 estão de acordo.
amino acid ionic liquids (AAILs), 176, 185, 189, 403, 405, 406, 407, 408, 409, 410, 411, 413
ammonium ILs, 34, 521
alkylammonium salts, 505
polyamides (PA), 506
thermal stability, 506
amphiphiles, 261
critical micelle concentration (CMC)
CiEj surfactants, 242–3
scattering measurements data, 243, 243–4
self-assembly, 241
surface tension, Triton X-100, 242, 242
micellar aggregation
ethy lammonium nitrate (EAN), 241
ionic surfactant molecules, 240
nonionic surfactants, 240, 241
self-assembly, 241
“solvophobic interactions”, 241
anionic surfactant-like ILs (ASAILs)
self-assembly
amino acid-derived counterions
(AAILSs), 185
CMC and surface parameters, 182, 183, 185
[C₄mim][DS] and [ProC₃][DS], 186
double-chain, 184
long-chain [C₄mim][DS], 184
lower limiting surface tension values, 184
medium-chain, 184
melting point, 182
molecular structures, cations and anions, 182, 183
shape-controlled CeO₂ nanomaterials preparation, 185
single-chain anion DS, 185
surface excess concentration and minimum area per molecule, 184, 185
ANNs see artificial neural networks (ANNs)
aqueous microemulsions, 304
[C₄mim][PF₆], 265
fluorescence techniques, 266
IL polymer materials development, 267
liquid-liquid extraction, 266
palladium NPs, 266–7
phase diagram, 244–7
bicontinuous microemulsion, 244
[bmim][PF₆], 247, 247
EAN-n-alkane-CiEj surfactant systems, 245
fish phase diagram, 244, 246
hydrophobic [bmim][PF₆], 245
water-[bmim][PF₆]-TX-100 microemulsions, 245, 246
single-phase microemulsion, 247–8
TX-100, CiEj surfactants, 249
water/TX-100/[C₄mimPF₆] ternary system, 266, 267
w/IL microemulsions formation, 267, 268
artificial neural networks (ANNs), 448, 449
see also density of ternary mixtures
artificial sweetener-based BILs, 416–17
atomic force microscopy (AFM), 18, 24, 30, 31, 56, 121, 122, 123, 139, 141
BASIL see Biphasic Acid Scavenging by Ionic Liquids (BASIL)
BILs see bioionic liquids (BILs)
biocatalysis
fungal oxidase-catalyzed oxidation, o-phenylenediamine, 337
lipase-catalyzed hydrolysis
4-nitrophenyl butyrate, 337
p-nitrophenyl butyrate (p-NPB), 336–7
biocatalysis, DESs
choline-based DES, 469
cosolvent
p-nitrophenyl acetate hydrolysis, 525
stEH1-catalyzed hydrolysis, regioselectivity, 525
styrene oxide hydrolysis, 525, 526
hydrolase-catalyzed processes, 523–6
solvents
choline-based DESs, 524
glycerol-based DESs, 524
lipase activity and stability, 524
transesterification reaction, 523–4
water content, role of, 524–5
biochemical oxygen demand (BOD) tests, 425
biocompatible ionic liquid-based microemulsions
bimetallic palladium/gold (Pd₄Au) NPs, 435
fungal oxidases catalytic activities, 434
ionic liquid-in-oil (IL/o) microemulsions, 433
lipase-catalyzed esterification reactions, 434
N-ethyl perfluoroctylsulfonamide based RMs, 435
oil-soluble drugs, 432
scCO₂, 435
self-assembling phenomena, amphiphilic molecules, 432
self-emulsifying drug delivery systems, 432–3
single TX-100 and mixed AOT/TX-100 w/IL microemulsions, 434
Tween-80/Span-20 surfactant-based IL/o microemulsion, 433
w/IL microemulsions, 433, 434
bioionic liquids (BILs)
AA-based, 407–11
alkylsulfate-based, 419
antimicrobial activity, (eco)toxicological aspect, and biodegradability
alkyltriphenylphosphonium cation-based ILs, 425
anion effect, anion moieties, 421
antibacterial activity, 425
biochemical oxygen demand (BOD) tests, 425
CnMPnBr ILs, 423
dialkylimidazolium ILs, 421
disinfectants and antiseptics development, 420
“enzyme-friendly” ILs, 424
green ILs, 423
imidazolium ILs, 424
long-chain imidazolium- and pyridinium-based ILs, 424
3-methyl-1-(propoxymethylcarbonyl)-imidazolium series, 422
nitrogen atom number, aromatic cation ring, 420
nonaromatic compounds, 422
octyl-substituted cation, 421
oxygen-functionalized amide ILs, 423
quaternary imidazolium and pyrrolidinonium salts, 420
tetraethylammonium (TBA) IL salts, 423
applications
fabrication, unmodified biopolymer-based materials and composites, 431
fluorescent core-shell ellipsoidal RBITC@SiO2 -IL NP, 430
heparin/biopolymer composites, 431
hydroxyl-functionalized cationic surfactants (HFCSSs), 429
hydroxyl-functionalized ionic liquids (HFILs), 429
long alkyl chain imidazolium-based ionic liquids (LILs), 430–431
lyotropic action, 430
nucleophilic substitution reactions, 431, 432
silica aerogel, 429–30
uniform monodisperse crystalline Ag NPs, 429
artificial sweetener-based, 416–17
biocompatible ionic liquid-based microemulsions, 432–5
cholinium cation-based, 411–14
enzymatic processes and biotransformations, 426–9
fructose-based, 417
lactate-based, 417–19
