INDEX

Able–Baker spurs, 457
AC bypass capacitor, 290
AC/RF voltages, 328–329, 331–332
active mixers
 - Gilbert cell, 708–716
 - single-end single device, 706–708
AC voltage, 401
“advanced” RFIC (RF integrated circuit) design, 4
amplification power gain, 432–433
amplifier, power gain of, 431
applied regions of specific topology, 81
arm, defined, 67–68
artificial electromagnetic interference sources, 15
attenuation of interference, 402, 406
avalanche noise, 490

balun, 503
 - definition, 547
 - double microstrip line, 808–817
 - LC, 548–549
 - design, 572
 - features of, 571–572
 - performance of simple, 572–576, 588–602
 - practical, 576–579
 - main features of an ideal, 548
 - microstrip line
 - ring, 580–582
 - split ring, 582–583
 - mixing type of
 - chip inductors and chip capacitors, 585–586
 - microstrip line and chip capacitor, 583–585
RF, 548
 - transformer
 - built by two stacked transformers, 586–588
 - features of, 549–550
 - impedance matching for differential pair by means, 568–571
 - in RF circuit design with discrete parts, 550
 - in RFIC design, 550–551
 - for simulation, 551–555
 - between single-ended and differential pair in respect to, 555–568
 - bandwidth of zero capacitor, 293–295
 - baseband blocks, 8
 - bipolar CE–CB cascade amplifier, 662–666
 - bipolar transistor, 182

 - with CB (common base) configuration
 - input and output impedances, 208–214
 - KCL at node, 210, 212–213
 - open-circuit voltage gain, 204–206
 - short-circuit current gain and frequency response, 206–208
 - with CC (common collector) configuration
 - input and output impedances, 218–221
 - KCL at node, 219
 - open-circuit voltage gain, 214–217
 - short-circuit current gain and frequency response, 217–218
 - with CE (common emitter) configuration, 190–204
 - emitter degeneration, 200–204
 - Miller effect, 197–200
 - open-circuit voltage gain, 190–194
 - primary input and output impedances, 196–197
 - short-circuit current gain, 194–196
 - transition frequency, 195
DC characteristics of, 187
 - hybrid-p model, 188
 - similarity with MOSFET, 225–235
 - small-signal model of a, 187–189
 - blocks in transmitter, order of, 8
BPF (band-pass filter), 386–387
BPF helical filters, 696
BPSK (Bi-phase shift keying), 35
branch, defined, 67–68
burst noise (popcorn noise), 490
bypass capacitor, 284–286
cable balun, 603–604
 - Cal _En (calibration enable) input, 517
 - calibrated cable, 333
capacitor in an IC chip, 370–371
carrier-to-noise ratio (CNR), 430
cascaded equations
 - of noise figure, 446–448
 - of power gain, 439–441
CE–CB cascade amplifier, 212

© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
INDEX

CG configuration of RF input, 514
channel-length modulation, 223
chopping block, 515
chopping frequency, 514
chopping mixer, 511–516
Circulator, 276–277
Clapp oscillator, 753–755
CMOS (complementary metal–oxide–semiconductor processing), calculation of quarter wavelength in, 420–422
CMRR (common mode rejection ratio) of differential pair, 532
equation, 533–538
in a pseudodifferential pair, 539–541
in a single-ended block, 539
difference between single-ended and, 501–503
fundamentals of
DC offset in an ideal, 531–532
MOSFET, 528–529
small signal approximation, 527–528, 530–531
topology and definition of, 521–524
transfer characteristics, 524–529
nonlinearity, 505–506
differential VCO, 778–783
digital/analog circuit design, 8
differential pair, 696
design, 380–381
differential pair, 696
