INDEX

Abbreviations, polymer materials, 514–515
Abrasion resistance, 80, 516
Absolute viscosity, see Dynamic viscosity
Accelerated weathering tests, 141–150
effects of carbon-arc exposure, 145
effects of fluorescent UV lamp exposure, 143
effects of xenon-arc exposure, 147
limitations, 148
Acceptance sampling, 430–439
Acetic acid immersion test, 288
Acetone immersion test, 287
Adhesion testing, 136
Advancement in testing, 8–11
Air cannon impact test, 77
Amorphous plastics, 157, 516
Analytical tests, 259–270
ANSI, 479
AOQL sampling plans, 433
Apparent density, 209, 263, 516
Apparent melt viscosity, 190
AQL sampling plan, 534
Arc resistance, 124, 516
table, 125
ASTM, 480
Attributes control charts, 429

Bacterial resistance, 153
Ball rebound test, 321
Barcol hardness, 89
Beta transmission, 474
Birefringence, 162, 368, 516
Bottle drop impact tester, 78
Boyle’s law, 311
Brittle fracture, 56, 355
Brittleness temperature, 111, 517
Brookfield viscometer, 185, 517
Bruceton staircase method, 70
Bubble viscometer, 213, 517
Bulk density, 263, 517
Bulk factor, 209, 517
Buoyancy factor, 315
Burst strength tests, 281–286, 517
long term burst strength test, 284
quick burst strength test, 281
Calibrated solvent test, 254
CAMPUS, 500
Capillary rheometer, 185, 517
Carbon arc lamp, 144
Cellular plastics, see Foam plastics
Charpy impact test, 62, 517
Charts and tables, 560–617
Chemical properties, 251–258
Chemical resistance, 251
Chemical resistance chart, 561–563
Chip impact test, 64
Chroma, 165, 517
Chromatogram, 197
Chromatography, 298
Closed cell, 310
Coefficient of thermal expansion, 108, 517
Color, 163
Colorimeter, 169, 517
Compressive strength, 38, 518
Compressometer, see Deflectometer
Conditioning, 271, 518
Conditioning procedures, 271–273
Conductivity measurements, 135–136
Cone and plate viscometer, 185–186
Conversion chart, 569–580
Copper wire test, 295
Coupants, 468
Crack initiation energy, 56
Crack propagation energy, 56
Crazing, 255–256, 518
Creep, 39–53, 518
Creep curve, 40
Creep data, 48–52
interpretation and applications, 43
Creep modulus, 39, 518
Creep properties, 39–53
Creep strain, 41, 43, 45
Critical stress, 254–255
Crush test, 286
Crystalline plastics, 157
Crystallinity, 94, 157, 518
Cup flow test, 212, 518
Cup viscosity test, 281, 518
Cyclic loading, 81
Decimal equivalents charts, 567
Density, 262, 518
Density gradient technique, 262
Dielectric breakdown, 118
Dielectric constant, 121, 518
table, 122
Dielectric strength, 118, 518
table, 119
Differential scanning calorimetry, 199, 297, 519
Dilute solution viscosity, 191–192
applications, 193
limitations, 193
measurements, 191
Dissipation factor, 121, 519
Drop impact test, 69, 519
Ductile failure, 57, 355–356
Durometer hardness, 87, 519
Dynamic viscosity, 191
Electrical properties, 117–138
Elongation, 18, 27, 519
EMI/RFI shielding, 130–137
Endothermic, 200
End product testing, 289
Environmental stress cracking resistance, 255, 519
Environmental test chamber, 32
Exothermic, 200, 213
Extensometer, 27–28, 519
Failure analysis, 329–421, 519
brittle coatings method, 372
case studies, 383–421
checklist, 363–364
chemical method, 373
flow chart, 365
fractography, 379
heat reversion technique, 376
identification analysis, 366
