Index

aberration, 53, 73, 74, 78, 83
accelerometer, 34
acoustics, 6
 levitator, 192
 radiation pressure, 191, 192
 standing wave, 186, 191, 192
algebraic iteration algorithm, 164
algebraic reconstruction algorithm, 164
algebra reconstruction technique, 169
amplitude, 1, 3–5, 15
angular division multiplexing, 141, 143, 148, 156
angular spectrum method, 53, 72, 73, 81, 82, 88
angular spectrum theory, 179, 181
anti-projection, 167
aperture synthesis, 152, 153, 160
apodization, 71, 73, 81
aspect ratio, 119
atomic force microscope (AFM), 183
attenuation coefficient, 167
axial length distribution, 119–20
axisymmetric, 173
beam expander, 184
beam splitter, 184, 191, 192
Beer’s law, 167
Bessel function, 17
binary phase, 21
bio-imaging, 53, 200
biological morphology, 170
biological tissue, 170
 ingredient inspection, 162
cantilever beam, 184, 185
CCD, 3, 4, 9, 52, 54, 70, 72, 79, 82–7, 164, 199
target, 178, 179, 184, 192
central semi-reflecting layer, 79, 86
central slice theorem, 168
charged coupled devices, 3, 52
circle equivalent diameter, 119
circular cylinder, 194
CMOS, 3, 71, 199
coherence length, 93, 99
coherent slicing method, 162
collimated beam, 179–181, 184
laser beam, 164
Colomb, 74
color holography, 13
common-path interferometer, 79, 85, 103
complex amplitude, 15, 54–7, 178–82
complex flow, 194
Compton effects, 166
computer generated holography, 8
computer tomography, 161
confocal laser scanning microscope (CLSM), 183
confocal scanning method, 163
convergence, 169
converging reference spherical wavefront, 67
converging spherical wave, 57, 61–4, 68, 69
convexity, 119
convolution, 12
convolution algorithm, 164
Index

correlation, 179
cross-section, 174
Cuche, 53

deflection, 20
deformation, 3–5, 20, 178, 180, 183, 184, 185, 200
fringes, 25
map, 25
density, 178, 186, 191, 192
depth profile, 118
diffracted object wave, 166
diffraction, 9, 51, 54, 200
diffraction pattern, 51, 84
diffraction theory, 166
diffuse surface, 22
digital holographic interferometry, 5, 52, 177, 178, 180, 182, 183, 185, 186
digital holographic microscope, 70, 79, 84
digital holographic microscopy system, 73, 162
digital holographic tomography, 161
digital holography, 4–6, 8, 9, 52–4, 142–7, 150–1, 153, 156, 161, 200
digital phase compensation procedure, 53
digital reference wave, 53
digitization, 55
digitized wavefront, 54, 56, 57
discrete values, 169
diverging, 22
double-exposure, 4, 28, 180, 182, 200
dual-channel imaging, 86, 87, 90
dynamic, 2, 5, 6, 15, 161, 200
dynamic digital holography, 26
dynamic metrology, 9