CMRR (common mode rejection ratio), 532
enhancement of, 541–542
expression, 533–538
in a pseudodifferential pair, 539–541
in a single-ended block, 539
difference between single-ended and, 501–503
fundamentals of
DC offset in an ideal, 531–532
MOSFET, 528–529
small signal approximation, 527–528, 530–531
topology and definition of, 521–524
transfer characteristics, 524–529
nonlinearity, 505–506
differential VCO, 778–783
digital/analog circuit design, 8
double microstrip line balun, 808–817
downward impedance transformer, 46
dual-conversion portable radio, 696
electromagnetic radiation, 15
electronic circuitry, revolution in, 405–406
EMC (electromagnetic compatibility), 15–16
emitter degeneration and CE configuration, 200–204
emitter follower, 38
emitter resistor, 209
energy generator portion, 764
environmental interference sources, 15
equipotentiality on grounded surface
approach to achieve
using half-wavelength runners, 330–331
using quarter-wavelength runners, 331–333
using zero capacitors, 328–330
forward current magnetic coupling and, 342
gold-plated surface of the box, 342
and imperfect or inappropriate RF/AC grounding, 335
improved grounding path, 343–344
indifferent assumptions and ignorances, 335–336
multicloset type of system assembly for, 341–344
of a PCB (printed circuit board), 326–327
in AC/RF grounding for a large PCB, 328
problems with large PCB, 327–328
reducing forward and return current coupling, method of, 336–338
in IC die, 338–340
in RF blocks, 340–341
of a regular RF cable, 325–326
return current magnetic coupling and, 342
testing for, 333–335
extended cable, 333
external interference sources, 15
flicker noise, 491
forward current coupling on a PCB, 336–337
four-point experimental method of noise figure testing, 445
four-pole helical filter, 696
free space in layout of a PCB, 371–373
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilbert cell</td>
<td>151–153, 514–515, 697</td>
</tr>
<tr>
<td>bipolar</td>
<td>712–714</td>
</tr>
<tr>
<td>impedances of</td>
<td>153–155</td>
</tr>
<tr>
<td>MOSFET</td>
<td>708–711, 715–716</td>
</tr>
<tr>
<td>grounding, in RF circuit design</td>
<td></td>
</tr>
<tr>
<td>compulsory/enforced/coercing, 305–306</td>
<td></td>
</tr>
<tr>
<td>implications</td>
<td>281–283</td>
</tr>
<tr>
<td>problems with</td>
<td>283–284</td>
</tr>
<tr>
<td>blind selection of bypass capacitor, 285–286</td>
<td></td>
</tr>
<tr>
<td>connections between grounded surfaces, 289</td>
<td></td>
</tr>
<tr>
<td>imperfect RF/AC grounding</td>
<td>286–288</td>
</tr>
<tr>
<td>improper connection about the ground points, 288–290</td>
<td></td>
</tr>
<tr>
<td>underestimation or ignoring of bypass capacitor, 284</td>
<td></td>
</tr>
<tr>
<td>unequipotentiality on the grounded surface, 287–288</td>
<td></td>
</tr>
<tr>
<td>quarter wavelength microstrip line</td>
<td></td>
</tr>
<tr>
<td>magic open-circuited</td>
<td>305–307</td>
</tr>
<tr>
<td>rationale</td>
<td>304–305</td>
</tr>
<tr>
<td>runner between parts in a circuitry, 300–304</td>
<td></td>
</tr>
<tr>
<td>with a specific characteristic impedance, 307</td>
<td></td>
</tr>
<tr>
<td>testing for</td>
<td>307–309</td>
</tr>
<tr>
<td>reference ground point</td>
<td>281–283</td>
</tr>
<tr>
<td>‘zero’ capacitor applied for RF/AC bandwidth</td>
<td></td>
</tr>
<tr>
<td>chip capacitor as</td>
<td>296–298</td>
</tr>
<tr>
<td>combined effect of multi-zero capacitors, 295–296</td>
<td></td>
</tr>
<tr>
<td>in RFIC design</td>