mechanical testing, 377
micro structural analysis, 376
phototomographing, 376
non-destructive testing, 378
photoelastic method, 368
sample failure analysis report, 381
solvent stress analysis report, 374
solvent stress analysis, 373
strain gage method, 372
stress analysis, 368
thermal testing, 377
visual examination, 362–366
Failure types of:
chemical, 358
environmental, 359–361
mechanical, 355
thermal, 357
Failures,
brittle, 355
creep and stress relaxation
fatigue, 356
ductile, 355–356
analyzing, 361
process related, 350
Falling dart impact tester, 69
Fatigue endurance limit, 82
Fatigue life, 82
Fatigue resistance, 81
FDA, 480
Fiberglass orientation, effects of, 31
Flammability, 218–250, 520
 cellular plastics, 236
 self-supporting plastics, 226
Flammability requirements, 247–249
Flammability standards, agencies regulating, 247
Flash ignition temperature, 227
Flaw detection, 467–471
Flexible foam test method, 318–322
 air flow test, 319
 constant deflection compression test, 318
 density, 321
 dry heat, 320
 fatigue, 320
 load deflection test, 320
 resilience, 321
 steam autoclave, 318
 tear resistance, 321
 tension test, 321
Flexural creep, 41
Flexural fatigue test, 82
Flexural modulus, 36, 520
 effect of temperature, 37
Flexural properties, 31–37
 factors affecting, 37
Flexural strength, 36, 520
Flow point, 278
Flow tests, 210
 factors affecting, 212
Foam plastics, 309–328, 520
Foam properties chart, 323–327
Frequency generator, 468
FTIR, 206–207, 297
Fungal resistance, 152
Fusion point, 275
Fusion test, 275
Gamma backscatter, 473
Gelation point, 214
Gel permeation chromatography, 194–199
Gel time, 214, 520
Gel time meter, 215
Glossary, 516–525
Gloss meter, 173, 520
Guarded hot plate, 107–108
Hall effect, 477
Hardness, tests, 85–90
 table, 86
Hardness scales comparison chart, 567
Haze, 160, 520
Hazemeter, 161
Heat deflection temperature, 95, 520
 limitations, 96
 test variables, 96
Heat distortion temperature, see Heat deflection temperature
Heat resistance (long term) test, 101
High rate tension test, 68
High speed impact tests, 75
Homopolymer, 300
Hooke’s law, 18, 520
Hoop stress, 282, 520
Hue, 164, 520
Hue, value/chroma chart, 166
Hydrostatic design stress, 284
Hydrostatic pressure tester, 284
Hygroscopic, 265, 520
Identification of plastics materials, 290–300
 elastomers:
 Copolyesters, 306
 Olefinics, 306
 Polyurethane, 303
 styrenic, TPE, 303
 TPV, 307
 thermoplastics:
 ABS, 299
 acetal, 300
 acrylic, 300
 cellulose acetate, 300
 cellulose acetate butyrate, 300
 cellulose propionate, 300
 fluorocarbons, 300
 nylons, 301
 polycarbonate, 301
 polyester, 301
 polyethylene, 301
 polyphenylene oxide, 302
 polystyrene, 301
 polysulfone, 302
 polyurethane, 302
 PVC, 301
 thermosets:
 diallyl pthalate, 302
 epoxy, 302
 melamine formaldehyde, 303
 phenol formaldehyde, 303
 polyester, 303
 silicones, 303
 urea formaldehyde, 303
Ignitability, 230
Ignition furnace, 229
Ignition properties, 227–230
Ignition temperature determination, 228
Immersion test, 252
Impact properties, 56–77
Impact resistance, 56
Impact strength, 56, 520
factors affecting, 58
Impact tests, type of, 59
Incoherent light, 162
Index of refraction, see Refractive index
Inherent viscosity, 192, 521
Instrumented impact testing, 72–77