morpholinium-based, 414–16
synthesis
[AAE]Sac ILs, 404
amino acid ionic liquids (AAILs), 403, 405, 406
chiral ILs (CILs), 404–5
choline chloride-derived room-temperature ILs, 403, 404
cholinium alkanolate ILs, 405, 406
cholinium-based AAILs, 406, 407
environmentally benign ILs, 405
fructose-derived, 403
halogen-free IL, 403
miconazole-based ILs, 402
oxygen-functionalized and amide ILs, 405
RTILs, choline derivatives, 403
bio-related applications, ILBSs
antimicrobial activity, 86, 86
microbial biofilms, 85
series A and B imidazolium salts, 86
structure/activity relationships (SAR), 85, 87–8
Biphasic Acid Scavenging by Ionic Liquids (BASIL), 151–2
calixarenes
dansylated, [C10mim][Cl]
covalent attachment, fluorophoric moiety, 201
fluorescence emission spectra, 201, 202
hydrophobicity, 203
lowest-energy fluorescence emission maxima, 202, 202
twisted intramolecular charge transfer (TICT) excited state, 203
fluorescence, probe pyrene
pyrene polarity scale, 199–200
quenching, 200–201, 201
calixarenes (cont’d)
molecular absorbance, [C_{10}mim][Cl]
presence
electron-withdrawing -NO_2
functionality, 198
p-nitrophenol, UV-vis absorbance
spectra, 199, 199
UV-vis absorbance spectra, 197, 198
synthesis, 196
capillary electrophoresis (CE), 338
capillary zone electrophoresis (CZE), 482
micellar electrokinetic capillary
chromatography (MEKC), 482, 483
micellar solutions, 482
micelle to solvent stacking (MSS), 484
online preconcentration techniques, 484
capillary zone electrophoresis (CZE),
482, 484
CASAILs see cationic surfactant-like ILs
(CASAILs)
catalytic properties, enzymes
ion-specific effects, 462–4
polarity and hydrophobicity, 462
stability, 464–6
viscosity, 461–2
cationic surfactant-like ILs (CASAILs)
colloidal solutions, 189
imidazolium-based, 189
long-chain counterions, 189
synthesis, 188
cationic exchange capacity (CEC), 504, 505
cationic exchange, layered silicates
ammonium ILs, 505–6
electrostatic and weak intermolecular
interactions, 505
ILs selection, 505
mineral host structure and nature,
intercalating agents, 505
organic species, identification, 505, 506
thermostable ILs, 506–8
cationic surfactant-like ILs (CASAILs)
with anionic surfactants/ASAILs, 186
CMC and surface parameters, 179–81, 182
dicationic surface-active ILs
(DCSAILs), 177
head groups, 177
long-chain imidazolium and
pyridinium, 182
molecular structures, 177, 178
pyridinium head groups, 189
surface excess concentration and
minimum area per molecule, 178
cationic surfactants
micellar electrokinetic capillary
chromatography (MEKC), 475
micellar solutions, 475
mobile phase additives, 475
solubilizing media, analytes, 475, 476
CEC see cationic exchange capacity (CEC)
cholinium cation-based BILs, 411–14
Clint equation, 212
cryo-transmission electron microscopy
(cryo-TEM), 42–3, 43, 137, 267, 435
CSAILs see cationic surfactant-like ILs
(CSAILs)
CZE see capillary zone electrophoresis
(CZE)
DAR see Diels–Alder reaction (DAR)
DCSAILs see dicationic surface-active ILs
(DCSAILs)
Debye-Hückel-Onsager conductivity
theory, 70
dep deep eutectic solvents (DESs), 460, 460
advantages, conventional ILs, 517–18
ammonium salts and HBDS, 517, 518
biocatalysis, 523–6
enzymatic processes, 518
NADES, 526–9
nonaqueous solvents, ILs, 517
properties
density, 520
freezing point, 519–20
hygroscopicity, 522
polarity, 521
surface tension, 521
toxicity, 522–3
viscosity, 520–521
density of ternary mixtures
artificial neural network (ANN)
accuracy evaluation, 454
density vs. predicted values, 455, 456
information inputs, 449
input, hidden and output layer, 450, 451
output value of neuron, 450
structure, 449, 449
topology, 455
validation phase, 455
variable importance, 457, 457
variables, model, 454
weight matrix, 456, 456–7
dataset, 448
multiple linear regression (MLR)
vs. ANN_{5,(49)}, model, 456
average percentage deviation (APD), 451, 452
density vs. predicted values, training and validation phase, 452, 453
IBM SPSS Statistics, 449
implemented model, 451–2, 452
Pearson correlation analysis, 450, 451
root mean square error (RMSE), 451
variables, ionic liquid mixture, 450
software package, 449
DEoS see deep eutectic solvents (DEoS)
dication surface-active ILs (DCSAILs), 175–7, 178
didodecyldimethylammonium bromide (DDAB), 39, 39
Diels–Alder reaction (DAR), 304, 369, 369, 375, 400, 408, 417, 418
edge excitation shift (EES), 157, 159
effective cell model (ECM), 13, 14, 15, 16
electrospray ionization mass spectrometry (ESI-MS), 405
Eotvos equation, 119, 120
ESI-MS see electrospray ionization mass spectrometry (ESI-MS)