<td>298–300</td>
</tr>
<tr>
<td>selection, 290–292</td>
<td></td>
</tr>
<tr>
<td>zero capacitor, defined</td>
<td>290</td>
</tr>
<tr>
<td>group #1, band #2 of UWB (ultrawide band) system</td>
<td>671–684</td>
</tr>
<tr>
<td>gain and bandwidth</td>
<td>673–680</td>
</tr>
<tr>
<td>noise figure</td>
<td>680–682</td>
</tr>
<tr>
<td>nonlinearity</td>
<td>682–684</td>
</tr>
<tr>
<td>raw device testing</td>
<td>671–673</td>
</tr>
<tr>
<td>half IF spurs</td>
<td>457</td>
</tr>
<tr>
<td>Hartley oscillator</td>
<td>751–753</td>
</tr>
<tr>
<td>Haas’ theory</td>
<td>443</td>
</tr>
<tr>
<td>helical filter</td>
<td>696</td>
</tr>
<tr>
<td>HFA3783</td>
<td>517</td>
</tr>
<tr>
<td>high digital data rates</td>
<td>9–10</td>
</tr>
<tr>
<td>higher impedance in digital circuity</td>
<td>7</td>
</tr>
<tr>
<td>high speed digital circuit design</td>
<td>9–10</td>
</tr>
<tr>
<td>IC chips, chip capacitor, chip inductor, and chip resistor of</td>
<td>309–319</td>
</tr>
<tr>
<td>IC packaging</td>
<td>615–621</td>
</tr>
<tr>
<td>ideal impedance-matched state without reflection</td>
<td>66</td>
</tr>
<tr>
<td>impedance conjugate matching</td>
<td>33–42</td>
</tr>
<tr>
<td>condition of</td>
<td>34</td>
</tr>
<tr>
<td>maximum power at the load</td>
<td>36</td>
</tr>
<tr>
<td>maximum power transport</td>
<td>33–35</td>
</tr>
<tr>
<td>power delivered to the load</td>
<td>37</td>
</tr>
<tr>
<td>significance of</td>
<td>35</td>
</tr>
<tr>
<td>voltage and power delivered from source to the real part R_l of load</td>
<td>33</td>
</tr>
<tr>
<td>impedance matching</td>
<td>4–5, 10, 438</td>
</tr>
<tr>
<td>of an $L_s – C_p$ upward and downward resistance transformer,</td>
<td>47–49</td>
</tr>
<tr>
<td>approximate demarcation criterion for</td>
<td>67</td>
</tr>
<tr>
<td>arms and branches</td>
<td>67–68</td>
</tr>
<tr>
<td>for drain of the MOSFET device</td>
<td>177–178</td>
</tr>
<tr>
<td>goals of</td>
<td>40</td>
</tr>
<tr>
<td>for LO, RF, and IF ports ignoring the bandwidth</td>
<td>155–158</td>
</tr>
<tr>
<td>necessity of</td>
<td>40–42</td>
</tr>
<tr>
<td>pumped-up voltage and</td>
<td>44–45</td>
</tr>
<tr>
<td>relationship between return loss and</td>
<td>63–68</td>
</tr>
<tr>
<td>stepped-down voltage and</td>
<td>43–44</td>
</tr>
<tr>
<td>between two basic power transport units, 41</td>
<td></td>
</tr>
<tr>
<td>unchanged voltage and</td>
<td>43, 45</td>
</tr>
<tr>
<td>voltage delivered from a source to a load through</td>
<td>43, 46</td>
</tr>
<tr>
<td>voltage pumped up by means of</td>
<td>42–49</td>
</tr>
<tr>
<td>when impedance is less than 50 W</td>
<td>85–93</td>
</tr>
<tr>
<td>impedance matching condition</td>
<td></td>
</tr>
<tr>
<td>of test equipment</td>
<td>6</td>
</tr>
<tr>
<td>impedance matching network</td>
<td>37–40</td>
</tr>
<tr>
<td>implementation of, 67–68</td>
<td></td>
</tr>
<tr>
<td>input and output of, 83</td>
<td></td>
</tr>
<tr>
<td>LC, 3</td>
<td></td>
</tr>
<tr>
<td>of one part, 68–73</td>
<td></td>
</tr>
<tr>
<td>parts in an, 93–94</td>
<td></td>
</tr>
<tr>
<td>passive parts of, 61</td>
<td></td>
</tr>
<tr>
<td>power delivered, 38</td>
<td></td>
</tr>
<tr>
<td>sub-impedance matching loop</td>
<td>38–40</td>
</tr>
<tr>
<td>of three parts, 84–85</td>
<td></td>
</tr>
<tr>
<td>of two parts, 74–84</td>
<td></td>
</tr>
<tr>
<td>P type or T type impedance matching network</td>
<td>84, 122–124</td>
</tr>
<tr>
<td>impedance measurement</td>
<td></td>
</tr>
<tr>
<td>direction of</td>