Intrinsic viscosity, 193, 521
ISO, 484, 521
Isochronous stress-strain curves, 44, 521
Izod impact test, 62, 521
Kinematic viscosity, 189, 209, 281
Lightness, 166
Light scattering, 193
Load-energy-time curve, 73, 76
LTPD sampling plans, 436
Luminous transmittance, 160, 521
Material characterization tests, 176–217
for thermosets, 207
Mass spectrometry, 299
Maxwell model, 20
Mechanical properties, 17–23
Melt index test, 177
factors affecting, 183
Melting point determination test, 293
Fisher-Johns method, 293
Kofler method, 294
Metamerism, 169, 521
Microbial growth resistance testing, 152–155
bacterial resistance test, 153
fungal resistance test, 153
limitations, 153
Microorganisms, 140
Microscopy, 299
Microstructural analysis, 376
Microtoming, 376
Modulus of elasticity, 18, 521
Moisture analysis, 265–269
loss on drying method, 265
Karl Fisher method, 266
sensor-based technology, 267
microwave technology, 267
TVI drying test, 269
Molded-in Stress, see Residual stress
Molding index, 212
Molecular orientation, 30, 31, 58, 94
Molecular weight, 193, 522
Molecular weight distribution, 176, 193, 522
NBS, see NIST
NBS smoke test, 239
NEMA, 481
New application checklist, 335, 626
Newtonian viscosity, 1189, 522
NFPA, 482
NIST, 481
Non-destructive testing, 467–478
Non-Newtonian viscosity, 189, 522
Notching machine, 61
Notch sensitivity, 58, 522
NSF, 482
NMR, 298
Open cell content, 310
Operating characteristics curve, 431–432
Optical properties, 157–175
OSU release rate test, 242
Outdoor accelerated weathering, 150–153
Oxygen index, 231–522
Oxygen index test, 231–234
factors affecting, 233
Part design checklist, 340
Particle size, 269
Particle size determination test, see Sieve analysis test
Particle size distribution, 269
Peak exothermic temperature, 213–214, 522
Pendulum impact tester, 61
Pendulum impact tests, 60–68
effect of test variables, 63
limitation, 63
Permeability, 316
Permeance, 316
Permittivity, see Dielectric constant
Photoelastic, 162, 522
Photoelasticity, 162, 522
Piezoelectric material, 468
Plasticizer absorption tests, 276–281
buette method, 278
centrifuge force method, 280
torque rheometer method, 279
Plastics identification, 292–308
Plastics material databases, 501–503
Polarizing, 163
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymerization</td>
<td>176, 522</td>
</tr>
<tr>
<td>Porosity</td>
<td>310</td>
</tr>
<tr>
<td>Pourability</td>
<td>210</td>
</tr>
<tr>
<td>Predictor dimension</td>
<td>457</td>
</tr>
<tr>
<td>Pressure rating (pipe)</td>
<td>285</td>
</tr>
<tr>
<td>Process capability</td>
<td>436–440</td>
</tr>
<tr>
<td>Process control charts</td>
<td>424</td>
</tr>
<tr>
<td>Process quality control</td>
<td>445</td>
</tr>
<tr>
<td>Producers’ risk</td>
<td>432</td>
</tr>
<tr>
<td>Product liability</td>
<td>462–466</td>
</tr>
<tr>
<td>Product quality control</td>
<td>445</td>
</tr>
<tr>
<td>Proportional limit</td>
<td>18, 523</td>
</tr>
<tr>
<td>Pulse-echo technique</td>
<td>469</td>
</tr>
<tr>
<td>Pycnometer</td>
<td>260, 311</td>
</tr>
<tr>
<td>Quality</td>
<td>422</td>
</tr>
<tr>
<td>Quality assurance manual</td>
<td>454</td>
</tr>
<tr>
<td>Quality control</td>
<td>422–461</td>
</tr>
<tr>
<td>documentation</td>
<td>453</td>
</tr>
<tr>