fluorescence resonance energy transfer (FRET) study, 265
fluorescence spectroscopy, 33–4, 34, 264, 349
Fourier transform infrared (FTIR) spectroscopy, 245, 265, 267, 269, 344, 345, 347, 348, 351, 355, 382, 387, 403, 407, 411, 434, 466
freeze-fracture TEM (FF-TEM), 42, 263, 271, 363, 382, 383, 389
freezing point, DEoS, 519–20
fructose-based BILs, 417
FT-IR spectroscopy, RMAs
electron-donating character, [bmim] [TIO] and [bmim][TIA], 293
imidazolium C-H stretching modes, 295
S-N-S stretching mode, 292–3
vibrational frequencies, 294
gemini surfactants see also IL-based gemini surfactants
cmc values, 82
definition, 127
symmetrical and unsymmetrical, 128
Guggenheim equation, 119, 120
HBDs see hydrogen-bond donor (HBDs)
high-performance liquid chromatography (HPLC)
cationic and anionic conventional surfactants, 482
MLC mode, 482
pseudophase C_{12}MIm-Cl, 482
Hofmeister series, 20, 427, 428, 463–4, 465, 466
HPLC see high-performance liquid chromatography (HPLC)
hydrogen-bond donor (HBDs)
 methyltrialphenylphosphonium bromide (MTPB), 522
salt/HBD molar ratio, 519
typical salts and, 517, 518
viscosity, DES, 520, 521
hydroxyl-functionalized ionic liquids (HFILs), 429
hygroscopicity, DEoS, 522, 525
IL-based gemini surfactants
advantages, 127–8
aggregation behavior
aggregate structure, 137
counterion binding degree, 136
ILCs, 137–8
Krafft temperatures and melting points, 138
micellization, 131–3
surface activity parameters, 133–4
thermodynamic parameters, 134, 135, 136
behavior, interface
air/solution interface, 139
solid/liquid interface, 139–40, 141
and biomacromolecules interactions
DNA complexes, 140, 142–3
protein complexes, 143–4, 145
gene delivery vectors, 128
synthesis
cationic, 129
hydrophilic head groups with spacer, 129–30
hydrophobic alkyl chains to
hydrophilic head group, 129, 130
hydrophobic chains by spacer, 130–131
IL-based nonaqueous microemulsions
application
acyclovir, 354
as catalysts, 355
dissolution/encapsulation, 354
IL-in-oil microemulsions, pharmaceutical carrier, 354
polymerization, 355
silicon materials preparation, 354
benzene/BHDC/[bmim]BF$_4$ system, 349
bis(trifluoromethylsulfonyl) anion (NTf$_2^-$), 349
[bmim]PF$_6$-in-toluene microemulsion, 348, 349
1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] PF$_6$), 348
1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF$_4$), 344–4
[emim][C$_n$SO$_4$/TX-100/cyclohexane, 350, 350
ethylammonium nitrate (EAN), 349
IL and polar solvent as polar phase, 350–351
IL as dispersed and continuous phase, 351–2
IL as surfactant and polar solvent, 352–4
N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide/TX100/benzene system, 349
N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl) imide, 349
IL-based surfactants
analytical separation science applications, 476–81
analytical techniques
in capillary electrophoresis (CE), 482–4
in high-performance liquid chromatography (HPLC), 482
description, 476
low melting point ionic compounds, 476
micellar properties, 476
ILBs see ionic liquid-based surfactants (ILBs)
IL-in-oil (IL/O) and oil-in-IL (O/IL) microemulsions
additive effects, 331–2
micropolarity and intermolecular interaction, 330
microstructures, 329–30
phase behavior, 326–9
solvation dynamics, 331
thermodynamics of formation, 330–331
IL-in-water and water-in-IL microemulsions, 332–3
IL microemulsions
as drug delivery systems
acyclovir solubility dependence, 370, 371
advantages, 369
DLS study, 370
IL/O microemulsions, 370, 371
nonaqueous microemulsions, 370
as reaction medium
Diels-Alder reaction (DAR) kinetic measurements, 369, 369
microreactor/nanoreactor, 368
reaction rate, 369, 370
water pool, 368, 368
IL/O microemulsions see ionic liquid-in-oil (IL/O) microemulsions
ILs see ionic liquids (ILs)
in situ intercalative polymerization, 508–9
ionic liquid-based surfactants (ILBs)
antitumor activity, 90–91, 92
bio-related applications, 85–9
cationic, 65
evolution of publications, 63, 64
gemini, 66
interactions, biomacromolecules, 92
micellar properties, 71
molecular structure, 65
nanotechnology, 92–5
structures, 66
synthesis
absence of solvents, 66
ether-containing gemini ILBS, 68
functionalized side chain, 66
gemini-type, 66, 67
routes, 65–6
with side ester/amide group side chain, 69
thioether-containing gemini ILBS, 68
zwitterionic, 66, 69
zwitterionic, 66, 69
ionic liquid-in-oil (IL/O) microemulsions
aggregates size
alkyl side chain length, imidazolium cation, 311, 312
RTILs anion, 311–12, 313
constituents effect, droplet structure, 386
as drug delivery media, 391
1H NMR spectra
[C\text{4mim}][AOT] molecule, 316, 317, 318