<td>263–265</td>
</tr>
<tr>
<td>low- and high-impedance</td>
<td>275–276</td>
</tr>
<tr>
<td>by means of the standard calibration kit, 270–272</td>
<td></td>
</tr>
<tr>
<td>of parameters, 265–266</td>
<td></td>
</tr>
<tr>
<td>scalar and vector voltage</td>
<td></td>
</tr>
<tr>
<td>using oscilloscope</td>
<td>260–261</td>
</tr>
<tr>
<td>using vector voltmeter</td>
<td>262–263</td>
</tr>
<tr>
<td>in series and in parallel</td>
<td>277–278</td>
</tr>
<tr>
<td>S parameters, 265–270</td>
<td></td>
</tr>
<tr>
<td>using circulator</td>
<td>276–277</td>
</tr>
<tr>
<td>using Smith Chart</td>
<td>272–275</td>
</tr>
<tr>
<td>impedance of chip inductor</td>
<td>297</td>
</tr>
<tr>
<td>impedance of the load</td>
<td>16</td>
</tr>
<tr>
<td>impedances of the source</td>
<td>16</td>
</tr>
<tr>
<td>incident voltage</td>
<td>433</td>
</tr>
<tr>
<td>inductors in IC die</td>
<td>369–370</td>
</tr>
<tr>
<td>infinite inductor</td>
<td>297</td>
</tr>
<tr>
<td>intercept point</td>
<td>5</td>
</tr>
<tr>
<td>intercept point of the first-order signal, 462</td>
<td></td>
</tr>
<tr>
<td>intermodulation of a RF block</td>
<td>461–462</td>
</tr>
<tr>
<td>internal interference sources</td>
<td>15</td>
</tr>
<tr>
<td>isolation in RFIC, definition</td>
<td>402</td>
</tr>
<tr>
<td>KCL (Kirchhoff’s current law)</td>
<td>4</td>
</tr>
<tr>
<td>KVL (Kirchhoff’s voltage law)</td>
<td>4</td>
</tr>
<tr>
<td>layout between individual block and system, differences,</td>
<td></td>
</tr>
<tr>
<td>349–350</td>
<td></td>
</tr>
<tr>
<td>LC balun, 548–549</td>
<td></td>
</tr>
<tr>
<td>design</td>
<td>572</td>
</tr>
<tr>
<td>features of</td>
<td>571–572</td>
</tr>
</tbody>
</table>
LC balun (Continued)
 performance of simple, 572–576, 588–602
 practical, 576–579
LC impedance matching networks, 39
LC passive filter, 4
LNA (low-noise amplifier), 4
with AGC (automatic gain control)
 control, 684–686
 dynamic range, 688
 example, 689–690
 traditional, 686–687
for appropriate power level, 628
design of good
 1-dB compression point, 654–655
 gain circles and noise figure circles, 643–645, 648–649
 impedance matching, 641–643, 646–648
 nonlinearity, 653–654
 optimum of source voltage reflection coefficient, 639–641
 procedures, 655–656
 stability, 649–653
 group #1, band #2 of UWB (ultrawide band) system, 671–684
 for 800/900 MHz radio, 661–662
 single-ended cascode
 bipolar CE–CB cascode amplifier, 662–666
 MOSFET CS–CG cascode amplifier, 666–669
 need for, 669–671
 single-ended device
 size, 629–632
 step and testing, 632–639
 for UHF band, 658–660
 for VHF band, 656–658
 load-pulling test of VCO, 776–778
 LO (local oscillator) frequency, 458
 low digital data rate, 8
 lower impedance in an RF circuitry, 7
 low-noise amplifier (LNA), 285
microstrip Lange coupler, 603
microstrip line, impedance of, 300–309
microstrip line balun
 ring, 580–582
 split ring, 582–583
Miller effect, 183–187, 197–200, 237
defined, 186
 impedance of the equivalent element at the input node, 184
 impedance of the equivalent element at the output node, 185
Miller impedance, 186
Miller’s theorem, 184
mixers
 active, 695
double-balanced quad-diode, 699–702
 double-balanced resistive, 702–706
 simplest, 698–699
 trigonometric and hyperbolic functions, 723–725
modulation technology, 35
Monte Carlo analysis
 BPF (band-pass filter), 386–387
 sensitivity on parameters of performance, 392
 simulation with, 387–391
MOSFET, 41
with CD (common drain) configuration
