INDEX

activity-based modeling, of hospital operations 344–347
direct care activities, 344–347
HUC model, 347–351
activity-centric flow model
activities, 347
discharge, 347
patients, 346
resources, 347
acute care hospital, 338
acute inflammatory responses (AIR), 222
bifurcation diagrams, 241, 242
full model stability analysis, 245, 247
IL-10 inhibition mechanism, 239, 240
innate immunity, mathematical model of, 239–241
monocyte subsystem stability analysis, 244–246
neutrophil subsystem stability analysis, 242–244
Acute Physiology and Chronic Health Evaluation (APACHE)
acute physiological scores, 468
analytic methods, 469
APACHE II Severity Classification System, 466–467
chronic health index, 468
cubic spline transformation, 468
ICU efficiency and resource use, 468
multivariate logistic regression model, 468
physiologic variables, 466
severity of illness measurement, 466
adaptive lasso-based score function, 5, 10, 15
adjusted patient days (APD), 340
advanced access, in primary care, 365
Affordable Care Act, 264, 265, 268, 288
Affordable Health Care (AHC) Act, 555
agent-based simulation (ABS) model, 308
AHP. see analytic hierarchy process (AHP)
AIC. See Akaike Information Criterion (AIC)
AIR. see acute inflammatory responses (AIR)
alkaline phosphatase (ALP) clinical assay
uncertainty model
ALP activity level, 142
Beer–Lambert law, 144
calibration parameter, 142
calibrator reconstituted stability, 142
calibrator set point uncertainty, 142
chemical reaction, 141
clock uncertainty, 147, 148
considerations, 153
alkaline phosphatase (ALP) clinical assay uncertainty model (Continued)
elevated enzyme levels, 141 enzyme–substrate complex concentration, 144, 145 Gaussian distribution, 143 instrument uncertainty, 149 law of mass action, 144 Michaelis constant, 146 optical absorbance, of reaction mixture, 141, 147, 148 photometer uncertainty, 143, 152 p-nitrophenol concentration, 144 Roche Diagnostics P-Modular Analytics measurement platform, 141 sample analysis phase, 149 sample and reagent pipetting uncertainty, 143 sources of calibrator uncertainty, 151, 152 statistical assumptions, 152 uncertainty profile, 150 vial-to-vial variability, 142, 143 worst-case bias of measurand, 151
INDEX