diffraction, 9, 51, 54, 200
focusing verification, 121, 122
Fourier holograms, 52
Fourier transform, 12, 177, 179–81
inverse transform, 168
Fraunhofer, 9, 52
frequency, 1
spectra distribution, 69, 77
spectrum, 41, 94
Fresnel, 9
biprism, 187, 189
holograms, 52
transform method, 53, 72
fringe spacing, 4, 10
Gabor, 3, 7, 52, 200
Gaussian beam, 187
Gaussian filter, 116, 120, 121
geoscientific magnification, 22
geoscientific path, 185
Goodman, 52
Goss, 52
heterogeneous materials, 161
hologram, 3–5, 10, 161, 199, 200
intensity, 113
plane, 179, 181
holographic, 161
interferogram, 182, 183, 192, 193
interferometry, 177, 178, 180, 182, 186
microscopy, 162
holography, 3–6, 51, 58, 199, 200
illuminating light, 72, 162
illumination, 22, 71, 74, 75, 92
image hologram, 186, 192
image segmentation, 116, 131
imaging, 1–6, 200
impulse response, 11
incident intensity, 167
in-focus, 184
information storage, 4
inherent characteristic, 169
initial phase, 167
initial state, 180, 184, 185
initial value, 169
in-line, 6, 18, 200
in-line holography, 51, 52, 111
inspiring current, 192
intensity, 3, 4, 13, 167
interference, 4, 6, 21, 51, 52, 54, 58
interferometry, 4, 5, 177–83, 185–7, 185–9, 191, 193, 195, 200
inverse Fourier transfer, 19
irradiance, 54
iterative algorithm, 168
Karman vortex street, 194, 195
laser-induced ionization, 147–8, 150–2
lateral resolution, 53, 73, 84, 95, 104
Lawrence, 52
Leith, 8
lens-less, 3, 5, 6, 21, 199
lens-less common-path digital holographic microscope, 79
linear algebra, 170
linear combination, 164
line integral, 168
Linnik interferometer, 53
liquid crystal, 3
localization of fiber, 132
long coherence length, 92, 93
Mach-Zehnder holographic interferential, 162
Mach-Zehnder interferometer, 53, 186, 192
magnification, 52, 79, 82, 84, 88, 95, 104, 113, 120
matrix, 54–6, 72
matrix algebra equations, 169
mean static state, 21
metrology, 1, 3, 4
michelson interferential system, 163
micro cantilever beam array, 185
micro-electromechanical systems (MEMS), 1–6, 183–5, 199
microfiber, 125, 134–6
microheater, 36
microlens, 74, 86, 88, 90–2, 95–8, 200
micromachining, 2, 31
micro-opto-electromechanical systems (MOEMS), 183–5
microscope objective, 53, 57, 73, 84, 92, 99, 102, 103, 104
microscopic imaging, 2, 53, 73
microscopy, 5, 52, 53, 57, 73, 74, 78, 92, 99, 102, 152–6
microspheres, 124–5
Mitutoyo infinity-corrected long working distance objective, 92
mixing, 21
modulation, 7
monochromatic, 51, 54, 55, 57, 93
multi-layer refraction index, 161
multiple-wavelength, 164
multi-wavelength scanning method, 163, 175
nano-positioners, 200
near-field pattern, 189–91
non-axisymmetric, 173
non-contact, 1, 5, 161
numerical diffraction reconstruction, 166
numerically reconstructed, 163
numerical phase compensation, 53, 73, 85, 95, 103, 104
numerical reconstruction, 4, 52–4, 57, 67, 70–3, 78, 79, 82–5, 93, 95, 96, 102–4, 199
numerical reconstruction algorithm, 52, 71, 84
numerical reference wavefront, 78, 100
object, 3
object beam, 6, 92, 104, 111, 113
object 3D structure, 161
object plane, 179–81
object wave, 177–85, 187, 194
object wavefronts, 67, 164
off-axis, 6, 18, 164
holography, 52
tilt, 53, 57, 93, 94, 96, 97, 100
off-line, 174
one-dimensional Fourier transforms, 168
onural, 52
optical coherence tomography, 161
optical design, 200
optical interferential recording, 166
optical metrology, 1, 3, 4
optical path difference, 184
optical tomography, 161
optical wave, 1
optical waveguide, 186
out-of-plane, 35
out-of-plane tilt, 126