 input and output impedances, 251–252
 open-circuit voltage gain, 250
 short-circuit current gain and frequency response, 250–251
with CG (common gate) configuration
 input and output impedances, 247–248
 open-circuit voltage gain, 244–245
 short-circuit current gain and frequency response, 245–247
with CS (common source) configuration
 CS configuration and source degeneration, 240–244
 input and output impedances, 239–240
 Miller effect, 237
 open-circuit voltage gain, 235–237
 short-circuit current gain, 237–239
 hybrid-p model, 224
 similarity with bipolar transistor, 225–235
 small-signal model of a, 221–225
MOSFET (metal–oxide–semiconductor field-effect transistor), 182
 input and output impedance testing, 183
 open-circuit voltage gain, 183
 mth-order intercept point, 462
 mth-order intermodulation rejection, 463
 mth-order output intercept point, 462
 multicloset type of system assembly, 341–344
 multilayered IC chip, 344–346
n-channel MOSFET, 406
n-channel MOSFETs, 513
n-channel transistor, 224
NF (noise figure), 442–443, 484
 noise power in RF circuit design, 430
 cascaded equation for noise figure of a system, 446–448
 20-dB quieting sensitivity of a receiver, 452–453
 12-dB SINAD sensitivity of receiver, 452
 noise figure testing, 444
 in a noisy two-port RF block, 443–444
 parameters of an RF block, 445–446
 ratio of signal to noise (S/N), 443
 sensitivity testing of a receiver, 448–453
 significance of, 441–443
 ultrahigh frequency (UHF) range, 444
 noise sources, in a circuit block, 490–491
 nonlinearity of device
 cascaded equation for the intercept point of a system, 472–479
1-dB compression point and IP, 471–472
and distortion of signal, 430–431, 479–480
with input voltage signal of two frequencies, 455–461
IP (intercept point) and IMR (intermodulation rejection), 461–471
with one frequency signal, 453–455
nonlinearity of the device, 15–16
normalized resistances, 65–66
N-well guard ring, 409–410
Ohm’s law, 209, 219, 401
one part impedance matching network
with an inductor in series, 69
with a capacitor in series, 69–70
one part in parallel, impedance matching network inserted in, 70–73
one part in series, impedance matching network inserted in, 68–70
Op-Ampl (operating amplifier), 6
open-circuit voltage gain of the device, 184
oscilloscope, 260–261
packaging of IC products, 615–621
PAE (power added efficiency), 789
PA (power amplifier)
classification
 class A, 790
 class B, 790–791
 class C, 791
 class D, 791–792
 class E, 792–793
 class F (third harmonic frequency), 793–794
 class S, 794
linear, 824–828
with output power control, 823–824
push–pull PA design, 799–821
single-ended
 PA IC design, 798–799
 simulation, 796–798
 tuning-on-the-bench technique and, 795
 with temperature compensation, 822–823
part count, 482
passive mixers
 double-balanced quasi-diode, 699–702
 double-balanced resistive, 702–706
 simplest, 698–699
path of interference in a RF module, 403
P+ buried pad, 406
PCB (printed circuit board)
 attenuation of signal due to imperfect, 351
 ceramic, 350–351
dielectric constant of, 351
 electromagnetic parameters, 351
equipment potentiality of coplanar MSL, 372
equipotentiality on grounded surface of, 326–327
 in AC/RF grounding for a large PCB, 328
 execution of, 373
 problems with large PCB, 327–328
 reduction of current coupling, 336–338
free space in the layout of, 371–373
metallic layers of, 352
modeling for vias
 multivias, 359
 single, 355–358
multilayered, 344–346