case-mix index (CMI), 348–350
catnet package, 24
cecal ligation and puncture (CLP), 251
cellular signaling network, in flow cytometry data, 20–23
Center for Medicare & Medicaid Services (CMS), 433
certified reference material (CRM), 138
chemoradiotherapy (CRT), esophageal cancer, 199–200, 205
feature selection and predictive model construction, 200–202
input features, 200
results, 202–204
CHF. see congestive heart failure (CHF)
Children’s Health Insurance (CHIP), 562
China’s urban healthcare system
determining preference vector, 311–312
linear standardization, 311
preference-based multiobjective optimization procedure
DES simulation model, 312–313
flow chart, 312
Random Search and R&S algorithm, 313–314
SA and Response Surface Method algorithm, 314–316
problem description, 308–309
system modeling, 310–312
classification, in medicine and biology
definition, 159
machine-learning framework, 163
cLasso method, 11, 16, 21
Clinical Laboratory Improvement Amendments act (1998), 128
clinical laboratory measurement uncertainty process
accuracy and reliability, 134
ALP clinical assay, 141–152
analytical stage of, 129
calibration phase, 138
conceptualization of, 138, 139
definitive method, 134
estimation methods, 130
EURACHEM guide, 134
field method, 134
GUM (1993), 130, 134, 136
instrument manufacturers, 153, 154
modeling guidelines, 139–141
Monte Carlo method (see Monte Carlo method, for measurement uncertainty estimation)
physical assumptions, 152
postanalytical stage of, 129
preanalytical stage of, 129
Recommendation INC-1, 130
sample analysis phase, 138
sources of, 129
statistical assumptions, 152
system description and process phases, 138–139
clinical laboratory tests, 127, 128
clock uncertainty, 147, 148
CLP. see cecal ligation and puncture (CLP)
cognitive science, 159
cold ischemia time (CIT), 414
Community Healthcare Centers (CHCs), in China, 303
community hospitals, 338
complete partial DAG (cpDAG), 6
Complications Screening Program, 527
composite quality measures
benefit-of-the-doubt weights, 544
cost-based weights, 543
individual patient, 543
judgment weights, 543
opportunity-based weights, 544
quality indicators, 543
quality score, 542
statistical weights, 544
computer-aided ECG, 95, 96
computerized ED system workflow model
Grady Hospital, 277–279
integrating machine learning within RealOpt simulation–optimization environment, 280
nonlinear mixed-integer program, 277, 280–281
RealOpt© simulation, 277
validation, 282–284
conditional independence test, 15
congestive heart failure (CHF), 81–82
Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) word list, 173, 174
constrained discrimination rules. see partial discrimination rules
continuous wavelet transform (CWT), 70–72
correlation analysis (CA), 518
CpG island methylation, in human cancer, 175–176
cross-sectional computer modeling analysis, 305–306
cross-validation (CV), 13
current deceased-donor adult liver allocation system, 414–415
custodial ancillary services, 349
Cyberknife Synchrony system, 211–212, 214
cytokine release mechanism, 228, 229
DAGs. see directed acyclic graphs (DAGs)
damaged tissue model, 233–234
DAMIP. see discriminate analysis via a mixed-integer program (DAMIP)
data and information system, in primary care, 364
data-driven postsurgical ICU decision-support system, 474
data envelopment analysis (DEA), 341
deal package, 24
decision tree
 for Grade 2 rectal complication classification, 209
 predictive modeling techniques, 193–194
DEM. see digital elevation model (DEM)
DES. see discrete-event simulation (DES)
descriptive analytics, 41
determination of reactive oxygen metabolites (d-ROMs) test, 177, 178
detrend fluctuation analysis (DFA), 110–111
diabetes diagnosis, 134–135
diagnostic ancillary services, 349
diagnostic assays, total analytical error estimation for, 135–136
dimension, definition of, 65
directed acyclic graphs (DAGs), 4
 optimization technique, 14
 R software, 23
 traveling salesman problem, 14
direct measurands, 138
discrete-event simulation (DES), 422–423
 antineoplastic medication preparation and delivery, 367
 bed unit utilizations, 368
 emergency department, 366–367
 imaging costs and outcomes, 369
 intensive care units, 367
 patient flow analysis, 367–368
 physiotherapy clinic, performance of, 368–369
 radiation therapy process, 367
discrete support vector machine, 161
discrete support vector machine predictive models
discriminant analysis via mixed-integer programming, 165–166, 170–182
 features, 163–170, 182
 heuristic linear MIP model, 167
 linear mixed-integer model, 167
 model size, 169
 reserved-judgment region for general groups, 164
 variations, 167–169
discrete wavelet transform (DWT), 101
discriminant analysis
description, 160
 fundamental problem, 160
 fundamental steps, 160
 objective, 161, 170
discriminant analysis via mixed-integer programming (DAMIP), 166
 advantages, 183
 characteristics, 170
 CpG island methylation, in human cancer, 175–176
discriminant rule derivation, 165
eye atherosclerosis prediction, 177–178
erythematous-squamous disease type
determination, 179
heart disease prediction, 179–180
immune responses to flu shots, 171–173
microangiographic fingerprint, 178–179
mild cognitive impairment and Alzheimer’s disease detection, 173–175
NP-complete, 170
protein localization sites, 180–181
sarcoma treatment, 176–177
ultrasonic assisted cell disruption, for drug delivery, 176
validation and computational effort, 171
discriminant rules, 161
discriminate analysis via a mixed-integer program (DAMIP), 274–276
disease-altered recurrence dynamics, 88
DIST algorithm, 14, 15
DNA damage, 3–4
DNA repair gene, 4
dose-volume histogram (DVH) constraint, 209
dose-volume (DV) thresholds, radiation therapy, 205–206
downward referral policy, 304
DREAM5 Network Inference, 7
d-separation, 5–6
early atherosclerosis prediction, discriminant analysis, 177–178
ECG-derived respiration (EDR) signal, 115, 117
ED. see emergency department (ED)
effective care, 504
electrocardiography (ECG)
baseline of, 98
characteristics of, 60
development stages, 95
EDR signal, 117
electrodes and lead connections, 97
elements of, 96–99
feature set, 117–118
heart rate variability, 106, 107
OSA detection (see obstructive sleep apnea (OSA), from single ECG lead)
INDEX