[C\text{4mim}][\text{TF}_2\text{N}], 317, 318
[C\text{6mim}][\text{TF}_2\text{N}], 318
water addition, 318–20
IL pool dynamics
average solvation time, 385
fluorescence decays, C‐153, 384, 384
time‐resolved emission spectra (TRES), 384–5
time‐resolved fluorescence anisotropy, 383
morphology, size, property, and microstructure
absorption spectra, 361, 361, 362
methyl orange (MO) absorption spectra, 361–2, 362
time‐resolved emission spectroscopy, 361
water content, 361, 361
as nanoreactors, 389–90
phase behavior and conductivity, 378–9
phase behavior study
alkyl side chain length, imidazolium cation, 314–15, 315
RTILs anion, 315–16
water, droplet structure and dynamics, 387–8
ionic liquids (ILs) see also long‐chain ILs
aggregate formation
aqueous solutions, ILs, 110
[C\text{4C1im}]\text{Cl}, [C\text{10C1im}]\text{Cl}, and [C\text{12C1im}]\text{Cl}, 110
[C\text{4C8Pyrr}]\text{Br} and [C\text{4C12Pyrr}]\text{Br} CMC values, 104, 105
[C\text{4C8Pyrr}]\text{Br}, enthalpy of micellization, 105
critical micelle concentration (CMC), 103, 103, 105–6, 106
demicellization, 104
diluted aqueous solutions, IL‐based surfactants, 105
double‐chained surfactants, 109
enthalpy change, 104
excess volume, solutions, 116, 116
free energies and enthalpies, 108
global volumetric behavior, 110, 111
isothermal titration calorimetry (ITC), 103
longer‐chain surfactants, 108
molar volumes, 111, 112
mole fraction, bound counterions, 107
partial molar volumes, 113, 114
“polar” head group nature, 106
tetraalkylammonium‐ and pyrrolidinium‐based surfactants, 108
uni‐univalent ionic surfactants, 107
air‐liquid interfaces, 116–20
amphiphiles see self‐assembled amphiphiles
amphiphilic behavior, 253
applications, 1
ionic liquids (ILs) (cont’d)
active pharmaceutical ingredients (APIs) synthesis, 400
analytical separations, 399
catalytic applications, 400–401
cellulose, 399
as “designer solvents”, 400
fractionation, lignocellulosic biomass, 400
as “green solvents”, 400
as lubricants, 401
pharmaceutical applications, 400
separation science, 400
aqueous microemulsions
phase diagram, 244–7
single-phase microemulsion, 247–8
TX-100, CIEj surfactants, 249
in aqueous microemulsions, 304
bulk solvation properties, 23
categories, 398
cationic and anionic constituents, 376
commonly used constituent ions, 152
confinement see reverse micelles (RMs)
definition, 398
description, 101
dicationic (gemini) ionic liquids, 67
enzyme structure
 circular dichroism (CD), 466
dynamic structure-function relationships, 466, 467
 Fourier transform infrared (FTIR) spectroscopy, 466
 MD simulations, 468
 scattering techniques, 467
imidazolium
 interfacial properties, 253–4, 254
 polarity, 254
imidazolium-based, 2
imidazolium-based room-temperature, 4
inherent fluorescence properties, 33
mesoscopic order, 4
miscibility of water, 398
polar nature, 375
as polar solvents
 EmimEtSO₄/CTAB/toluene/pentanol quasiternary system, 256
 EmimEtSO₄ droplet structure, 256, 257
 and surfactants, 257, 258
properties, 398, 399
protic and aprotic, 375
as pure bulk phases, 124
purity distribution, 63, 64
second-generation, 66, 459, 460
self-assembly systems, 261
solid surfaces
 adsorbed layers, 120–121
 [C₁₂C₅im]Br ILs, 122
 [C₆₋₁₀C₅im][C₁₅₋₁₄C₅im]Cl and [C₁₄C₅im] Cl, 123, 123
 frequency change, 121, 122
hemimicelle formation, 121
quartz crystal microbalance (QCM), 121
solubilized in water
 BmimCl, isotropic phase range, 254, 255
 inverse microemulsion droplet,
 EmimHexSO₄, 256, 256
 self-assembled microemulsions, 256
 water/toluene/pentanol, isotropic phase range, 254, 255
solvent properties, 253
surfactant properties, 32
synthetic routes, 65–6
volatility, 23
ionic liquids in colloidal regime
biological applications
 additive influence, 231–3
 microemulsions, colloidal domain, 228–31
 phase-forming behaviors and microemulsifications, 217–27
 phosphonium- and ammonium-based ILs, 217
categories, generations, 207, 209
cations and anions, 207, 208
physicochemical properties (bulk and interfacial)
 aggregation behavior, 210
 amphiphiles CMC ranges, IL media, 216, 216
 Clint equation, 212
 IL-1 (triisobutyl(methyl)phosphonium tosylate), 211
 influence of [IL-1], 214, 215
 ionic, nonionic and zwitterionic surfactants, 212
 g log C profile, IL-1 in aqueous medium, 213, 214
 phosphonium-based ILs, 211
 phosphorus-based non-IL surfactants, 211
specific conductance, 208
surface activity, 210, 211
surface tension, 208–9, 210, 212
tensiometric measurements, 211
Vogel–Fulcher–Tammann equation, 208
isothermal titration calorimetry (ITC), 71, 82, 92, 103