<td>process</td>
<td>445</td>
</tr>
<tr>
<td>product</td>
<td>445</td>
</tr>
<tr>
<td>raw material</td>
<td>444</td>
</tr>
<tr>
<td>visual standards</td>
<td>445</td>
</tr>
<tr>
<td>workmanship standards</td>
<td>449</td>
</tr>
<tr>
<td>Quality control system</td>
<td>444</td>
</tr>
<tr>
<td>Radiant heat energy</td>
<td>234</td>
</tr>
<tr>
<td>Radiant panel test</td>
<td>241–242</td>
</tr>
<tr>
<td>Radiation pyrometer</td>
<td>234</td>
</tr>
<tr>
<td>Raw material quality control</td>
<td>444</td>
</tr>
<tr>
<td>Reduced viscosity</td>
<td>192</td>
</tr>
<tr>
<td>Refractive index</td>
<td>158, 523</td>
</tr>
<tr>
<td>Relative thermal indices</td>
<td>102–105</td>
</tr>
<tr>
<td>definition</td>
<td>102</td>
</tr>
<tr>
<td>table</td>
<td>102</td>
</tr>
<tr>
<td>Relative viscosity</td>
<td>191, 523</td>
</tr>
<tr>
<td>Residual stress</td>
<td>96, 162, 288, 368, 373</td>
</tr>
<tr>
<td>Resonance technique</td>
<td>471</td>
</tr>
<tr>
<td>Rheological measurements</td>
<td>184, 523</td>
</tr>
<tr>
<td>Rheometer</td>
<td>185, 523</td>
</tr>
<tr>
<td>Rigid foam test methods</td>
<td>309–318</td>
</tr>
<tr>
<td>cell size</td>
<td>310</td>
</tr>
<tr>
<td>compressive properties</td>
<td>311</td>
</tr>
<tr>
<td>density</td>
<td>309</td>
</tr>
<tr>
<td>dielectric constant</td>
<td>317</td>
</tr>
<tr>
<td>dimensional stability</td>
<td>314</td>
</tr>
<tr>
<td>dissipation factor</td>
<td>317</td>
</tr>
<tr>
<td>flammability</td>
<td>317</td>
</tr>
<tr>
<td>flexural properties</td>
<td>314</td>
</tr>
<tr>
<td>open cell content</td>
<td>310</td>
</tr>
<tr>
<td>shear properties</td>
<td>312</td>
</tr>
<tr>
<td>tensile properties</td>
<td>312</td>
</tr>
<tr>
<td>water absorption</td>
<td>315</td>
</tr>
<tr>
<td>water vapor transmission</td>
<td>316</td>
</tr>
<tr>
<td>weathering properties</td>
<td>316</td>
</tr>
<tr>
<td>Rockwell hardness</td>
<td>86, 523</td>
</tr>
<tr>
<td>Rotational rheology</td>
<td>185</td>
</tr>
<tr>
<td>Rotational rheometers</td>
<td>185</td>
</tr>
<tr>
<td>Safety standards organizations</td>
<td>530–533</td>
</tr>
<tr>
<td>Sampling plans</td>
<td>432</td>
</tr>
<tr>
<td>Sampling tables</td>
<td>437–438</td>
</tr>
<tr>
<td>Scanning laser</td>
<td>475</td>
</tr>
<tr>
<td>Secant modulus</td>
<td>18, 523</td>
</tr>
<tr>
<td>Self-ignition temperature</td>
<td>230</td>
</tr>
<tr>
<td>Setchkin apparatus</td>
<td>229</td>
</tr>
<tr>
<td>Shear rate</td>
<td>187–190, 523</td>
</tr>
<tr>
<td>Shear strength</td>
<td>78, 523</td>
</tr>
<tr>
<td>Shear stress</td>
<td>187–190, 523</td>
</tr>
<tr>
<td>Shielding effectiveness measurements</td>
<td>131</td>
</tr>
<tr>
<td>Shrinkage voids</td>
<td>377</td>
</tr>
<tr>
<td>Sieve analysis test</td>
<td>269</td>
</tr>
<tr>
<td>Smoke density test</td>
<td>238</td>
</tr>
<tr>
<td>Smoke generation tests</td>
<td>238–242</td>
</tr>
<tr>
<td>S-N curve</td>
<td>81–82</td>
</tr>
<tr>
<td>Solubility test</td>
<td>294</td>
</tr>
<tr>
<td>Solvent stress-cracking resistance</td>
<td>253</td>
</tr>
<tr>
<td>SPE</td>
<td>482</td>
</tr>
<tr>
<td>Specification</td>
<td>3–5, 541–559</td>
</tr>
<tr>
<td>Specific gravity test</td>
<td>260, 295, 523</td>
</tr>
<tr>
<td>Specific viscosity</td>
<td>192</td>
</tr>
<tr>
<td>Spectrophotometer</td>
<td>170–172, 523</td>
</tr>
