<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance region</td>
<td>157</td>
</tr>
<tr>
<td>Accuracy vs. precision</td>
<td>151, 287</td>
</tr>
<tr>
<td>Adaptive designs</td>
<td>53</td>
</tr>
<tr>
<td>Ad-hoc hypotheses</td>
<td>9, 115</td>
</tr>
<tr>
<td>Algorithms</td>
<td>253, 262, 274, 283, 298–299</td>
</tr>
<tr>
<td>Allocation (of treatment), see Treatment allocation</td>
<td></td>
</tr>
<tr>
<td>Alternative hypotheses, see Hypotheses</td>
<td></td>
</tr>
<tr>
<td>Aly's statistic</td>
<td>102</td>
</tr>
<tr>
<td>Analysis of variance</td>
<td>158</td>
</tr>
<tr>
<td>Angiograms</td>
<td>36, 51, 143</td>
</tr>
<tr>
<td>Animal husbandry</td>
<td>165</td>
</tr>
<tr>
<td>Animals</td>
<td>22, 42, 61, 63, 65, 121, 136, 138, 164, 180, 284</td>
</tr>
<tr>
<td>Antibodies</td>
<td>46</td>
</tr>
<tr>
<td>a prior distribution</td>
<td>125–134, 267</td>
</tr>
<tr>
<td>a prior probability</td>
<td>125</td>
</tr>
<tr>
<td>ARIMA</td>
<td>239, 293</td>
</tr>
<tr>
<td>Arithmetic vs. geometric mean</td>
<td>147, 169</td>
</tr>
<tr>
<td>Aspirin</td>
<td>20, 23, 38, 65, 125</td>
</tr>
<tr>
<td>Association</td>
<td></td>
</tr>
<tr>
<td>spurious</td>
<td>234</td>
</tr>
<tr>
<td>versus causation</td>
<td>252</td>
</tr>
<tr>
<td>Assumptions</td>
<td>62, 83, 234</td>
</tr>
<tr>
<td>Astrology</td>
<td>9</td>
</tr>
<tr>
<td>Astronomy</td>
<td>6–7, 45, 159</td>
</tr>
<tr>
<td>Asymptotic approximation</td>
<td>97, 99, 111–119, 136, 286, 288</td>
</tr>
<tr>
<td>relative efficiency (ARE)</td>
<td>69</td>
</tr>
<tr>
<td>Audit</td>
<td>81, 227, 240</td>
</tr>
<tr>
<td>Authors' affiliations</td>
<td>166</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>174, 279</td>
</tr>
<tr>
<td>Autoregressive process, see Time series</td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td>148</td>
</tr>
<tr>
<td>label</td>
<td>200</td>
</tr>
<tr>
<td>range</td>
<td>186, 202</td>
</tr>
<tr>
<td>Bacteria</td>
<td>162, 235, 251, 258</td>
</tr>
<tr>
<td>Baseline data</td>
<td>60, 91, 114, 141</td>
</tr>
<tr>
<td>Bayes</td>
<td></td>
</tr>
<tr>
<td>factor</td>
<td>129–130, 137</td>
</tr>
<tr>
<td>in meta-analysis</td>
<td>134</td>
</tr>
<tr>
<td>Theorem</td>
<td>123–124</td>
</tr>
<tr>
<td>Behrens-Fisher problem</td>
<td>94</td>
</tr>
<tr>
<td>Benford’s Law</td>
<td>178</td>
</tr>
<tr>
<td>Bias</td>
<td>159</td>
</tr>
<tr>
<td>estimation</td>
<td>59</td>
</tr>
<tr>
<td>publication</td>
<td>133–134</td>
</tr>
<tr>
<td>reporting</td>
<td>158–159</td>
</tr>
<tr>
<td>sample</td>
<td>8</td>
</tr>
<tr>
<td>selection</td>
<td>132, 159</td>
</tr>
<tr>
<td>sources</td>
<td>227</td>
</tr>
<tr>
<td>systematic error</td>
<td>243</td>
</tr>
<tr>
<td>time</td>
<td>90</td>
</tr>
</tbody>