Knudsen effusion method, 120
lactate-based BILs, 417–19
Langmuir’s principle of independent surface action, 117
layered silicates
organic modification
cationic exchange of, 505–8
hydrophilic and hydrophobic polymers, 504
structure and properties, 504
linear solvation energy relationship (LSER) model, 482
long-chain ILs
oil-in-water microemulsions
amphiphilic ILs, 269
[C$_3$ mim][Br], [MAUM][Br] and BPYP[MIM][PF$_6$], 269
[C$_3$ mim]Cl–C$_{10}$ H$_{21}$OH–H$_2$O ternary system, 270, 271
IL-in-oil microemulsion, 271
ordered assemblies, 270
polymerization, 270
water-in-oil microemulsions, 272
lower critical solution temperature (LCST), 36, 407
LSER see linear solvation energy relationship (LSER) model

matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), 399
MEKC see micellar electrokinetic capillary chromatography (MEKC)
melt intercalation, 509
Menschutkin reaction, 403
micellar electrokinetic capillary chromatography (MEKC), 194, 475, 482, 483, 484, 485
micellar properties, ILBSs, 71
cmc values, gemini surfactants, 82
ΔG°_{mic} dependence, number of methylene groups, 84, 84
ln(cmc) dependence, number of carbon atoms, 82, 83
surfactants, functionalized side chains, 85
drug to solvent stacking (MSS), 484, 485
micellized ILBS
aqueous solution, micellar properties, 71, 72–8
critical micelle concentration, 70
enthalpies of micellization, 71
Evans equation, 70, 71
Frahm equation, 70, 71
isothermal titration calorimetry (ITC), 71
thermodynamic parameters, 71, 79–81
microemulsion(s) see also ionic liquid-in-oil microemulsions; nonaqueous microemulsions; phase-forming behaviors, IL-based microemulsions
additive influence
[bmim][BF$_4$]-in-cyclohexane microemulsion, 231, 231–2
[emim][EtSO$_4$]/TX-114/limonene, 232, 233
aqueous see aqueous microemulsions
biocatalysis
fungal oxidase-catalyzed oxidation, o-phenylenediamine, 337
laccase-catalyzed oxidation, 2,6-dimethoxyphenol, 337
lipase-catalyzed hydrolysis, 2,6-dimethoxyphenol, 337
lipase-catalyzed hydrolysis, 4-nitrophenyl butyrate, 337
capillary electrophoresis, 338
chemical reaction, 337
classifications, 262
colloidal domain
guanidinium ILs, 231
IL-assisted nonaqueous microemulsions, 228
IL-in-oil microemulsion, 228, 228
lidocaine docusate (LD), 229
silica nanoparticles, 229, 230
structure-directing ability, 229
components, 263
definition, 262, 325, 375
drug release, 338
features, 253
hemoglobin extraction, 338
IL-in-EG and EG-in-IL, 333
IL-in-IL, 333–4
IL-in-oil (IL/O) and oil-in-IL (O/IL)
additive effects, 331–2
micropolarity and intermolecular interaction, 330
microstructures, 329–30
phase behavior, 326–9
microemulsion(s) (cont'd)
solvation dynamics, 331
thermodynamics of formation, 330–331
IL-in-supercritical CO₂ and CO₂-in-IL, 334
IL-in-water and water-in-IL, 332–3
IL surfactants, long-chain anions, 272–6
ionic surfactants and ILs
polar solvents, 256–7
polar solvents and surfactants, 257, 258
solubilized in water, 254–6, 256
long-chain ILs
oil-in-water microemulsions, 269–71
water-in-oil microemulsions, 272
material synthesis
bimetallic palladium/gold nanoparticles, 335
gold nanoparticles, 335
mesoporous metal-organic framework, 335–6
polyaniline/silver (PANI/Ag) nanocomposite, 335
silica, 334–5
ZrO₂ nanoparticles, 335
nonmiscible liquids, 253
polymerization
atom transfer radical polymerization, 336
electropolymerization, 336
TiO₂ nanoparticles, 336
water-free IL-based, 304–5
morpholinium cation-based BILs, 414–16
morpholinium ILs
chemical formulae, 153
polarity
coumarin-153 (C-153), $E_1(30)$ values, 153–4, 157
definition, 153
fluorescence probes, 154
normalized steady-state absorption and fluorescence spectra, C-153, 155
static dielectric constant and refractive index, 153
temperature dependence, n_{max}^sm, 155, 156
structural heterogeneity
excitation wavelength-dependent emission spectra, 157–60
solvation dynamics, 160–163
time-resolved fluorescence anisotropy, 163–70
viscosity, 157, 158
MSS see micelle to solvent stacking (MSS)
NADESs see natural deep eutectic solvents (NADESs)
nanotechnology, 92–5
natural deep eutectic solvents (NADESs)
aplications, 529
