INDEX

ABS function, 296, 298, 308
Add Constraint window, 11–12, 16, 33, 37, 195
Add-ins tab, 110, 349
Add-ins window, 10
Additivity, 21–3, 56
Algebraic formulations, 3, 10, 26, 65, 73, 166, 204, 240, 294–5, 297
Algebraic models, 2–4, 23, 31, 36, 39, 43–4, 50, 72, 78, 194, 209, 249, 351
Algebraic solutions, 4, 8–10
Algorithms
branch-and-bound procedure, 196, 219, 280
evolutionary solver, 307–9
GRG Nonlinear algorithm, 12, 33, 270, 277–80, 293, 298–300 see also Nonlinear solver
for integer programming, 215–20
reliable algorithm, 279–80, 293, 307
simplex algorithm, 33–4, 279, 356–65 see also Linear solver
Alldifferent constraint, 318–19, 333–4
Allocation models, 22, 29–38, 50, 144–5, 205, 322–4
DEA model as, 160, 169
investment allocation model, 86–91, 142–4, 198–201 see also Portfolio model
product mix problem, 36–8
sensitivity analysis, 116–23, 127–9, 144–5
Allocation problem, 22, 29
Allowable Increase/Decrease columns, 125–8, 130, 132, 141
Allowable range, 128, 129, 132, 137, 145, 300
Alternative optima, 130–132
Analyst, 7
Analytic Solver Platform for Education (ASPE), 10, 348–9
Arcs, 66, 80–85, 90–92, 95
Artificial variables, 363–4
Assignment models, 71–5, 79
in the traveling salesperson problem, 254, 258

© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Assignment problem, 71, 73–5
Assume Non-Negative option, 11–12, 40, 54, 69, 249, 279, 315, 322, 325, 358
Automatic Scaling option, 279
Auxiliary variables, 297–9
Balance equations, 79, 80, 84, 90, 93
funds flow model, 86–91, 142
general-network models with
transformed flow, 91–5, 146
network models with, 79–84
Base case, 7
Basic feasible solution, 358, 361–4
Basic variables, 358–62
Binary choice see Binary variables
Binary choice models, 198–214
capital budgeting problem, 198–201, 252–4
matching problem, 208–11
playoff scheduling problem, 211–14
set-covering problem, 202–5
set-packing problem, 205–7
set-partitioning problem, 208–11
Binary variables, 192–3, 196, 198–214, 227–59
and the IF function, 230
Binding constraints, 28, 73, 115, 132–46, 150, 170, 286, 289
Blending models, 22, 47–52, 56
Blending problem, 48, 52
Bounding, 215
Branch and bound, 196, 215–20
Branching, 216, 219
Canonical equations, 360–362
Canonical form, 358–62
Capacitated facility location problem, 239–44
Capacity constraints, 30, 36, 240, 243, 244
Capital budgeting problem, 191, 198–201, 227–31, 323
Case studies
allocation problem, 29, 116, 127, 144
assignment problem, 71
blending problem, 49
capital budgeting problem, 198, 227
covering problem, 38
curve-fitting problem, 280, 309
data envelopment analysis (DEA)
problem, 161, 163, 175
facility location problem, 240, 243
fixed cost problem, 233
funds flow problem, 87, 142
group assignment problem, 332
inventory problem, 273
linearizing the absolute value
problem, 296
linearizing the maximum problem, 294
machine-sequencing problem, 247, 317
matching problem, 208
playoff scheduling problem, 211
portfolio optimization problem, 290
price, demand and profit problem, 3
pricing problem, 286
purchase discount problem, 275
refinery scheduling problem, 91, 145
set-covering problem, 202
set-packing problem, 205
set-partitioning problem, 208
staff-scheduling problem, 43, 193
transportation problem, 66, 109, 123
transshipment problem, 75
traveling salesperson problem, 251, 320
two-dimensional location problem, 283, 325
yield gain problem, 86
yield loss problem, 84
CEILING function, 308
Cell Edit function, 2, 55
Cell Reference box, 12
Cell references, 12, 15, 282
Change Constraint option, 55
Changing Variable Cells window, 11
Chemical compounds, blending models, 52
CHOOSE function, 308
Client, 7
Coffee blending, blending model, 49–51
College planning, funds flow model, 86–91, 142–4
Composite product, 52
Computational scheme, 133, 135–7, 140–147, 150
Concave functions, 277–8, 300
Conservation law, 66, 78, 83, 86
Constraint box, 12
Constraint constants, 126, 128–30, 137, 143, 150, 289, 363
Constraints, 2, 4, 6–12, 24–57
 alldifferent constraint, 318–19, 333–4
 allocation constraints, 50
 counting constraints, 227, 228, 231
 disjunctive constraints, 246–9, 259
 graphical analysis, 350–356
 inconsistency in, 53
 inequality constraints, 96
 infeasible constraints, 53–4
 linear constraints, 24–5
 linearizing the maximum, 294
 linking constraints, 231–46
 logical constraints, 227–60
 lower-bound constraints, 42
 modeling errors in, 52–6
 nonlinear models with, 285–93
 qualitative constraints see Logical constraints
 subtour elimination constraints, 251–8
 tight constraints see Binding constraints
tour constraints, 251–8
 upper and lower limits, 330
 upper-bound constraints, 42
 Contingency relationship, 193, 229, 230
 Convergence message, 14, 56, 274, 298, 300, 313, 319
 Convex feasible region, 277
 Convex functions, 277–8
 COUNTIF function, 308
 COV AR function, 292
 Covering models, 22, 38–47
 Covering problem, 38
diet problem, 42
 staff-scheduling problem, 43–7
 Crossover method, 311–13, 316
 Curve fitting, 280–283, 309–17
 Cycle time, 327–31
 Data Table tool, 108, 109, 123, 272, 280, 285