593

signal morphology, 96
statistical modeling for disease detection
disease diagnosis techniques, 99, 111–115
ECG signal denoising, 100–105
feature extraction approach, 99, 106–111
preprocessing techniques, 99
stages of, 99, 100
waveform detection methods, 99, 105–106
waveform durations and wave amplitudes, 98, 99
waveforms and intervals, 97, 98
electronic health records (EHR), 363
electronic patient records (EPR), 364
emergency department (ED), 366–405. see also
Grady Hospital
ABS model, 308
challenges and objectives, 267–268
computerized ED system workflow model,
277–282
crowding, 266, 267
data collection and time-motion studies,
270–271
discrete-time survival analysis, 267
Edelman–Wagner project, 268
efficiency, 305
ethnographic approach, 267
facility design, 269
human-centered computational modeling, 268
length of stay and throughput comparisons, 285, 286
machine learning techniques, 274–276
model validation, 282–284
operations improvement options, 285, 287
patient care and resources, 270, 271
performance characteristics, 266
quality and flow, 266
readmissions, 267, 268
split-flow process improvement, 306
visits, in US healthcare system, 264
volume-driven protocol, 266
workflow and services, 269–270
emergency medical services (EMS), 389
emergency rooms (ER), 357
emergency severity index (ESI), 269, 285
empirical mode decomposition (EMD), for ECG
denoising, 102–104
enzyme unit per liter (U/L), 141
erythematous-squamous disease type, DAMIP
model, 179
esophageal cancer, CRT, 199–205
extracellular potentials, of single cardiac fiber, 96
false discovery rate (FDR), of proteins, 32
false nearest neighbor (FNN) method, 62–64
false neighbors, 64
feature extraction approach, for disease detection, 99
approximate entropy, 109–110
detrend fluctuation analysis, 110–111
frequency-domain methods, 108
RR intervals, 107
time-domain methods, 107–108
feature selection, 160
feed-forward neural network, 112–113
finite mixture modeling, ambulance demand
ambulance demand density, 400
autoregressive parameters, 401
BDMCMC, 403
bivariate Gaussian density, 400
daily seasonality, 401
intra-week mixture weights, 401
Markov chain Monte Carlo model, 402
Metropolis-Hastings random walk, 402
mixture weights, 401
flu shots, immune responses to, 171–173
fractal dimension
box-counting method, 66–68
Euclidean geometry, 66
Koch snowflake curve, 66
and self-similarity, 65, 66
singularity spectrum, 69
fractals, definition of, 65
Framingham risk score, 177, 178
full model stability analysis, 245–247
fuzzy AHP, 307
gene network problem
Bayesian networks (see Bayesian networks)
CCLE Project, 20
cellular signaling network, 20–23
issues, 13
score function formulation, 9–12
SKCM data, 16–20
structural equation model, 8
two-step learning technique, 12–13
General Hospitals (GH), in China, 303
generalized additive models (GAMs), 394
generalized linear discriminant analysis (GLDA), 197
The Genotype-Tissue Expression (GTEx) project, 7
geriatric depression scale (GDS), 173, 174
Glasgow Coma Scale (GCS), 466
GLDA. see generalized linear discriminant analysis (GLDA)
glioblastoma multiforme (GBM) brain cancer
network, 50, 51
glucose measurements, uncertainty estimates for, 134–135
Grade 2 rectal complication classification
decision tree for, 209
prediction of, 210, 211
Grady Hospital
benefits, 265
blue zone, workflow process map, 269, 272
Edelman–Wagner work, 266
emergency department, 265
annual financial savings and revenues, 295
continuous improvement and adaptive
advances, 297
emergency care, improved efficiency of, 294
external sponsorship, 295
global resource allocation and changes, 290
health cost reductions, 296
hospital care delivery advances, 297
improved quality of care, 296–297
operations research advances, 298
patient characteristics, 282
Phase I adoption and implementation, 288
Phase II adoption and implementation,
290–292
potential death and disability reduction
estimates, 296
qualitative benefits, 296–297
quantitative benefits, 294–296
reduction statistics, 282
RealOpt flowchart, of ED workflow,
277–279
results, 288, 290
ten fold cross-validation results and
blind-prediction accuracy, 282, 284
financial collapse, 265
length of stay and throughput comparisons, 281,
283
GSUA. see global sensitivity and uncertainty
analyses (GSUA)
Guide to the Expression of Measurement in
Uncertainty (GUM (1993)), 136
uncertainty of measurement
definition, 130–131
evaluation of, 131–133
updated edition of, 133
Harris Hip Score, 504
health and wellness objectives, 577–580
healthcare activity, 344
healthcare applications, nonlinear dynamics,
80–81
HRV analysis, 81–86
space–time physiological signals, multiscale
recurrence analysis, 85–88
Healthcare Cost and Utilization Project (HCUP),
454
healthcare cost predictions
clustering algorithms, 537–538
disease burden and interactions, 533–534
high-cost members, 539
high-risk member identification, 540
modeling, 531–533
performance measures and baselines, 534
prediction algorithms, 534–535
regression trees, 535–537
Healthcare Cost Report Information System
(HCRIS), 343, 344, 347
healthcare organizations, 558
health goals, 578–579
Health Insurance Portability and Accountability
Act (HIPAA), 560
heart disease prediction, DAMIP model,
179–180
heart rate variability (HRV)
classification performance, 85, 86
ECG signal, 106, 107
feature analysis, 83–85
feature extraction, 83
feature selection, 83
nonlinear characterization of, 81–85
time and frequency domains, 107, 108
heuristic algorithm, for local optimal solution,
14–15
hierarchical healthcare system, in China,
303–342. see also China’s urban healthcare
system
high motility group box-1 (HMGB-1), 222
Hodgkin’s lymphoma exceptional responder,
48–50
Hopf bifurcation, 242
Hopf point, 241–245
hospital-acquired conditions (HACs), 297
hospital care delivery advances, 297
hospital productivity measurement, 335
hospital readmission risk prediction
AdaBoost, 444
clinical patient data, 444–445
feature selection, 441–442
missing value imputation, 442
Naive Bayesian classifier, 442–443
overall prediction pipeline, 441
reducing class imbalance, 442
results and discussions, 445–447
support vector machine, 443
Hospital Unit of Care (HUC) model
activity-based view, of hospital operations, 344,
346
assumption, 336
baseline HUC, 347
component activity levels, 350, 351
HUC measure development, 348
inpatient general med/surg, 348
intensive care services, 348
IP and OP ancillary services, 349
nursery services, 349
outpatient care services, 349
output activity components, 348
HRV. see heart rate variability (HRV)
human heart, 80
human immune response, 222
hypoxia pathway, in oncogenesis and
embryogenesis, 50–51

