruning 827
- 18.2.4 Critical Value Pruning 827
- 18.2.5 Cost-Complexity Pruning 828
- 18.2.6 Error-Based Pruning 829

18.3 Oblique Decision Trees 829

- 18.3.1 Recursive Least Squares Procedure 830
- 18.3.2 The Thermal Training Procedure 831
- 18.3.3 OC1 Algorithm 831

18.4 Applications of Decision Trees in Power Systems 833

18.5 Case Study 836

References 843

19. Genetic Algorithms

Anastasios Bakirtzis and Spyros Kazarlis

19.1 Introduction to Evolutionary Computation 845

- 19.1.1 Taxonomy 846
- 19.1.2 Initial Inspiration and Basic Principles 846
- 19.1.3 On the Evolution Theory 848
- 19.1.4 DNA-Like Solution Encoding 849
- 19.1.5 Solution Evaluation 851
- 19.1.6 Genetic Information Recombination 852
- 19.1.7 The Circle of Evolution 853
- 19.1.8 Evolutionary Algorithms as Global Optimizers 853
- 19.1.9 Evolutionary Computation Paradigms 854
- 19.1.10 Application Areas 857
- 19.1.11 Advantages and Disadvantages 858

19.2 Genetic Algorithms 859

- 19.2.1 Basic GA Principles 860
- 19.2.2 GA Flow Diagram 862
- 19.2.3 Solution Encoding 863
- 19.2.4 Fitness Function 869
- 19.2.5 Parent Selection Methods 870
- 19.2.6 Basic Genetic Operators 873
 - 19.2.6.1 The Crossover Operator 873
 - 19.2.6.2 Mutation 877
- 19.2.7 Elitism 878
- 19.2.8 Other Genetic Operators 879
- 19.2.9 Hill-Climbing Operators 880
- 19.2.10 Parent Replacement Methods 883
- 19.2.11 Fitness Scaling 884
- 19.2.12 GA Control Parameters Determination 887
- 19.2.13 Niche and Species 888
- 19.2.14 Diversity Enhancement 893
- 19.2.15 Constrained Optimization with GAs 894
CONTENTS

19.3 On The Optimal Location and Operation of FACTS Devices by Genetic Algorithms 897
References 898

CHAPTER 20 MULTIAGENT SYSTEMS 903
Nan-Peng Yu and Chen-Ching Liu

20.1 Overview 903
 20.1.1 What is an Agent? What is a Multiagent System? 904
 20.1.2 Why Multiagent Systems? 904
 20.1.3 Applications of Multiagent Technology 904
 20.1.3.1 Industrial Applications 905
 20.1.3.2 Commercial Applications 906
 20.1.3.3 Medical Applications 907
 20.1.3.4 Entertainment Applications 907
 20.1.4 Challenges and Future of Multiagent Technology 908
 20.1.4.1 Design Methodologies for Software Development of Agent-Based Systems 908
 20.1.4.2 Ensure User Confidence and Trust in Agent-Based Systems 908
 20.1.4.3 Enable Agent Adaptation in Artificial System 908
 20.1.4.4 Promote Interoperability in an Open Environment 909
 20.1.4.5 Develop Semantic Infrastructure and Common Ontology for Agent Communication and Information Management 909
 20.1.4.6 Enhance Reasoning Capabilities for Agents in Open Environment 909

20.2 Multiagent Technology Overview 909
 20.2.1 Architectures for Intelligent Agents 909
 20.2.1.1 Logic-Based Architectures 910
 20.2.1.2 Reactive Architectures 910
 20.2.1.3 Belief-Desire-Intention Architectures 911
 20.2.1.4 Layered (Hybrid) Architectures 911
 20.2.2 Multiagent Systems and Societies of Agents 912
 20.2.2.1 Communication 912
 20.2.2.2 Negotiation 913
 20.2.2.3 Coordination 913
 20.2.3 Programming Languages, Tools, and Frameworks for Multiagent Systems 914
 20.2.3.1 Programming Languages for Multiagent Systems 914
 20.2.3.2 Integrated Development Environment 915
 20.2.3.3 Frameworks for Multiagent Systems Development 915
 20.2.4 Multiagent System-Related Standards 915
 20.2.4.1 The Foundation for Intelligent Physical Agents 915
 20.2.4.2 The Object Management Group 917

20.3 Applications of Multiagent Systems in Power Engineering 917
 20.3.1 Modeling and Simulation 917
 20.3.2 Monitoring and Diagnostics 918
 20.3.3 Restoration and Reconfiguration 919
 20.3.4 Distributed Control 919

20.4 Electricity Markets Modeling and Simulation with Multiagent Systems 920
 20.4.1 Why Multiagent System? 921
CONTENTS

20.4.2 Literature on Multiagent-Based Modeling of Electricity Markets 921
20.4.3 Multiagent System Design for Electricity Market Modeling and Simulation 922
 20.4.3.1 Purpose 922
 20.4.3.2 MAS Structure 923
 20.4.3.3 Agents 924
References 927