operating frequency of the circuit, 351
 parts
 capacitor, 370–371
 device, 369
 inductor, 369–370
 resistor, 370
P+ guard ring, 353–354
plastic, 350
preferred layout of, 352–355
reduction of additional radiation in, 372
reduction of coplanar capacitance in, 357
runners
 connected with the load in parallel, 363
 connected with the load in series, 360–362
 corner of, 365
 for a differential pair, 368–369
 multiple/courses in parallel, 363–364
 in parallel, 367
 placement of, 367
 smoothness of, 365–366
 spacing between adjacent ground surface and, 367–368
 styles of, 363–369
 size, 351–352
 types, 350–351
p-channel MOSFETs, 513
perfect isolation, 403
P+ guard ring, 409–411
pinch-off region, 223
PLL (phase lock loop)
 implication of VCO, 759–760
 phase noise from VCO, 764–769
 transfer function, 760–763
 white noise from the input of, 763–764
power delivered from a source to a load, 23–33
 additional distortion, 28–31
 additional factor, 25
 additional interference, 31–33
 bouncing back and forth and arriving at load, 26
 desired signal power arriving on the load, 31
 power instability, 26–27
 power loss, 27–28
 power reflection coefficient, 24
 resultant power, 24
 signal-to-interference ratio, 31–32
 voltage reflection coefficients, 24
power gain in RF circuit design, 429–430
cascaded equation for, 439–441
concept of reflection, 431–434
due to amplification, 432–433
transducer, 434–436
in a unilateral and impedance-matched case, 438
in unilateral case, 437–438
and voltage gain, 439
power measurement in an RF test laboratory, 49–51
power (mW) calculated from voltage (mV), 58
power reflection coefficient, 66, 485
printed inductors, 770–773
process capability, 381
product designing
for a circuit block, 382–383
for circuit system, 383
implication of, 379–383
Monte Carlo analysis
BPF (band-pass filter), 386–387
sensitivity on parameters of performance, 392
simulation with, 387–391
R&D stage, 377–378
simulation stage, 378
tolerance analysis, 378
prohibited regions of specific topology, 81
pseudodifferential pair, 540
PSK (phase-shift keying) technology, 35
pumped-up voltage, 44–45
push–pull PA design, 799–821
block diagram, 799–800
double microstrip line balun, 808–817
impedance matching, 800–804
minimizing insertion loss, 814
minimizing size, 815
size of PA block, 804–808
specifications, 799
toroidal RF transformer balun, 817–821
QAM system, 35
QPSK (Quad-phase shift keying), 35
QSOP (quad small outline package), 616
quality factor, 47
Radio Frequency Integrated Circuit (RFIC), 697
developing, 405
grounding rules
of circuit branches or blocks in parallel, 412–413
for DC power supply point, 413–414
interference in circuitry, 401–402
in an IC die, 403
experiments, 406–407
main path of, 403
P+ guard ring, 409–411
solution for interference from the sky, 411–412
trenching of an RF block, 408
isolation of circuitry, 402–403
metallic shielding for RF module, 403–405
problems affecting bonding wire, 419
calculation of quarter wavelength in CMOS, 420–422
complication of via modeling, 419–420
low- Q inductor, 414–419
zero capacitor, 419
SOC (system-on-a-chip) in, 612
real-life RF circuit block designs, 61
receive mode current drain, 481
reflected power in %, 485
reflected powers, 433
reflection power gain, 431–434
of a two-port block, 437
resistor in an IC chip, 370
resistor Rs in parallel, insertion of, 73
resistor Rs in series, insertion of, 73
resonant oscillator, 757
return loss in dB, 485