Debugging, Linear programming formulations, 54–5

Decision model, 1

Decision variables, 3, 4, 7, 8, 10, 11, 13, 14, 16, 23–8
 alldifferent constraint, 318
 bounds for, 279, 315, 322
 in branch and bound, 215–19
 in the computational scheme, 133
 in DEA, 168
 funds-flow models, 91
general-network models, 95
 initial values, 13, 273, 274, 276, 279, 300
 in integer programs, 191
 in sensitivity analysis, 113, 116, 121, 124–8
 set to zero, 54
 special-network models, 79

Decision-making units (DMUs), 160–166

Degenerate solution, 129

Diet problem, 42–3

Diminishing marginal returns, 115, 121

Disjunctive constraints, 248, 317

Displaying formulas, 32, 39, 54, 69

Divisibility, 21–3, 56, 79, 191

Efficiency, 26, 161–2, 165–70, 179–80

Efficient frontier, 293

Elementary row operations, 359–61

Entering variables, 359–61

Equal-to (EQ) constraints, 24, 25, 39, 51, 77–9, 82, 86, 170, 228, 355

Euclidean distance, 284, 325

Evolutionary solver, 307–35

Facility location model, 238–46
 capacitated version, 238–43
 uncapacitated version, 243–6

Fathomed, 218

Feasibility, 247, 317, 322, 330, 363

Feasible region, 277, 353, 356

Feasible solution, 26, 53, 270, 300, 358, 361–4

Fitness criterion, 308, 311, 316
Fixed-cost problem, 231–7
FLOOR function, 308
Flow see Flow diagrams
Flow diagrams, 65
assignment models, 72
conservation law, 81
funds flow model, 91
general-network models with transformed flows, 91–2
general-network models with yield gains, 88–90
network models, 78, 79
transportation models, 66
transshipment model, 76
Formula Auditing tools, 55
Formulas tab, 55
From/To structure, 66–7, 78, 79, 83
network models with balance equations, 79–84
special-network models, 78, 79
transportation models, 67
Funds flow model, 87, 89, 91
Gap, 270
Gasoline blends, blending models, 52
General-network models, 84–96
with transformed flows, 91–5
with yield gains, 86–91
with yield losses, 84–6
Global optima, 272–5, 277–9, 283, 285, 293, 294, 296, 298, 300, 307
Graphical methods
generalities, 355–6
linear programming, 350–356
Greater-than (GT) constraints, 24, 26, 28, 38, 47, 78, 79, 84, 228, 355, 364
GRG algorithm, 12, 33, 270, 277–80, 293, 298–300
Group assignment, 331–4
GT constraints see Greater-than (GT) constraints
Heuristic procedure, 308
Hypothetical comparison units (HCUs), 164, 167, 174–8
IF function, 230, 275, 308, 329
INDEX function, 171, 172, 308, 318, 321, 329
Indexing, data envelopment analysis (DEA), 173–4
Inequality constraints, 96
Infeasible constraints, 53–4
Inner product, 24
Input parameters, 5, 6
INT function, 308
Integer Optimality option, 195, 196, 260
Integer programming, 191–220, 227–60
algorithm for, 215–20
binary choice, 192, 198–214
disjunctive constraints, 248, 259
facility location model, 238–46
fixed-cost problem, 231–7
integer variables, 191–7
linking constraints, 231–46
machine-sequencing problem, 246–51
matching problem, 208–11
models with logical constraints, 227–60
qualitative constraints, 193
set-covering problem, 201–5
set-packing problem, 205–7
set-partitioning problem, 208–11
Solver with, 193–7
threshold-level problem, 237–8
traveling salesperson problem, 251–9
Integer variables, 191–7