immune responses to flu shots, DAMIP model,
171–173
immunohistochemistry (IHC), 34
indirect measurands, 138
Ingenuity Pathway Analysis (IPA), 23
innate immunity of AIR, mathematical models,
239–241
anti-inflammatory cytokines inhibition, 239
stability analysis, 241–247
insurance claims
administrative data, 523
advantages and limitations of claims data,
525–526
application areas, 526–528
claims-based medical studies, 524
claims databases, 525
clustering algorithms, 537–538
high-cost members, 539
insurance pricing and renewal decisions,
540
Manitoba Health Services Commission data
dbank, 524
Medicare and Medicaid, 524
modeling of disease burden and interactions,
533–534
modeling of healthcare costs, 531–533
performance measures and baselines, 534
pharmacy claim, 523–524
prediction algorithms, 534–535
quality of care, 540–548
regression trees, 535–537
statistical methodologies, 528–531
timeline of healthcare research, 524
integer-valued time series model, 390
integrated biomedical and morphoproteomic
analyses
Hodgkin’s lymphoma exceptional responder,
48–50
hypoxia pathway, in oncogenesis/
embryogenesis, 50–51
pancreatic adenocarcinoma, therapeutic
recommendations for, 46–48
intensive care unit (ICU)
bed occupancy levels in, 305
risk-scoring systems, 466
services, sample data for, 345
Interactive Voice Response (IVS) systems, 519
interleukins (IL)-10, 237–240
International Classiﬁcation of Disease, Ninth
Revision, Clinical Modiﬁcation (ICD-9 CM)
codes, 523
intracellular multicolor flow cytometry, 20
intrinsic mode functions (IMF), 102, 103
Kaiser Permanente, 526
Kalman ﬁlters, 104–105
kernel density estimation (KDE), 405
kidney-only transplant centers, 415
Koch curve, fractal dimension calculation of,
67–68
Kolmogorov–Smirnov (KS) test, 83–85
Kupffer local response model, 224–228
large-scale wavelets, 71
lasso approach, 5
law of propagation of uncertainty, 133, 137
leave-one-out cross-validation (LOOCV) scheme,
118
limit points (LPs), 241, 242
logistic regression (LR), 85
analysis, 190
predictive modeling techniques, 193
long-term recurrence analysis, 88
L1-penalized method, 5
LR. see logistic regression (LR)
\(\lambda\)-type hospital classiﬁcation system, 355–358
Luenberger indicator, 341
lung cancer, 199
machine learning (ML)
definition, 159
with discrete support vector machine predictive
models, 163–170
in mammography, 195
for medical image processing, 194–195
for predicting patient characteristics
DAMIP, 274
optimization-based classiﬁer, 275–276
supervised classiﬁcation approach, 274
10-fold cross-validation, 274
wrapper approach, 274
machine learning (ML) (Continued)
for predicting radiotherapy response, 197–199
in real-time tumor localization, 196–197
tools, 190
macrophages, 224–225
malignant neoplasms, 3
mammography, machine learning in, 195
Manitoba Health Services Commission data bank, 524
massive training artificial neural network
(MTANN) filter, 195
mass spectrometry, 33
Max–Min Hill-Climbing (MMHC) algorithm, 5
measurand, 138
Medicaid and Medicare, 524
medical image processing, machine learning for,
194–195
Medicare Administrative Contractor (MAC), 343
Medicare Assistance, 562
medicare data sources, for hospital operations,
343–344
Medicare Provider Analysis and Review
(MEDPAR), 343, 344
outpatient care services, 347
MEDIC method, 390, 405
MGMT, 4
microangiographic fingerprint, 178–179
Microsoft HealthVault, 560
mild cognitive impairment, DAMIP model,
173–175
Mini Mental State Examination (MMSE),
173–174
miRNA-150, 18
miRNA-155, 4
missing data imputation, 479–482
ML. see machine learning (ML)
mobile care apps, 524
mobile and social media, 571–572
mobile apps, for healthcare purposes, 574–577
Model for End-Stage Liver Disease (MELD), 414
modENCODE Project, 7
molecular profiling for clinical decision making
algorithms and protocols, 34
genotyping, 33
immunohistochemistry, 34
immunohistochemistry, 34
literature review, 35–37
mass spectrometry, 33–34
proteomics, 33
monocytes immune response model, 234–237
neutrophil subsystem stability analysis, 242–244
Monte Carlo AHP, 307
Monte Carlo method, for measurement
uncertainty estimation advantage, 137, 140
analytical chemistry, 137
characteristics, 137
statistical conditions, 133
morphoproteomics
and biomedical analytics integration, 44–46
definition, 39
Hodgkin’s lymphoma exceptional responder,
48–50
hypoxia pathway, 50–51
methodology, 39–40
and methodology flowchart, 38, 39
molecular signature, 37
pancreatic adenocarcinoma, therapeutic
recommendations for, 46–48
mortality probability model (MPM), 470–472
motile enterobacteria, 226
MS-based proteomic discovery, workflow
algorithm for, 34
MTANN-based segmentation method, 195
MTANN filter. see massive training artificial
neural network (MTANN) filter
multifractal spectrum analysis of nonlinear time
series, 65–75
Multiparameter Intelligent Monitoring in Intensive
Care (MIMIC), 491, 499
multiplex immunoassays, 34
multiscale recurrence quantification analysis,
78–80
mutual information, computation of, 63
National Organ Transplant Act (NOTA), 414
neural networks, 112–114
neuropsychological tests, 173
neutral saddle point, 241
neutrophils immune response model, 228–233
neutrophil subsystem stability analysis, 242–244
NN50 measures, 117
noise-free ECG, 99
nonlinear dynamics, 59
healthcare applications, 80–88
phase-space domain, 60
sensor-based characterization and modeling
multifractal spectrum analysis of nonlinear
time series, 65–75
multiscale recurrence quantification analysis,
78–80
recurrence quantification analysis, 75–78
time series, 77
nonlinear mixed-integer program (NMIP), for
multiple-resource allocation, 276, 279–280
nonlinear recurrence analysis, 77
nonlinear time series, multifractal spectrum
analysis of
continuous wavelet transformation, 70–72
fractal dimension, 65–70
wavelet transform modulus maxima method, 72–75
Non-Peds visit, 371
nonrenewal random point process, 99
observational equivalence, 4, 6
obstructive sleep apnea (OSA), from single ECG lead
BioSig toolbox, 116
classifier training with feature selection, 118–120
database, 115–116
description, 115
detection results, 120
EDR signal, 117
feature set, 117–118
minute-by-minute segments, 115
obstructive sleep apnea detection, 115
QRS detection algorithm, 116–119
RR correction, 116–119
R wave amplitudes, 117
signal morphology, 96
Odana Atrium (OA) communication center, 369
online health-related activities, 581
online social media-based activities, 582–583
online tools, healthcare purposes, 573–574
open access. see advanced access, in primary care