</table>
Bias-corrected and accelerated, 75
Binomial outcomes, 84, 144
Biplots, 203
Blinding, 51, 61, 141
Blocks, 48
Blood, 48, 139
 - flow, 26
 - pressure, 30–31, 46, 236, 240, 253–255
 - type, 168
Bonferroni correction, 128
Bootstrap, 40, 96, 102
 - applications, 97, 282
 - limitations, 121–123, 137
 - nonparametric, 73
 - parametric, 76, 154
 - primitive, 101
 - sample, 73
 - smooth, 123
 - tilted, 123
Box and whiskers plot, 61–62, 66
Budget, 58–59, 64
Cancer, 26, 68, 95, 101, 146, 180, 207, 236, 243
Caption, 216–218, 225
CART, see Decision tree
Case controls, 54
Case control studies, 120
Cause and effect, 23, 234, 237, 244, 277, 283
CDM, 6
Censoring, 87–88
 - Type I, 87, 135
Census, 7
Central Limit Theorem, 154
Chaotic, 6, 13
Chi-square
 - statistic, 86, 100
 - statistic vs. distribution, 99, 170
 - test, 38, 169, 191, 283
Clinical
 - chemistry, 241–242
 - significance, 108
 - trials, 12, 28, 44, 46, 54, 114, 128
Clusters, 96
Cofactors, 32
Collection methods, 45, 47, 60
Computer, see also Simulations
 - output, 175
Confidence interval, 156–157, 169, 171
Confounded effects, 120, 173
Contingency table, 22–23, 86, 135, 171, 223
Contrast, 124
Controlling, 48
Controls, 50, 60
 - positive, 51
Correlation
 - reporting, 148
 - spurious, 120, 221
 - vs. slope, 232, 235
Corticosteroids, 22
Cost-benefit analysis, 167
Costs, 34
Counts, 53, 81, 91, 252
Covariances, 88, 111–112, 174, 239, 253
Covariates, 102, 104–105, 113, 187, 259, 269
Criteria, 21–22, 62, 85
Cross products, 239, 265
Curve fitting, 246
Cutoff value, 119
Cuts, 173
Data, 165–166
 - aggregating, 168
 - baseline, 60, 91
 - categorical, 85, 145, 287
 - censored, 88
 - collection, 33
 - dichotomous, 287
 - display, 65
 - metric, 287
 - mining, 274
 - non-random, 160
 - ordinal, 149, 287
 - quality assessment, 59–60
Deaths, 25, 57, 146, 157, 188, 193
Decimal places, 162, 189, 191, 301
Decision
 - admissible, 77
 - theory, 26–28, 38–39
 - tree, 261–264, 277
 - vs. regression, 266
Deduction, 25
Dependence, 24, 248, 258–259
Descriptive statistics, 60, 144, 162, 169
Deterministic vs. stochastic, 216, 287
Diet histories, 32
Discrimination, 96, 236
Disease process, 34
Dispersion, 151
Display, see Graphs
Distribution, 67
 a prior, 124–127, 130
 binomial, 94
 cumulative, 288
 empirical, 288
 exponential, 165
 F, 115–121
 function, 52
 heavy-tailed, 83
 multivariate normal, 67, 91, 97
 non-symmetric, 74, 165
 normal, 152, 224
 Poisson, 10–12, 84, 93, 146, 167
 sampling, 101, 154
 skewed, 148
 symmetric, 70, 75–76, 130
 uniform, 129, 152,
Distribution-free, 91, 102, 112–113, 249, 289
Diurnal rhythm, 108
Dropouts, 9, 37, 44, 143
Drugs, 19, 53, 85, 133, 170
Durbin-Wu-Hausman statistic, 271, 274