<tr>
<td>Spectroscopy</td>
<td>206</td>
</tr>
<tr>
<td>Specular gloss</td>
<td>172, 523</td>
</tr>
<tr>
<td>SPI</td>
<td>483</td>
</tr>
<tr>
<td>Spiral flow test</td>
<td>212, 523</td>
</tr>
<tr>
<td>Stain resistance test</td>
<td>252–253</td>
</tr>
<tr>
<td>Standards</td>
<td>3–5, 485–501</td>
</tr>
<tr>
<td>Standard laboratory atmosphere</td>
<td>271</td>
</tr>
<tr>
<td>Statistical quality control</td>
<td>423–440</td>
</tr>
<tr>
<td>Statistical process control</td>
<td>440–449</td>
</tr>
<tr>
<td>Strain</td>
<td>18, 423</td>
</tr>
<tr>
<td>Strain gage</td>
<td>372</td>
</tr>
<tr>
<td>Stress</td>
<td>18, 523</td>
</tr>
<tr>
<td>Stress analysis</td>
<td>162–165, 368–376</td>
</tr>
<tr>
<td>brittle coating method</td>
<td>372</td>
</tr>
<tr>
<td>chemical method</td>
<td>373</td>
</tr>
<tr>
<td>heat reversion</td>
<td>376</td>
</tr>
<tr>
<td>photoelastic method</td>
<td>368</td>
</tr>
<tr>
<td>strain gauge method</td>
<td>372</td>
</tr>
<tr>
<td>Stress concentration</td>
<td>58, 71, 162, 524</td>
</tr>
<tr>
<td>Stress cracking</td>
<td>253–258</td>
</tr>
<tr>
<td>Stress optical sensitivity</td>
<td>162–524</td>
</tr>
<tr>
<td>Stress relaxation</td>
<td>53–56, 524</td>
</tr>
</tbody>
</table>
Stress-strain diagram, 18, 524
Sulfide staining, 253
Supplier certification, 455–456
Surface burning characteristics, 234
Surface resistance, 123, 135
Surging, 281, 528

Taber abraser, 80
Temperature conversion chart, 566
Tensile creep, 41
Tensile fatigue test, 84
Tensile impact test, 65
Tensile modulus, 27
Tensile strength, 27, 524
 effect of strain rate, 30
 effect of temperature, 30
Tensile tests, 23–31
 factors affecting, 30
Test equipment manufacturers (index), 505–513
Testing, reason for, 1
Testing laboratories, 536–540
Testing organizations, 479–484
Thermal analysis, 199–205
Thermal conductivity, 106, 316, 524
 table, 109
Thermal expansion, 107
 table, 112
Thermal index, 101
Thermal properties, 94–116
Thermogravimetric analysis, 202, 524, 297
Thickness measurement, 467
Torque rheometer, 274
Torque rheometer test, 274–281
Torsion pendulum test, 97, 524
Toss factor, 60
Toughness, 56, 524
Tracking, 125
Trade names, 526–528
Trade publications, 534–535
Transducer, 468
Translucency, 157
Transmission technique, 471
Transparency, 157
Tunnel test, 234
TVI drying test, 269
UL 94 flammability tests, 242–246
 factors affecting, 246
UL requirements (electrical), 127
UL temperature index, 101
Ultimate strength, 18
Ultrasonic testing, 467, 524
Ultraviolet radiation, 139, 525
Underwriter’s laboratories, 483
Uniform global testing standards, 485–504
UV apparatus, 141

Value, 164
Variables control chart, 424
Vicat softening temperature, 97, 525
Viscosity, 189, 525
Viscosity tests (thermosets), 213
Visual standards, 445–446
Volume resistance, 123, 136
Volume resistivity, 123
 table, 124
Water absorption, 263, 525
Weathering properties, 139–156, 525
 effects of:
 microorganisms, 140
 moisture, 140
 oxygen, 140
 thermal energy, 140
 UV radiation, 140
Weld line, 58
Whiteness index, 168
Workmanship standards, 449

Xenon arc lamps, 140

Yellowness index, 168, 525
Yielding, 56
Yield point, 18, 525
Yield strength, 18, 525
Young’s modulus, 18, 525

X-ray fluorescence, 299, 476

Zahn viscosity cup, 282, 525