operations research (OR) advances, 298
OPO boundaries
ArcView, 422
binary variable, 418
CIT, 417
donor hospitals, 416
donor–recipient matching process, 428
Euclidean distance, 418
geographical disparity, 429
graft transfer distance, 432–433
label assignment, 421
liver acquisition area, 416
Miller–Tucker–Zemlin formulation, 420
patient service area, 416
service areas, 419
spanning tree, 421
super vertex, 419
supply and demand, 418
supply/demand ratio, 428
waiting time, 429, 431
optimal liver allocation boundaries
current deceased-donor adult liver allocation system, 414–415
discrete-event simulations, 422–423
geographic disparity, 414
kidney-only transplant centers, 415
liver transplant centers, 414
mathematical model, 416–422
new locations of transplant centers, 423–426
new OPO boundaries, 426–433
pre-2013 deceased-donor adult liver allocation system, 414–415
Standard Transplant Analysis and Research, 415
optimization-based analytics approaches, 194
Organization for Economic Cooperation and Development (OECD), 127
Organ Procurement and Transplantation Network (OPTN), 414
Organ Procurement Organization (OPO) boundaries
acquisition area and service area, 417
Organ Procurement Organizations (OPOs), 414
organs-at-risk (OARs) complications, dose-volume thresholds, 205–206
orthopedic outpatient clinic, simulation study of, 368
oxidative stress, 177
pain assessment, 509–510
pancreatic adenocarcinoma, therapeutic recommendations for, 46–48
parasympathetic nervous system (PNS), 107
partial discrimination rules
description, 161–162
disadvantage, 162
pathogen strain selection
anti-inflammatory immune response model, 237–239
damaged tissue model, 233–234
Kupffer local response model, 224–228
monocytes immune response model, 234–237
neutrophils immune response model, 228–233
Pathway Interaction Database, 7
Pathway Studio, 23
patient ambulatory care express (PACe) area, 270
patient arrival, in pediatric clinic
appointment template, 371, 372
appointment vacancy probability distribution, 372
and composition, 371
medical assistants-only visits, 371
Non-Peds visit, 371
patient-centered medical home, 364
patient-centeredness, 503
patient flow
analytic hierarchy process, 307
behavioral operations research, 330
discrete-event simulation, 367–368
patient flow (Continued)
mental health system, in Pennsylvania, 306
multiobjective optimization problem, 306–307
objective dimensionality reduction, 306
pediatric clinic, 369–371
PUTH case study (see Peking University Third Hospital (PUTH), two-level healthcare system)
and service process, in two-level healthcare system, 308, 309
simulation modeling on, 305–306
simulation optimization, 307–308
weighted goal programming technique, 306–307
patient heterogeneity, 465
patient–physician interaction
big data analytics techniques, 506
communication skills and behaviors, 504
conversational characterization, 517–519
data-informed recommendations, 504
data mining, 510–515
data mining techniques, 504
effective care, 504
Harris Hip Score, 504
medical decision making, 505
pain assessment, 509–510
paradigm shift, 505
patient-centered communication, 505
patient-centeredness, 503
prognosis discussion, 506–508
regression shrinkage and selection, 515–517
standardized patient methodology, 505
patient satisfaction
conservation data, 513–515
survey data, 510–513
patient visits, in pediatric clinic, 369
sequential stages of, 370–371
types of, 370
pattern recognition, 159
fingerprinting native and angiogenic microvascular networks, 178–179
in satellite images, for soil type determination, 181–182
pay-for-performance policies, 540
pay-for-performance programs, 365
PCA, see principal component analysis (PCA)
PC algorithm, 5, 15–16
pcalg package, 24
pediatric clinic, simulation case study
control logics, 373, 374
in-room service, 374
model validation, 376
operation times, 373
patient arrival
appointment template, 371, 372
appointment vacancy probability distribution, 372
and composition, 371
medical assistants-only visits, 371
Non-Peds visit, 371
patient flow, 369–371
patient flow simulation model, 375
post-room service, 374
pre-rooming service process, 374
resources, 372
SIMUL8 software tool, 371
Peking University Third Hospital (PUTH), two-level healthcare system
analysis and system estimation, 319–320
decision variables, 316, 317
fixed parameters, 316, 317
managerial insights and recommendations, 328–329
model validation, 320–321
optimization through algorithms, 321–328
system simulation results, 318–319
upper and lower bounds, 316, 317
performance-based payments, in primary care, 365
personal health records (PHR) sites, 560
Petri net model, 366
Pew Research Center’s Internet & American Life Project study, 557
physiological signals, 59, 60, 121
plasma oxidative stress, 177
pNN50 measures, 107, 108, 117
Poincaré recurrence theorem, 77
postoperative outcomes
APACHE, 466–469
clinical status estimation, 463
cross-validation and ensemble voting processes, 489–490
data categorization, 475–479
data-driven methods, 464
data-driven postsurgical ICU decision-support system, 474
data preprocessing, 475–479
data synchronization, 494–495
ensemble NN model, 497
feature extraction, 482–484
feature selection, 484–486
Gaussian process, 494
ICU monitoring, 498
ICU scoring systems, 498
inpatient procedures, 465
management policies, 463
materials and experimental design, 491
med-sampling variables, 496
MIMIC, 499
missing data imputation, 479–482
MPM, 470–472
patient heterogeneity, 465
performance comparisons, 497–498
postsurgical healthcare services, 464
postsurgical sensing, 464
predictive models, 487–489
raw and imputed data for med-sampling, 491–493
SAPS, 469–470
SOFA, 472–474
sorted mRMR scores, 496–497
time asynchronization, 465
U-matrix, 495–496
variable heterogeneity, 465
postsurgical ICU data characteristics, categorization, and preprocessing, 475–479
power spectral density (PSD) estimation procedure, 108
nonparametric vs. parametric methods, 108, 109
pre-2013 deceased-donor adult liver allocation system, 414–415
predictive analytics, 41
predictive modeling techniques applications, 194–199
decision tree, 193–194
feature selection, 191–192
logistic regression, 193
machine learning, 194–199
support vector machine, 192–193
prescriptive analytics, 41
primary care redesign. see also discrete-event simulation (DES)
advanced access, 365
block booking template, 377, 378
eyear start time, 380–382
electronic health records, 363
electronic patient records, 364
global experiences, 365–366
goal of, 361