cellular metabolism, 527
description, 518
microbial, mammalian and plant cells, 526–7
physicochemical properties, 527–8
preparation and structure, 527
water, effect of, 528–9
neutron reflectivity (NR)
$C_{12}E_4$, 28, 28
deuterium labeling, 28
ethylammonium nitrate (EAN) surface, 28
reflected beam intensity, 27
subnanometer resolution, 28
surface layer thickness, 28
surface roughness, 28
NMR see nuclear magnetic resonance (NMR)
nonaqueous microemulsions
1-butyl-3-methylimidazolium tetrafluoroborate, 262, 263
catanionic surfactants, 265
$[C_{n}\text{mim}][\text{BF}_4]$, 263
$[C_{n}\text{mim}][\text{PF}_6]$, 263–4
dynamic light scattering (DLS), 263
IL-in-oil microemulsions, 265
nonionic alkyl oligo (ethylene oxide) surfactants, 265
$[N_{1111}][\text{TF}_2\text{N}], [P_{13}][\text{TF}_2\text{N}]$ and $[C_{n}\text{mim}][\text{TF}_2\text{N}]$, 264
sulfate-based ILs, 264
nonionic surfactants micellization in RTILs, 48, 49
adsorption species, 48–9
1-butyl-3-methylimidazolium hexafluorophosphate, 48
C_nEO_m in BmimPF₆ cmc values, 51, 51–2
Gibbs–Helmholtz equation, 52
physicochemical parameters estimation, 50
second-order polynomial, 52
solvophobic interaction, 53
surface tension, 50
thermodynamics, 52
dilute solution properties, 48
oxyethylene chain length effect, 52
polyoxyethylene alkyl ether surfactants, 48
protic/aprotic nature, 48
static surface tension, 48
NR see neutron reflectivity (NR)
nuclear magnetic resonance (NMR)
1-alky-3-methylimidazolium ibuprofenate, 40
C_{14}E_{6}, chemical shift, 39, 39, 40
diffusion-ordered spectroscopy (DOSY), 40
diffusion, schematic, 40–41, 41
IL in RMs, 291–2
measured diffusion coefficient, 40, 41
pulsed-field gradient spin-echo (PGSE), 40
Stokes-Einstein equation, 40
surfactant aggregation, 41
PGSE-NMR see pulsed gradient spin-echo nuclear magnetic resonance (PGSE-NMR)
phase behavior study, microemulsions
alkyl side chain length, imidazolium cation, 308–9
RTILs anion, 310–311
phase-forming behaviors, IL-based microemulsions
bicontinuous-type microemulsion, 218, 221, 225, 226
[bmim][BF_4]/TX-100/triethylamine, 221
clear zones area, 224–5, 226
CTAB/toluene-pentanol/[emim] [EtOSO_3], 225
CTAB/toluene-pentanol/[emim] [HexOSO_3], 225
free energy (driving force), microemulsion formation, 219
IL/O-type microemulsion droplets, 221
IL/TX-100/EG ternary system, 221, 222
microheterogeneous system, microemulsion, 218
phosphonium cation-based ILs, 221
pseudoternary phase diagrams, IL-based microemulsion systems, 222, 223, 224
[P_13][Tf_2N]/TX-100/benzene three-component system, 227, 227
solution dynamics, 227
thermodynamic stability and energy diagrams, 220, 220
varied hydrophobic environment, 220
water-in-[bmim][PF_6] microemulsion system, 224
PLS see polymer-layered silicate (PLS) nanocomposites
polarity, DESs, 521
polarized optical microscopy (POM)
hydrogen-bonding, 34–5
mesophases formation, 34
molecular weight role, 35
nonionic surfactants, 34–5
Pluronic P123, amphiphilic triblock copolymer, 35
polybutadiene-b-poly(ethylene oxide) (PBb-PEO) copolymers, 38
polyester/IL-modified clay nanocomposites, 512
poly(olefins)/IL-modified clay nanocomposites, 511–12
polymerization
atom transfer radical polymerization, 336
electropolymerization, 336
TiO_2 nanoparticles, 336
polymer–layered silicate (PLS) nanocomposites
description, 504
different routes, preparation, 508, 509
in situ intercalative polymerization, 508–9
melt intercalation, 509
organic–inorganic hybrid materials, 508
solution intercalation, 508
POM see polarized optical microscopy (POM)
PS/IL-modified clay nanocomposites
ABS/ammonium- and imidazolium-treated MMT, 509
in situ polymerization, 510
nanoparticle suspension, molten state, 509
SAN nanocomposite processing, 510
pulsed gradient spin-echo nuclear magnetic resonance (PGSE-NMR)
adventages, 2
mechanism, 2
molecular exchange, 3
self-diffusion coefficients, 3–4
spin echo, 2
Stokes-Einstein relation, 3
PVC/IL-modified clay nanocomposites, 512
PVDF/IL-modified clay nanocomposites, 510–511
pyrene
polarity scale, 199–200
quenching, fluorescence, 200–201
QCM see quartz crystal microbalance (QCM)