Investment allocation model, 86–91, 142–4
see also Portfolio optimization model
Investment portfolios, 290–293
funds flow problems, 86–91, 142–4
optimization model, 290–293
portfolio variance, 291
sensitivity analysis, 142–4
Isovalue line, 356
Kink, 270, 307
Lagrange multiplier, 289
Left-hand-side (LHS), 24, 25, 27, 37, 47, 50, 55, 69, 82, 357, 364
Less-than (LT) constraints, 24, 26, 53, 68, 74, 77, 79, 84, 228, 355, 363, 364
Line balancing, 327–31
Linear, 22
constraints, 24–5
function, 21–5, 230, 287
models, 22–9, 50, 232, 280, 283, 293, 300, 307
Linear programming, 21–9, 34, 86, 160, 166, 173, 181, 191
 graphical methods, 350–356
 modeling errors in, 52–6
 patterns in, 133–49
 sensitivity analysis, 108–51
Linear programming formulations, 22–57
 allocation models, 22, 29–38, 56, 79, 96
 alternative optima, 130–132
 blending models, 22, 47–52, 56
 covering models, 22, 38–47, 56
 data envelopment analysis (DEA), 166–74
degeneracy, 129–30, 132
design and setup, 22–8
 layout, 27–8
 linear constraints, 50
 modeling errors in, 52–5
 network models, 22, 65–95, 142
 optimization results, 28–9
 patterns in, 133–49
 product mix problem, 36
 staff-scheduling problem, 43–7, 193–5
Linear solver, 16, 22, 33, 34, 50, 56, 220,
 270–272, 279, 293–300, 307, 321, 357
 see also Simplex algorithm
Linearity, 21, 27, 57, 86
Linearizations, 293–9
 linearizing the absolute value, 296–9
 linearizing the maximum, 293–6
Linking constraints, 231–46
 facility location problem, 238–46
 fixed-cost problem, 231–7
 threshold-level problem, 237–8
Local optima, 272–80, 283, 300, 307
Logical constraint models, 227–60
 fixed-cost problem, 231–7
 machine-sequencing problem, 246–51
 threshold-level problem, 237–8
 traveling salesperson problem, 251–9
Logical constraints, 193, 227–60
LOOKUP function, 308
Lower bounds, 95, 126, 179, 279, 315, 330
Lower-bound constraints, 42
LT constraints see Less-than (LT) constraints
Machine-sequencing problem, 246–51, 317–19
Marginal value, 115–16, 120–121, 141, 150
Matching problem, 208–11
Mathematical problem, 22
Mathematical models, 1, 2
Mathematical programming problems, 22
 MAX function, 294–5, 308, 318
 Max Time parameter, 260, 313, 316
 Max Time without Improvement option, 315, 316
 Maximization problems, 54, 286, 362–3
Microsoft® Office Excel®, 1, 2, 296, 298, 308, 316, 348–9
ABS function, 308
CEILING function, 308
Cell Edit function, 2, 55
CHOOSE function, 308
COUNTIF function, 308
COVAR function, 292
Data Table tool, 108, 109, 123, 272, 280, 285
FLOOR function, 308
Formula Auditing tools, 55
IF function, 230, 275, 308, 329
INDEX function, 171, 308, 318, 321, 329
INT function, 308
LOOKUP function, 308
MAX function, 294–5, 308, 318
MIN function, 308
range names, 2, 15
ROUND function, 308
Solve see Solver
SUMIF function, 329
SUMPRODUCT function, 24, 25, 27, 32, 39, 55, 69, 79, 95, 127
SUMSQ function, 282
MIN function, 308
Minimization problems, 54, 286, 294, 324, 363
Modeling errors in linear programming, 52–6
debugging, 54–5
infeasible constraints, 53–4
logic, 56
unbounded objective function, 54
Models, 1–4
Modularity, 27
Multiple optima, 130–132
MultiStart option, 279, 300, 307
Mutations, 308, 311–16
Network flow diagrams see Flow diagrams