medical homes, 364
non-double booking template, 377, 378, 381
patient volume under different templates, 379, 380
payment system, 364–365
queue length at registration, 382
resident doctor, 377
reviews, 362–363
room assignment, 379, 381
staffing analysis, 376–377
team work, 363
template comparison, 377, 379
principal component analysis (PCA), 196
probabilistic graphical modeling, 4
d-separation, 5–6
observational equivalence, 6
theoretical background, 5–6
proteins
analyte activity, 40
false discovery rate of, 32
localization sites, DAMIP model, 180–181
proteomics
antibody-based methods, 33
description, 33
mass spectrometry, 33
primary high-throughput technology, 32
Qiagen’s Ingenuity Pathway Analysis (IPA), 42–43
Q-SNARE protein complex, 228
quadratic programming (QP) optimization problem, 191, 192
quality of care
case management tool, 546–547
composite quality measures, 542–544
healthcare resources, 547
quality data, 542
quality scores, 544–545
statistical approach, 545–546
structure, process, and outcomes, 540–542
quality scores, 544–545
radiation-induced outcomes, 197
radiation oncology, predictive modeling techniques in. see predictive modeling techniques
radiation therapy for cancer, 211
dose-volume thresholds, 205–206
goal of, 189–190
modeling clinical complications after, 205–211
modeling results, 208–211
radiation-induced complications, treatment plan surface, 206–208
R codes, 20–23
reactive oxygen species (ROS), 233
RealOpt© simulation, 277
real-time tumor localization, machine learning in, 196–197
real-world physiological systems, 88
Recommendation INC-1, 130
recurrence quantification analysis, 75–78
recurrence quantification analysis (RQA), 75–78
multiscale, 78–80
recurrence quantifiers, examples of, 77–78
recurrent or refractory cancers. see biomedical analytics; morphoproteomics
reform strategies, in primary care, 363
regression methods, 190
resource use profile, of hospitals, 351–357
Restriction Landmark Genome Scanning (RLGS), 175
root mean square of successive differences (RMSSD) measures, 107, 108, 118
ROS. see reactive oxygen species (ROS)
Roter Interaction Analysis System (RIAS), 509
R-SNARE protein complex, 228
RSS. see residual sum of squares (RSS)
saliva flow rate
mean-predicted vs. actual flow, 208
prediction of, 209, 210
Salmonella sepsis, 224
same-day scheduling. see advanced access, in primary care
sarcoma treatment, DAMIP model, 176–177
Scientific Registry of Transplant Recipients (SRTR), 434
score function
formulation, 9–12
minimization (see solution search algorithms)
SDMM. see system dynamic mathematical model (SDMM)
SDSD measures, 117
semisupervised learning, 160
sensor-based characterization/modeling, nonlinear dynamics
multifractal spectrum analysis of nonlinear time series, 65–75
multiscale recurrence quantification analysis, 78–80
recurrence quantification analysis, 75–78
sepsis, 221–222
treatment of, 247–250
pro-and anti-inflammatory cytokines effects on, 250–253
sequential minimal optimization (SMO) algorithm, 192
Sequential Organ Failure Assessment (SOFA), 472–474
short-time Fourier transform (STFT), 70
signal denoising, for disease diagnosis
advantages and disadvantages, 104–105
approaches for, 100
empirical mode decomposition, 102–104
wavelet-based methods, 100–102
Simplified Acute Physiology Score (SAPS), 469–470
simulation optimization, in healthcare area vs. deterministic optimization, 307
gradient-search mechanism, 308
metaheuristic methods, 308
nonintelligent global search, 307, 308
Ranking and Selection, 307
single cardiac fiber, activation process of, 96
single-scale vs. multiscale recurrence analysis, 88
SIR. see systemic inflammatory response (SIR)
SIR model. see susceptible–infected–recovered (SIR) model
skin cutaneous melanoma (SKCM) data, 16–20
small-scale wavelets, 71
SMO algorithm. see sequential minimal optimization (SMO) algorithm
social media
analytics, 561–562
baseline of technology usage, 570–571
customer service, 555
descriptive statistics, 568–570
Facebook, 556
generalized linear model, 564
health and wellness objectives, 577–580
healthcare organizations, 558
health insurance plans, 556
health plan member population, 572–573
Health Steps campaign, 558
HumanaVille, 558
Internet technologies, 556
Life Game, 558
maximum-likelihood estimation, 565–566
mobile apps, 574–577
mobile usage, 571–572
Newton’s method, 566–567
online tools, 573–574
out-of-pocket medical expenses, 557
personal health management, 556
predictive models, 581–584
privacy and security concerns, 559–560, 580–581
survey design, 563–564
Text4baby, 559
Twitter, 556
user-generated content, 557
SOFA. see Sequential Organ Failure Assessment (SOFA)
solution search algorithms
global optimal solution search, 13–14
heuristic algorithm, for local optimal solution, 14–15
PC algorithm, 15–16
space–time physiological signals, multiscale recurrence analysis, 85–88
spatiotemporal ambulance demand estimation
artificial neural network, 398
Bayesian semiparametric mixture modeling, 399
Dirichlet processes, 399
downtown region of Toronto, 398–399
Gaussian mixture models, 399
model performance, 405–409
posterior log spatial densities, 403–404
posterior means and covariance ellipses, 403–404
spatial density intraweek, 398
spatiotemporal finite mixture modeling, 400–403
time-varying finite mixture model, 400
weekly seasonality, 399
spatiotemporal vectorcardiogram (VCG) signals, 81
SPIKES protocol, 508
stability analysis, 241
anti-inflammatory cytokines, medium effect of, 247
full model stability analysis, 245–247
monocyte subsystem stability analysis, 244–245
neutrophil subsystem stability analysis, 242–244
standardized patient (SP) methodology, 505
Standard Transplant Analysis and Research (STAR), 415
statistical ECG modeling, for disease detection
disease diagnosis techniques, 99, 111–115
ECG signal denoising, 100–105
feature extraction approach, 99, 106–111
preprocessing techniques, 99
stages of, 99, 100
waveform detection methods, 99, 105–106
statistical pattern classification, 160
statistical pattern recognition, 159
Stochastic Approximation (SA), 308
Stochastic Comparison (SC) algorithm, 308
stochastic cost frontier analysis (SCFA), 341
Stochastic Ruler (SR) algorithm, 308
sum of difference (SD) calculation, 103
supervised learning, 160
support vector machine (SVM), 114–115, 191–193
SVM. see support vector machine (SVM)
sympathetic nervous system (SNS), 107
Synchrony respiratory tracking system, 196
system dynamic mathematical model (SDMM), 223–224
systemic inflammatory response (SIR), 221