Quartz crystal microbalance (QCM), 121

Quenching

bovine serum albumin (BSA), 144
pyrene fluorescence, 200–201

red edge effect (REE), 157, 158, 159

Reverse micelles (RMs), 284

AOT, BHDC, and TX-100 surfactants, 283–4, 284

[bmim][BF₄], [Tf₂N]−, [TfO]−, and [TfA]−, 285, 285

definition, 283

ILs

AOT analogues, 287
[bmim][BF₄], 286
dynamic light scattering (DLS) measurements, 286
FT-IR spectroscopy, 292–5
molecular probe response, 289–91
NMR spectroscopy, 291–2
size characteristics, 288, 288–9, 290
stable RMs formation, 286
steady-state and picosecond time-resolved emission spectroscopy, coumarin 153, 286
microheterogeneous environments, 283
nonaqueous, 285
water properties, 285

RMs see reverse micelles (RMs)

room-temperature ionic liquids (RTILs)

amphiphiles
critical micelle concentration (CMC), 241–4
micellar aggregation, 240–241

binary phase behavior
BPS- m + water systems, 54
ethylammonium nitrate (EAN), 53–4
H₂ phase, 54
imidazolium-type RTILs, 54
phase states, 54
self-assembly, 53–4
temperature-concentration region, 54–5, 55

chiral and long-chain, 194
complexation study, 194
definition, 47, 375
imidazolium-type, 194
lidocaine docusate (LD), 229
micellization see nonionic surfactants
micellization in RTILs

nonionic surfactants, adsorption
atomic force microscopy (AFM), 56
BPS-20/EmimTFSI systems, 56, 57
detectable layers, 56
molecular flexibility, 56
physicochemical properties, 56
polyethylene oxide (PEO), 56
polypropylene oxide (PPO), 56
protic-aprotic nature, 56
solid/RTIL interfaces, 56
solvation layers, 56, 58
sum frequency vibrational spectroscopic (SFVS) data, 58
physicochemical properties, 193
RTIL-calixpyrrole inclusion complexes, 194
volatility, 303

RTILs see room-temperature ionic liquids (RTILs)

SAILs see surface-active ionic liquids (SAILs)