return loss RL testing, 62–63
RF back end, 8
RF baluns, 548
RF blocks, 5, 8
RF circuit design
conversion between Watts, Volts, and dBm in a system, 485–487
noise power, 430
cascaded equation for noise figure of a system, 446–448
20-dB quieting sensitivity of a receiver, 452–453
12-dB SINAD sensitivity of receiver, 452
noise figure testing, 444
in a noisy two-port RF block, 443–444
parameters of an RF block, 445–446
sensitivity testing of a receiver, 448–453
significance of, 441–443
ultrahigh frequency (UHF) range, 444
nonlinearity of device
cascaded equation for the intercept point of a system, 472–479
1-dB compression point and IP3, 471–472
and distortion of signal, 430–431, 479–480
with input voltage signal of two frequencies, 455–461
IP (intercept point) and IMR (intermodulation rejection), 461–471
with one frequency signal, 453–455
power gain, 429–430
cascaded equation for, 439–441
concept of reflection, 431–434
transducer, 434–436
in a unilateral and impedance-matched case, 438
in unilateral case, 437–438
and voltage gain, 439
system analysis, example, 482–484
RF circuit designers, 3
circuit testing and test equipment, 6
impedance matching and, 4–5
parameters used by, 5
RF circuit testing, 259
RF frequency, 402
RF front end, 8
RFIC chip, 4
RF signal, spectra of, 514–515
ring microstrip line balun, 580–582
RL (return loss), 51
INDEX

RP integrated circuit, 615
runners for PCB (printed circuit board)
connected with the load in parallel, 363
connected with the load in series, 360–362
corner of, 365
for a differential pair, 368–369
multiple curves in parallel, 363–364
in parallel, 367
placement of, 367
smoothness of, 365–366
spacing between adjacent ground surface and, 367–368
styles of, 363–369
SAR (successive approximation register) state control, 517
SAW (surface acoustic wave) filter, 696
second-order intercept point, 464–467
second-order intermodulation, 457
self-interference, 15–16
sensitivity testing of a receiver, 448–453
shielding of RF module, 403–405
short-channel effect, 224
shot noise, 490
simulation for VCO, 773–776
single-ended stages
nonlinearity in, 503–505
vs differential pair, 501–503
single-ended VCO with Clapp configuration, 769
single-stage amplifier in an RF circuit design, 181
sinusoidal voltage, 18
SMA connector, 286–287
small signal approximation
of a bipolar pair, 527–528
of a MOSFET differential pair, 530–531
Smith Chart, 62–63
accuracy of, 272–275
Cartesian plot of return loss, 133–134
center of, 75, 78–80
critical circle of return loss, 131–136
evolution of bandwidth at the LO port, 164–172
fundamentals of, 94–99
impedance in four regions on, 74
original impedance appearing on, wideband case, 136–137
PA (power amplifier), 801, 806
quarter wavelength microstrip line, 307–310
return loss circles on, 63–66
variation of impedance in, 69–70
SOC (system-on-a-chip)
basic concept, 611
communication system, 613
development of, 613–615
in RFIC design, 612
source degeneration and CS configuration, 240–244
S parameters, 434
measurement of, 265–270
splitter, 547
SRF (self-resonant frequency) of a chip inductor, 297
SRF (self-resonant frequency) of capacitor, 286, 292–293, 513
SS-DS Connection Mode, 586
SSOP (shrink small outline package), 616
standby current drain, 481
"\(\kappa - \Delta \) " (star–delta) conversion, 124
stepped-down voltage, 43–44
system design of a communication system, 5
thermal noise, 490–491
third-order intercept point, 467–471