Ecological fallacy, 246
Economics, 33, 243
Education, 178
Elections, 254
Emissions, 27
Empirical
 distribution, 73–74, 106, 288, 318
 variance, 272
Endpoints, 32, 43, 76, 78
Epidemiology, 45, 82, 119, 222
Equidispersion, 268, 269
Equivalence, 19, 93–94, 118, 240
Error, 13, 289
 bars, 192,
 interpretation, 109
 sources, 3, 18
 terms, 106
Estimate
 consistent, 69
 efficient, 69
 impartial, 69
 interval vs. point, 72
 least-squares, 71
 mini-max, 71
 minimum loss, 71
 minimum variance, 71, 225
 optimal, 70–71
 plug-in, 71
 population-averaged, 271–272
 robust, 69
 semiparametric, 70
 subject-specific, 271–272
 unbiased, 85, 225
Estimation
 interval, 78
 point, 78
Experimental design, 47–49, 108
 block, 113
 crossover, 66, 113, 127, 135, 149
 factorial, 112
 matched pairs, 113
 unbalanced, 106, 110–111, 113
Experimental unit, 46–47
Extrapolate, 173, 216, 230–231

Factor analysis, 171, 256–257
Factorial experiments, 53, 112
False dimension, 205–206
False negative, see Type I error
False positive, see Type II error
F-distribution, see Tests
Fisher’s exact test, see Tests
Fixed-effects, 267, 270, 273
Forecast, 13, 45, 159, 256, 279
Found data, 18, 160
Four-plot, 62
F-ratio, 24, 80, 101, 105–107
Fraud, 162–163, 169, 176–178
Frequency plot, 11
Gambling, 5
GEE, 267, 271, 274
Geometric mean, 146, 148, 163, 169
Generalized linear models (GLM), 267
Global warming, 27
Goodness of fit, 6, 229, 278
Grammar, 211

Graphics
- bar chart, 183–184, 200
- baseline, 187
- biplot, 203–204
- boxplot, 147, 153, 191
- captions, 204
- categorical variable, 189
- contour plot, 195–196
- color, 182, 197, 201, 209
- error bars, 191–192
- footnotes, 194
- gridlines, 183, 185, 196
- histogram, 153
- labels, 186–189
- legends, 204
- misleading, 171, 207
- perspective plot, 196
- pie chart, 196–197
- rug plot, 154
- scales, 188, 204
- scatterplot, 207
- silly, 211
- strip chart, 147
- subgroups, 198
- vs. table, 190, 192, 199
- text in, 201–203
- three-dimensions, 183–186, 194

Ground water, 258

Grouping, 33
- Group randomized trials, 98–99, 160
- Group sequential designs, 54

Guidelines, 20, 29, 38–39, 49, 52, 54, 82, 117, 134, 158, 209, 243, 278

Hall-Wilson corrections, 75

Hazard function, 245

Heterogeneity, 35, 133–135, 245–246, 270–271

Hierarchical models, 134, 137, 275

Histogram, see Graphs

HLM, 267

 Hodges-Lehmann estimator, 70

Hotelling’s T^2, 91

Hypertension, 16–17

Hypothesis, 16–17
- alternative, 20, 24, 80, 105, 129, 288
- null, 19, 28, 288
- ordered, 24
- post hoc, 9–10, 12
- primary, 20, 29, 80

Hypothesis testing, 79, 82, 84

Immunology, 88, 170, 216

Income, 33, 147–148, 168, 198, 243–244

Independent observations, 46

Inducement, 47

Induction, 25, 29, 115, 118

Instrumental variables, 265

Interaction, 109–110

Interpolation, 179, 189–190, 211, 216

Interquartile range, 74, 147, 151, 240

Interval estimate, 86

Intraclass correlation, 98

Jackknife, 282

Jonckheere–Terpstra statistic, 107

Kepler’s Law, 6

k-fold resampling, 282

Kinetic molecular theory, 218

Kruskal’s gamma, 155

k-sample problem, 80, 104–106

Lag plot, 62–63

Large sample methods, 79

Latin squares, 53

Least absolute deviation, 70, 287, 238–239

Least squares, see Regression

Legal applications, 32, 46, 54, 81, 125–127, 167, 173–174, 222, 246

Legend, see Graph

Log-likelihood, 130

Likert scale, 107, 149

Linear regression vs. behavior, 230

Link function, 267

Litter, 47

Location parameter, 38–39, 100–101, 123

Long-term studies, 9
Losses, 26, 129, 224
 absolute deviation, 107
 jump, 68
 monotone, 68
 square deviation, 68
 step function, 68