SAR see structure/activity relationships (SAR)
SAXS see small-angle X-ray scattering (SAXS) scattering, self-assembled amphiphiles
dynamic light scattering (DLS), 35–6, 37 schematic, 35, 36
small-angle neutron scattering (SANS), 38–9
small-angle X-ray scattering (SAXS), 35, 37–8, 38
self-assembled amphiphiles
bulk techniques
fluorescence spectroscopy, 33–4, 34
nuclear magnetic resonance (NMR), 39–41
POM, 34–5
scattering, 35–9
transmission electron microscopy (TEM), 42–3
characterization techniques
atomic force microscopy (AFM), 30, 30
interface techniques, 25
neutron reflectivity (NR), 27–8
sum frequency generation (SFG) spectroscopy, 29
tensiometry, 30–32, 33
X-ray photoelectron spectroscopy (XPS), 25–7
IL cations and anions, 23, 24
ionic liquids (ILs) and, 23–4
structures, 23, 24
self-assembly, SAILs
anionic surfactant-like ILs (ASAILs), 182–6
cat ionic surfactant-like ILs (CASAILs), 188–9
cationic surfactant-like ILs (CSAILs), 177–82
mixed surfactants, 186–8
small-angle neutron scattering (SANS), 25, 35, 38–9, 39, 71, 137, 184, 185, 221, 227, 243, 243–5, 247, 248, 262, 286, 305, 329, 344, 352, 360, 361, 382, 383, 467
sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT)
bilayers in water, 15
micelles, 16
surfactant, 8
ternary systems, 9
volume fraction, 10, 11, 19
solid-phase extraction (SPE) approach, 489
solid-phase microextraction (SPME)
analyte concentrations, 486
CMC value, 486
conventional surfactants, 485–6
K_{Ma} values determination, 486
monocationics, 487
solid/RTIL interfaces see room-temperature ionic liquids (RTILs)
solution intercalation, 508, 509
spin echo, 2, 40, 286
SPME see solid-phase microextraction (SPME)
structural heterogeneity, morpholinium ILs
excitation wavelength-dependent emission spectra, 157–60
solvation dynamics, 160–163
time-resolved fluorescence anisotropy, 163–70
structure/activity relationships (SAR), 85, 87–8
sum frequency generation (SFG) spectroscopy, 24, 25, 29
sum frequency vibrational spectroscopic (SFVS) data, 58
surface-active ionic liquids (SAILs) on calixarenes
dansylated calixarene with [C$_{10}$mim][Cl], 201–3
fluorescence, probe pyrene, 199–201
materials, 195–6
methods, 196
micelle formation and critical micelle concentration, [C$_{10}$mim][Cl], 196–7, 197
molecular absorbance, 197–9
1-decyl-3-methylimidazolium chloride, 194, 195
definition, 303
surface tension, DESs, 521
surfactants system
definition, 1
structure, 1
thermodynamics
AOT micelles, 8
Gaussian curvature, 7
microstructure and phase behavior, 7
percolation theory, 8
polar and apolar domains, 7
sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT), 8
surfactant molecular volume, 7
water-in-oil (W/O) spherical droplets, 8
TEM see transmission electron microscopy (TEM)
tensiometry
capillary rise method, 31
cationic C₅TAB surfactant, 32
cₙEₘ surfactants, 32
fluorinated surfactant, 31–2
interfacial properties, 31
isotherm, 31
neat IL interfaces study, 32
surface tension, 30–31
Wilhelmy plate methods, 31
ternary systems
bmim⁺ self-diffusion coefficients, 18, 18–19
chaotropic ions, 20
effective cell model (ECM), 13, 15, 16
interfacial film, effective volume, 12, 12
Lindman law, 13
macroscopic phenomenology, 21
NaAOT
bmim⁺ adsorption isotherms, 19, 19
bmimBr aqueous solutions, 9, 9
branched bicontinuous micelles, 20
¹H PGSTENMR experiments, 16–17
interfacial packing, 9
self-diffusion coefficients, 10, 10
water and AOT- self-diffusion coefficients, 17, 17–18
obstruction effects, 11
small-angle X-ray diffraction (SAXRD), 10
spherical micelles, 13
subvolumes, 13
surfactant, 18
water diffusion analysis, 14, 14
weak binding, 14
p-xylene, 15–16, 16
Teubner–Strey model, 248, 257
thermogravimetric analysis (TGA), 411, 505, 506
thermostable ILs
adsorption of, 507
imidazolium, 507
polymer nanocomposites, 506
pyrrolidinium and phosphonium, 506–7
quaternary alkylammonium, 508
toxicity
deep eutectic solvents (DESs)
Hydra sinensis, growth of, 522–3
phosphonium-based, 522
vitamin B₉, 522
ionic liquids (ILs)
and alkyl chain length, 402
cell membrane permeability, 402
halides, 401
industrial catalytic applications, 401
transmission electron microscopy (TEM)
advantage, 42
cryo-TEM, 42–3, 43
FC-4 surfactant, 42, 42
freeze-fracture TEM (FF-TEM), 42
twisted intramolecular charge transfer (TICT), 201
upper critical solution temperature (UCST), 36, 407
viscosity, DESs, 520–521
Vogel–Fulcher–Tammann (VFT) equation, 157, 208
water/bmim BF₄ binary system
dimensional arguments, 6
double logarithmic plot, 5, 6
hydrodynamic radius, 6, 6
mesoscopic domains, 7
self-diffusion coefficients, 4, 5
Stokes-Einstein equation, 4–5
structural heterogeneities, 4
van der Waals radius, 7
water content, 6
water-free IL-based microemulsions, 304–5
X-ray photoelectron spectroscopy (XPS)
IL [C₅C₃IM][EtSO₄], 25–7, 26, 27
photoelectron spectroscopy, 25
schematic, 25, 26
surface enrichment, 27
surfactants alkyltrimethylammonium bromide (C₅TAB), 27, 27
UHV-based tool, 25
zwitterionic ILBSs, 66, 69