third-order intermodulation, 456
three-part impedance matching network, 84–85
topology limitation of, 114–121
tree-point type oscillator, 749–751
three-pole helical filter, 696
TITO (tuned input and tuned output) oscillator, 757
TL (transmission loss), 51
tolerance analysis, 378
topologies for an impedance matching network, 81–83
toroidal RF transformer balun, 817–821
transducer power gain, 434–436
transformer balun
built by two stacked transformers, 586–588
features of, 549–550
ideal
for simulation, 551–555
between single-ended and differential pair in respect to, 555–568
impedance matching for differential pair by means, 568–571
in RF circuit design with discrete parts, 550
in RFIC design, 550–551
transistor configuration, comparison of, 252–255
transmission line theory, 17, 300
transmission loss in dB, 485
transmit mode current drain, 481
trenching of an RF block, 408
p-T transformation, 731, 739
tunable filter design
circuit description, 738–739
in a communication system
expected constant bandwidth, 732
variation of bandwidth, 732–733
coupling between tank circuits, 733–738
performance, 743–746
second coupling, 739–743
two-part impedance matching network, 74–84
formula for, 99–113
in wideband cases, 145–151
two-port block, 488–489
unchanged voltage, 43, 45
unilateral case, operating power gain, 436–438
upward impedance transformer, 47
UWB (ultra wide band) system
bandwidth allocation, 160–161
impedance matching using I or Q modulator, 161–174
wide bandwidth required in, 159–160
UWB (ultrawide-band) system, 4
varactor, 770
VCO (voltage-controlled oscillator), 429
vector voltmeter, 262–263
calibration of, 268–269
vias, modeling of
blind, 355
buried, 355
multi, 359
single, 355–358
through, 355
voltage delivered from a source to a load, 16–23
average power across reactance, 17
delayed time, 18
distortion or jitter in digital circuit block, 20–23
impedances, 16
reactance, 16
resultant voltage at the load, 18–20
resultant voltage on resistance, 18
voltage reflection coefficients, 17
voltage gain, 439
voltage measurement
using oscilloscope, 260–261
using vector voltmeter, 262–263
voltage (mV) calculated from power (dBm), 58
voltage reflection coefficient, 51, 485
voltage reflection coefficients at source, 17–18
voltage standing wave ratio, 485
VSWR (voltage standing wave ratio), 51
wide-band block, 61
wide-band RF circuit design, 63
wide bandwidth, methodology of impedance matching for
with an inductor inserted in parallel, 141–143
an IQ modulator in a UWB system, 151–174
with a capacitor inserted in parallel, 143–145
with a capacitor inserted in series, 139–141
difference of return loss between narrow and, 131–136
impedance variation due to the insertion of one part per arm
or per branch, 136–145
impedance variation due to the insertion of two parts per
arm or per branch, 145–151
input impedance matching network, 173
output impedance matching network, 173
passive, 174–179
“rolling” or “squeezing” of impedance, 138–141, 143, 145, 167
at a terminal from a narrowband to a wideband response, 135
topology of, 177–178
variation of the impedance, 137–138
Wilkinson coupler, 602
wireless communication system, 5
zero capacitor applied for RF/AC, 284
bandwidth, 293–295
chip capacitor as, 296–298
combined effect of multi-zero capacitors, 295–296
in RFIC design, 298–300
selection, 290–292
zero capacitor, defined, 290
zero capacitor for an RFIC, 299
zero capacitors, 3
zero IF communication, 507–508