Mail, 35, 46–48, 142
Main effect, 110–112, 121, 135, 158
Malmquist bias, 160
Mann-Whitney, see Tests
Manuscript format, 162
Marginals, 22, 81, 86
Marketing, 159
Matched pairs, 113, 120, 170,
Maximum likelihood, 72
Maximum tolerable dose, 17, 28
Mean absolute deviation, 284
Means
 arithmetic vs. geometric, 147, 169
 comparing, 90
 vs. medians, 168
Measurements
 baseline, 49
 reporting, 146
Measuring instrument, 34, 60
Median, 70, 103
Medical applications, 133, 253, 264
Medical device, 49, 240
Meta-analysis, 131–132
Meteorology, 159, 249
Microarrays, 46
Minimum, 60, 62, 65, 70, 95, 149,
 154
 effective dose, 58
 loss, 5, 68, 71
 power, 39
 rearrangements, 136
 variance, 71
Missing data, 44, 60, 62, 115, 139,
 142–143
Mitosis, 48
Model
 additive, 109
 construction, 264–265
 curve fitting, 232
 dynamic, 256
 general linear, see GLM
 mixed, 275
nonlinear, 217
non-unique, 216, 219
parametric vs. nonparametric, 288
physical, 233
reporting, 258–260
structural equation, 256
welfare, 232
Monitor, 35–36, 65, 285
Monotone function, 75
MRPP, 225, 249
Multiple
 end points, 43
 tests, 110, 114, 118, 158, 170
Multivariate analysis, 171, 233
Mutually exclusive, 16
Narcotics, 119
Negative findings, 161
Neural network, 260
Newton’s Law, 25
Neyman-Pearson theory, 20, 29
Nonresponders, 45
Nonsignificant results, 173
Normal
 alternatives, 91
 assumption, 104
 distribution, 70, 73, 76
 scores, 90
Nuisance parameters, 274
Nutrition, 32
Objectives, 4, 15, 31, 60, 68, 117,
 132, 139, 220, 232–233, 278
O’Brien’s test, 95
Observational studies, 132
Observations
 dependent, 87, 96
 exchangeable, 77, 83–84, 97, 104,
 112, 156, 274
 identically distributed, 47, 83
 independent, 46, 83
 non-randomized, 89, 119
 subjective, 107
 transformed, see Transformations
Odds ratio, 84, 86, 146, 175
One-sided vs. two-sided, 22–23
Ordinal, see Data
Ordinary Least Squares, see Regression
Outliers, 62, 151, 226
SUBJECT INDEX 333
Over-dispersion, 268
Over fitting, 283

Paired observations, 92
Panel data, 270
Parameters
 location, 38, 69–70, 123
 nuisance, 274
 scale, 38–39
 shift, 70, 95
Paranormal, 10
Paternity, 125–127
Patterns, 9, 32–33, 52, 87, 150, 205
Pearson correlation, 108
Percentages, 148, 150, 174–175
Percentiles, 7, 20, 65, 71–74, 146–149, 154, 177
Permutation
distribution, 88
test, 90, 95, 103, 113, 135–136, 224
Phase III trials, 28,
Physics, 25, 217
Pilot study, 141
Pivotal quantity, 77
Placebo, 20, 141
Poker, 12
Polar coordinates, 196
Political science, 246, 254, 260
Polynomial, 218, 251
Population, 7, 31, 45
Population statistics, 7
Post hoc criteria, 259
Poverty, 221, 238, 243
Power, 22
 comparisons, 105
 post-hoc, 160
 reporting, 139, 160
 related to significance level, 54
 related to test, 91
Precision vs. accuracy, 151, 287
Prediction, 283,
Prevention, 65, 133
Principal components, 255
Proc ARIMA, 225
Proc GENMOD, 271
Proc MEANS, 60
Proc MIXED, 99
PROC TTEST, 175
Program code, 177

Proportions, 84
Protocol, 9, 17, 37, 65, 98, 132, 134, 143, 167, 175
Psychology, 92
Publishing, 161–162
p-value, 117, 131, 155
 vs. association, 155
 vs. confidence interval, 156
 limitations, 161
Quality control, 241
Questionnaires, 32