Network models, 22, 65–96
assignment models, 71–5
with balance equations, 79–84
general-network models, 84–95
special-network models, 65–84, 93, 186
transportation model, 66–71
transshipment models, 76–8

Nodes, 66, 78, 81–95
Nonbasic variables, 358–9
Nonconvex regions, 277–8
Nondegenerate solution, 130, 132

Nonlinear models with constraints, 285–93
Nonlinear programming, 22, 270–300
with constraints, 285–93
linearizations, 293–9
local optima, 272–80, 283, 300, 307
one-variable models, 271–6
portfolio optimization model, 290–293
sensitivity analysis for, 288–90
two-variable models, 280–285

Nonlinear regression, evolutionary solver, 309–17
Nonlinear solver, 13, 16, 56, 270–300, 307, 309, 316, 326, 327, 333
Nonnegative variables, 40, 54, 69, 322, 352
Nonprofit industries, 162
Nonsmooth functions, 271, 275, 295–7, 307–9, 322, 335
Normalizing conditions, 169
Normalizing constraints, 170, 175, 180

Objective see Objective functions
Objective function coefficients, 23, 56, 109, 129, 130
sensitivity analysis, 109–14, 116–19, 123–8, 132, 148, 288–90

Objective functions, 4, 5, 14, 16, 21–8, 37, 42, 46, 54, 79, 91, 95
concave functions, 277–8
convex functions, 277–8, 283
fixed costs in, 231–7, 240
linear programming model, 23–6, 31, 37, 42, 46
nonlinear programming model, 270–271, 276, 280, 286

Optimal values of, 28, 195, 355
penalty in, 335
unbounded, 53–5, 307, 356, 363
Offspring solution, 308, 311–12
Oil refining, 91
One-dimensional problem, 271–6
One-input, one-output case, 161, 162, 166, 180

One-variable nonlinear models
order-quantity example, 273–5
quantity-discount example, 275–6
Optimality message, 13, 34, 56, 274
Optimization, 1–2, 4, 8–10, 16, 108, 355
Optimization models, 2
Options button, 195, 313
Options window, 195, 279, 314
Order-quantity example, 273–5

Parameters, 3, 12, 16, 23, 29, 108
constraint, 79, 109
in the Evolutionary Solver, 315
objective function, 109
sensitivity analysis of, 109–48
Parent solutions, 308, 311

Part-time shifts, 46
Patterns, 119, 133–51
allocation model, 144–5
investment model, 142–4
in linear programming formulations, 127–41, 144–59
product portfolio model, 138–42
refinery model, 145–9
transportation model, 134–7

Pivot equation, 359–61
Pivot value, 360–361
Playoff scheduling problem, 211–14
Population Report, 327
Population Size parameter, 313
Portfolio, 290
model, 138–42, 151, 293, 304–6
optimization model, 290–293
variance, 291
Price, demand and profit problem, 3
Pricing example, two-variable model, 286–8