TABU list, 14, 15
Takens’ delay embedding theorem, 60, 62
TCGA Data Portal, 16–17
TCGA data types, 17
team work, in primary care, 363
temporal ambulance demand estimation
day-of-week effects, 392
demand pattern, 391–392
dynamic latent factor structure, 392
factor modeling, 393–395
Gaussian autoregressive moving-average model, 391
notation, 392–393
parsimonious modeling, 391
time series models, 395–398
10-fold cross-validation, 274
Text4baby, 559
The Cancer Genome Atlas (TCGA) project, 7
therapeutic ancillary services, 349
30-day hospital readmissions, heart failure patients
AdaBoost, 444
binary classification problem, 459
clinical patient data, 444–445
Cox regression, 458
effect of iterative predictions, 457
effects of attribute sets, 445–446
evaluation measures, 455
feature selection, 441–442
healthcare costs, 457
healthcare quality, 459
highest intensity interventions, 440
intervention recommendation, 453–454
missing value imputation, 442
Naive Bayesian classifier, 442–443
overall intervention pipeline, 447–448
overall prediction pipeline, 441
parameter learning, 451–452
post-discharge interventions, 440
pre-discharge and post-discharge modeling, 445–446
recommendation rule generation, 452–453
reducing class imbalance, 442
statistical significance of quality results, 455–456
structure learning Bayesian network, 448–451
support vector machine, 443
Washington State inpatient databases, 454–455
3-lead VCG signals, 85–87
time-delay reconstruction, 62
time-domain algorithms, 81
time–frequency representation (TFR), 70
topological dimension, 65
Toronto’s ambulance demand, 390
tracking problem, 197
transcription process, 3
translation process, 3
traveling salesman problem (TSP), 14
triadic Cantor set, 69–70
trimodality therapy, 199