Radiation, 61, 120
Radioimmune assay, 88, 216
Random-effects, 267, 270, 273
Randomized response, 61
Randomizing, 48–50, 140
Random number, 8, 152
Ranks, see Transformations
Rare events, 146
Rates, 174
Ratio, 132
 aspect, 204
 interval estimate, 74, 154
 likelihood, 21–22, 86
 range, 242–243
Raw data, 59, 137, 165–166, 170–171, 176, 195
Recruitment, 232
Redshift, 159–160
Regression
 coefficients, 224, 252
 collinearity, 252, 255
 confidence intervals, 171
 vs. correlation, 242
 Deming (EIV), 240–241
 dynamic, 225
 ecological,
 LAD, 238–240
 linear, 217
 linear vs. nonlinear, 238
 logistic, 253, 258–259
 multivariable, 251
 nonlinear, 248
 OLS, 224
 Poisson, 268
 quantile, 243–245
 reporting, 248
scope, 215–216
sources of error, 215
stepwise, 253, 277
stratified, 235
spurious, 234, 252
Regulatory agency, 20, 24, 39, 51, 95
Rejection region, 157
Relationship
dose-response, 132
Relativity, 25
Repeated measures, 96
Resampling, 97, 114, 123, 278, 281–282, 285
Residuals, 289
Robust, 68–70, 78, 83, 105, 110, 113, 137, 171, 272
Rugplot, see Graphs
Sales, 35, 48, 146, 148, 174, 179, 279
Sample, 7–8
non-random, 53–54, 119, 160
reporting, 167
representative, 242
sequential, 41–42
size, 37, 54, 60, 154, 242
universe, 173,
Sandwich variance, 272
Scale parameter, 38–39
Scatterplot, see Graphs
Scope, 215
Serial correlation, 62,
Shift alternative, 70
Significance
practical vs. statistical, 115, 229
Significance level, 21, 37–39, 80
Significance level vs. p-value, 289
Silicone implants, 50, 219
Simpson’s paradox, 223
Simulations, 150
Sociology, 220
Software, 75
Soil, 61
Standard error, 151
Stationarity, 228
Statistic
aggregate, 66
sufficient, 77
Stein’s paradox, 77
Stepwise, see Regression
Stochastic, 13, 287
Strata, 8, 48, 87, 222,
Subgroups, 17, 48, 115–116, 132, 198, 201
Sufficient statistic, 77
Surgery, 12–13
Surrogate variables, 32, 227
Surveys, 9, 35–36, 46, 173
Survival analysis, 86–88, 245–246
Tables, 149
Tests
analysis of variance, 105–106
bootstrap, 83–84
chi-square, 85
correlation, 80
Fisher’s exact, 81, 84–85, 94
for equality of variances, 100–104
for equivalence, 93–94, 118
for independence, 118
F-test, 80, 101
inferior, 113
Jonckheere–Terpstra, 107
k-sample, 80
locally most powerful, 96
Mann-Whitney, 107
most powerful, 101
multiple, 110, 114, 118, 158, 170
multivariate, 92, 118
new, 170
omnibus, 24, 38
one- vs. two-tailed, 42, 81, 92
optimal, 80, 94, 106, 114
permutation, 90
reporting, 170
Smirnov, 95
t-test, 90
two-tailed, 85
unbiased, 101
Wilcoxon, 94
Time series, 228
Time-to-event data, 28, 86
Toxicology, 47
Transformations, 75, 230
ranks, 84, 94, 112, 136, 206
Treatment allocation, 51–52, 139–141
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Relevant Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-test</td>
<td>80, 83–84, 90–91, 94, 113–114, 170, 175</td>
<td></td>
</tr>
<tr>
<td>Type I and II errors</td>
<td>109, 289</td>
<td></td>
</tr>
<tr>
<td>Type II error vs. power</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Unbalanced vs. balanced design</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Unequal variances</td>
<td>94–95</td>
<td></td>
</tr>
<tr>
<td>U-statistic</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Vaccine</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Validation</td>
<td>233, 265</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>delete-one, 227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>split sample, 277, 281</td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Categorical</td>
<td>145, 182, 188, 199, 201, 211, 263–264, 269</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>confounding, 108, 220, 254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>continuous, see Measurements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>endogenous, 254–255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>explanatory, 270, 252–255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>indicator, 222, 229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instrumental, 265</td>
</tr>
<tr>
<td></td>
<td></td>
<td>predictor vs. dependent, 252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>proxy, 221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selection of, 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>surrogate, 222</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>between vs. within, 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>comparing, 100–102, 105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dispersion, 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>estimator, 73–75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>function, 267</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inflation factor, 98, 252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unequal, 78, 94–95</td>
</tr>
<tr>
<td>Variation</td>
<td></td>
<td>5, 20, 48</td>
</tr>
<tr>
<td>Verification</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>Viewpoint</td>
<td></td>
<td>194, 196</td>
</tr>
<tr>
<td>Virus</td>
<td></td>
<td>44, 141, 221</td>
</tr>
<tr>
<td>Voting</td>
<td></td>
<td>247, 254</td>
</tr>
<tr>
<td>Weak exchangeability</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Weather</td>
<td></td>
<td>221, 228, 256</td>
</tr>
<tr>
<td>Welfare</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>Wilcoxon, see Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withdrawals</td>
<td></td>
<td>143</td>
</tr>
</tbody>
</table>