Product mix problem, 36–8
Proportionality, 21–3, 56
Prototype, 7, 28
Qualitative constraints see Logical constraints
Quantity-discount example, 275–6

Range names, 2, 15
Reduced Cost column, 126
Reduced gradient, 289
Reference sets, 164, 165, 174–8
Refinery model, 91–5, 145–9
Relaxed problem, 215
Reliable algorithm, 279–80, 293, 307
Require Bounds on Variables option, 315, 322

Return, 290
Risk, 290
ROUND function, 308
Scalar product, 24
Selection, 308, 316

Sensitivity analysis, 8, 12, 22, 28, 108–51
allocation example, 116–23, 127–9, 144–5
investment model, 142–4
for nonlinear programming, 288–90
product portfolio model, 138–42
refinery model, 145–9
transportation example, 109–16, 123–7, 145–8
Sensitivity Report, 123–32
allocation example, 127–9
for nonlinear programming, 288–90
transportation example, 123–7
Sequencing problems, 246–51, 317–19
Set Cell, 54
Set Objective window, 11
Set-covering problem, 202–5
Set-packing problem, 205–7
Set-partitioning problem, 208–11
Shadow price, 115–16, 120, 122, 126–30, 132, 137, 150, 175, 178, 289
Simplex algorithm, 34, 279–80, 356–65
Simplex tableau, 362
Simplex/LP Engine, 33
Slack variables, 358, 362–3
Smooth functions, 270–272, 278
Software, 2, 8–10, 16, 84, 108, 288, 348–9
Solver, 8, 9, 27–8, 33, 53–6, 84, 130, 132, 150, 191, 230, 259, 279, 315
Add Constraint window, 12, 195