tumor motion modeling, with respiratory surrogates, 211–215
Cyberknife Synchrony system, 211–212
prediction error summary, 212, 213
tumor positions prediction, 212–214

tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)), 222
tumor positions prediction modeling for, 212
results, 212–214

12-lead ECG recording system, 97
two-class classification tracking problem, 197

upward referral policy, 304

US hospitals
activity-based modeling, 344–351
acute care hospital, 338
adjusted patient days, 340
classification rules, application of, 355–358
community hospitals, 338
cost-efficiency measure, 341
count by control type, 337, 338
create your own pathway approach, 342
data envelopment analysis, 341
electronic health records, 342

emergency department visits, 264
equivalent patient units, 340, 341
functional relationships, 338, 339
Grady Hospital (see Grady Hospital)
hospital operation data sources, 342
long-term rehabilitation, 337

reimbursement rates, 343
resource usage, 338
resource use profile, 351–357
short-term acute care, 337
size class, 337
stochastic cost frontier analysis, 341
structural classification, 337–339
systemic inefficiencies, 264

US News and World Report ranking, 335

variable-length wavelet function, 71, 72

verbal communication-based data analysis, 517

Washington State inpatient databases, 454–455
waveform detection, for disease diagnosis, 99
description, 105
QRS detection algorithm, 105–106

wavelet-based methods, for ECG denoising, 100–102

wavelet functions, 70
wavelet packet decomposition (WPD), 79, 80
wavelet transform modulus maxima (WTMM)
method, 72–75

weighted goal programming technique, 306–307
white noise, 105

Z-transform statistics, 15