particle imaging, 200
particle size, 6, 13, 118
particles measurement, 178
periodic shedding, 195
phagocyte vacuoles, 171
phase, 1, 3–6, 13, 15, 200
curvature, 69, 70, 73, 74, 78–80, 85, 92, 99, 103
difference, 180, 182–7, 195
distribution, 177, 178, 180, 182, 183, 187
information, 4
map, 166
measurement, 178
multiplication, 191
projections, 175
subtraction, 180, 182–4
photoelectric effect, 166
photonic structure, 186, 187
photorefractive crystal, 186, 187, 189
photorefractive effect, 188
physically spherical phase compensation, 53
piezoelectric, 31
pinhole, 184
pixel, 4, 10
planar waveguide array, 189
plane wave field, 55, 57
plano-convex linear microlens array, 86
point cloud, 129–30
polar coordinate, 167
polarization, 1, 3, 146–50
polarization multiplexing, 141–6, 156–7
polynomial fitting procedure, 74

practical applications, 169
projection values, 167
propagation directions, 164

quadratic-phase approximations, 57
quadrature-phase holograms, 52
quantitative phase measurement, 52, 53, 73, 103, 104

Radon transform, 168
random fluctuation, 195
reconstruction, 3–5, 10, 199, 200
algorithms, 168, 200
distance, 72, 74, 82, 88, 114
errors, 162
recording and reconstruction, 52, 54, 70, 82, 111
recording distance, 164
recording plane division
multiplexing, 141–2, 159–60
recording systm, 168
rectangular container, 194–5
rectangular coordinated system, 55
reference beam, 4, 92, 104, 112

reflectance, 1
reflection configuration, 184
refraction effects, 166
refractive index, 6, 73, 87, 88, 95, 97, 99, 163, 178, 185–7, 195, 200
relaxation factor, 170
resolution enhancement, 152–4, 159
resonant frequency, 41
resonant mode, 41, 191, 192
reversed telescope, 184, 186, 191, 192

sampling, 4, 9, 57
sampling intervals, 72
scalar diffraction theory, 177
scanning electronic microscope (SEM), 183
scanning holographic tomography, 164
Schlieren technique, 194
Scott, 52
sensitivity, 186, 192, 194
sensitivity vector, 16
shadowgraph technique, 194
shape analysis, 178
short-coherence, 163
short coherence length, 99, 101, 104
silicon on insulator, 39
single cube beam splitter, 79, 103
single Fresnel transform formulation, 72
sinusoidal, 16
size and orientation, 130
space-bandwidth, 6
sparse projection, 169
spatial domain, 72, 73
spatial filtering, 73, 81, 93
spatial frequency, 179
spatial frequency domain, 69, 72, 73
spatial spectrum, 179, 181
specimen, 6, 73, 74, 79, 82, 84, 92, 96, 97, 170
speckle, 45, 17
specular, 22
spherical diverging wavefront, 52
spherical phase aberrations, 22
spherical wave fields, 57
sphericity, 119
standing wave node, 191
Stylus profilometer, 183
sub-micrometer optical tomography, 164
superimposition, 130–1, 174
superresolution, 152–9
surface profile, 178, 183
Suss microoptics, 95, 96
symmetric mode, 41
synchronization, 6, 26
synthetic double-exposure, 180, 182
temperature distribution, 178, 193
temperature field, 161
thermal, 3, 5
thermographic, 3
three-dimensional distribution, 168
three-dimensional measurement, 128
three-reconstruction algorithms, 161
threshold, 118, 129
time-averaged, 16
tomography, 6, 161, 200
topography, 1
transfer function, 13
transform algorithm, 164
transmission digital holographic microscopy, 53
turbulent flow field, 194
twin-image, 14
two-dimensional distribution, 168
two-dimensional measurement, 114
ultra-fast recording, 142, 147–52
unwrapped phase difference distribution, 187
unwrap phase, 24
Upatniek, 8
Vero cells, 97
vertical resolution, 53
vibration, 3, 16
vibration analysis, 178
vortex, 194, 195
wave field, 3, 11
wavefronts, 4, 54, 166
waveguide array, 186, 187–91
wavelength division multiplexing, 145–6, 150
weighting factor, 170
white-light, 183, 184
white-light interference microscope (WLIM), 183
wrapped phase distribution, 187
Yamaguchi, 52
Yaroslavski, 52
yeast cells, 90, 102
zero-order, 14, 200