CHAPTER 21 HEURISTIC OPTIMIZATION TECHNIQUES 931
Kwang Y. Lee, Malihe M. Farsangi, Jong-Bae Park, and John G. Vlachogiannis

21.1 Introduction 931
21.2 Evolutionary Algorithms for Reactive Power Planning 932
 21.2.1 Evolutionary Algorithms 932
 21.2.1.1 Evolutionary Programming 932
 21.2.1.2 Evolutionary Strategy 933
 21.2.1.3 Genetic Algorithm 934
 21.2.2 Optimal Reactive Power Planning Problem 935
 21.2.2.1 Objective Functions 935
 21.2.2.2 P–Q Decomposition 936
 21.2.3 Case Studies 937
21.3 Genetic Algorithm for Generation Planning 943
 21.3.1 Generation Expansion Planning Problem 943
 21.3.2 Improved GA for the Least-Cost GEP 945
 21.3.2.1 Overview of Genetic Algorithm 945
 21.3.2.2 String Structure 945
 21.3.2.3 Fitness Function 945
 21.3.2.4 Creation of an Artificial Initial Population 946
 21.3.2.5 Stochastic Crossover, Elitism, and Mutation 947
 21.3.3 Case Studies 948
 21.3.3.1 Test Systems Description 948
 21.3.3.2 Parameters for GEP and IGA 949
 21.3.3.3 Numerical Results 950
21.4 Particle Swarm Optimization for Economic Dispatch 951
 21.4.1 Formulation of Economic Dispatch Problem 952
 21.4.1.1 ED Problem with Smooth Cost Functions 952
 21.4.2 Implementation of PSO for ED Problems 954
 21.4.2.1 Overview of the PSO 954
 21.4.2.2 Modified PSO for ED Problems 955
 21.4.2.3 Case Studies 958
 21.4.2.4 ED Problem with Smooth Cost Functions 959
 21.4.2.5 ED Problem with Nonsmooth Cost Functions Considering Valve-Point Effects 959
21.5 Ant Colony System for Constrained Load Flow Problem 961
 21.5.1 Formulation of Constrained Load Flow Problem 961
 21.5.2 Development of Ant Colony System for the Constrained Load Flow Problem 962
 21.5.3 Results 965
CONTENTS

21.6 Immune Algorithm for Damping of Interarea Oscillation 968
 21.6.1 Study System and Problem Formulation 969
 21.6.2 Designing of Supplementary Controller 971
21.7 Simulated Annealing and Tabu Search for Optimal Allocation of Static VAr Compensators 974
 21.7.1 Voltage Stability Analysis 974
 21.7.2 Simulated Annealing 975
 21.7.3 Tabu Search 975
 21.7.4 Study System and Optimal Allocation of SVCs 976
 21.7.4.1 A 5-Area-16-Machine System 976
 21.7.4.2 Optimal Allocation of SVCs 976
21.8 Conclusions 980
References 981

CHAPTER 22 UNSUPERVISED LEARNING AND HYBRID METHODS 985
Nikos Hatziargyriou and Manolis Voumvoulakis

22.1 Generalities 985
22.2 Supervised Learning Methods 988
 22.2.1 Decision Trees 988
 22.2.2 Neuro-Fuzzy Decision Trees 990
 22.2.3 Radial Basis Function Neural Networks 992
22.3 Unsupervised Learning Methods 996
 22.3.1 Self-Organized Maps 996
22.4 Som Variants 1000
 22.4.1 Evolving SOM 1001
 22.4.2 Growing Hierarchical Self-Organized Map 1002
 22.4.3 Growing Neural Gas 1004
 22.4.4 Variable Local Topology-Self-Organized Map 1006
22.5 Combined Use of Unsupervised with Supervised Learning Methods 1007
22.6 Applications to Power Systems 1007
 22.6.1 Description of the Power System 1007
 22.6.1.1 RBFNN for DSA 1009
 22.6.1.2 Decision Trees for DSA 1010
 22.6.1.3 Decision Trees Application for Load Shedding 1011
 22.6.1.4 Genetic Algorithm Aided DTs for Load Shedding 1012
 22.6.1.5 Neuro-Fuzzy Decision Trees for DSA 1013
 22.6.1.6 SOM Application for Load Shedding 1014
 22.6.1.7 Decision Trees Aided SOM for Load Shedding 1016
 22.6.2 Preventive Security Control 1018
 22.6.2.1 Study Case System 1019
 22.6.2.2 Decision Trees for Security Constrained Economic Dispatch 1020
 22.6.3 Power System-Controlled Islanding 1022
 22.6.3.1 Application of the Method on the IEEE 30 Bus Test System 1027
 22.6.3.2 Application of the Method on the IEEE 118 Bus Test System 1028
References 1030

INDEX 1033