Automatic Scaling option, 279
branch-and-bound procedure, 196, 215–20
Cell Reference box, 12, 36
Change Constraint window, 55
Constraint box, 12
convergence message, 14, 56, 274, 298, 300, 319
debugging, 32, 54–5	error message, 230, 294, 295, 298
evolutionary solver see Evolutionary solver
infeasibility message, 53, 363
Integer Optimality option, 195, 196, 257, 260
integer solver, 16, 193–7, 215–20
linear solver see Linear solver
Max Time parameter, 260, 313, 316
Max Time without Improvement option, 315, 316
MultiStart option, 279, 300, 307
Mutation Rate parameter, 314, 315, 327
nonlinear models, 314
nonlinear solver see Nonlinear solver
Nonnegative option, 11–12, 40, 69, 315, 322, 325
optimality message, 11–12, 34, 56
Population Report, 327
range names with, 15
Require Bounds on Variables option, 315, 323
unbounded objective function, 54, 307
using, 10–15
Solver Parameters window, 11, 12, 14, 15, 33, 34, 50, 55, 74, 313, 315, 322
Solver Results window, 13, 14, 34, 53, 54, 124, 295, 298, 319
Solver Sensitivity, 109–24, 126–9, 149, 172, 288, 289, 293
Solver specification, 11–12
allocation problem, 33
assignment problem, 74, 253
blending problem, 51
capacitated facility location problem, 242–3
capital budgeting problem, 200, 231
covering problem, 40–41, 44
curve-fitting problem, 282, 315
data envelopment analysis (DEA), 169
fixed cost problem, 236
funds flow problem, 89
general-network models, 86, 95
group assignment problem, 334
line balancing problem, 330
linearizing the absolute value, 298
linearizing the maximum, 296
machine-sequencing problem, 249, 319
order quantity problem, 273
playoff scheduling problem, 213
portfolio optimization problem, 292
product mix problem, 36–8
product portfolio problem, 138
quantity-discount problem, 276
set-covering problem, 204
set-packing problem, 207
set-partitioning problem, 210
special network models, 69, 74, 77
staff-scheduling problem, 44, 194
transportation problem, 69
transshipment problem, 77
traveling salesperson problem, 253–7, 321
two-dimensional location problem, 284, 325
two-variable problems, 282, 284
uncapacitated facility location
problem, 245
Spreadsheet models, 2, 4–7, 9, 27, 65, 285, 300
allocation model, 31–5
assignment model, 74
blending model, 48, 51
capacitated facility location model, 241–4
capital budgeting model, 199–201
covering model, 41, 42
curve fitting model, 282
data envelopment analysis (DEA) model, 170–172, 174, 176, 179
fixed-cost model, 236, 237
funds flow model, 89, 142
group assignment model, 333
linearizing the absolute value, 298
linearizing the maximum, 296
line-balancing model, 331
machine-sequencing model, 250, 319
order quantity model, 274
playoff scheduling model, 213, 214
portfolio optimization model, 291, 293
product mix model, 37, 38
product portfolio model, 138
quantity-discount model, 276
set-covering model, 204
set-packing model, 206
set-partitioning model, 209
staff-scheduling model, 44, 46
transportation model, 68, 69
transshipment model, 77
traveling salesperson model, 254, 256–8
two-dimensional location model, 285, 326
two-variable models, 282, 285, 287
uncapacitated facility location model, 244, 246
Spreadsheet-based optimization, 9
Spreadsheets, 1
advantages and disadvantages of, 9–10
conciseness, 5, 9
flexibility, 4, 9, 10
form and content, 4
input parameters, 5, 6
Staff-scheduling problem, 43–7, 193–5
Standard Evolutionary Engine, 343
Steepest ascent method, 272, 299
Strategic information, 28
Structural scheme, 133–4, 142–5, 150
Subtour elimination constraints, 258, 319
Subtours, 253
SUM formula, 25, 27, 69, 79
SUMIF function, 329, 330
SUMPRODUCT function, 24, 25, 27, 42, 55, 79, 80, 95
allocation model, 32
assignment model, 73
blending model, 50
covering model, 39, 42
data envelopment analysis (DEA), 168, 169, 177
fixed cost model, 236
funds flow model, 89
linear programming models, 24–7
network models with balance equations, 80
portfolio optimization model, 291
pricing model, 287
refinery model, 94
set-covering model, 203
set-packing model, 207
set-partitioning model, 209
transportation model, 68, 69
transshipment model, 76
traveling salesperson model, 252
SUMSQ function, 282
Tactical information, 28, 35
Tardiness, 247–9, 317–19
Threshold-level problem, 237–8
Tight constraints, 40
Tour, 251–8, 321
Tour constraints, 251, 259
Trace Precedents icon, 55
Transformed flows, 91–5
Transportation models, 66–71, 76, 79, 109–16, 123–7, 130
Transportation problem, 66–71
sensitivity analysis, 109–16, 123–7, 134–7
Transshipment models, 75–8
Transshipment problem, 75
Traveling salesperson problem, 251–9, 319–22
Tree diagram, 216
Two-dimensional location, 283–5, 324–7
Two-variable nonlinear models, 280–285, 296–9
curve fitting, 280–283, 293–6, 310
pricing example, 286–8
two-dimensional location, 283–5
Two-way tables, 122–3, 127
Unbounded objective function, 53–4, 300, 307, 365
Uncapacitated facility location problem, 243–6
Unique optimum, 131–2, 144
Upper bounds, 95, 127, 200, 215, 232, 279
Upper-bound constraints, 42, 138
Variables, 2, 11–12, 14, 16, 23–8, 39, 43, 79
artificial variables, 363, 364
auxiliary variables, 297, 299, 308
basic variables, 358–61, 363
binary variables, 191–3, 196, 199–201, 206, 212, 227–31, 308
entering variables, 359, 361
integer variables, 191–2, 195–6, 293, 300, 333, 335
leaving variables, 361
in linear functions, 23–4
nonbasic variables, 359, 387
nonnegative variables, 11–12, 33, 40, 54, 69, 249, 325
slack variables, 358, 362, 363 see also Decision variables
Virtual input, 179
Virtual output, 179–80
Weighted-average blending, 48–9, 51–2
What-if questions, 7, 74, 108, 133
Yield gains, 86–91
Yield losses, 84–6