Index

A/F see sinking fund factors
A/P see capital recovery factors
accelerated write-off methods 100–2
accident frequency reductions 121–2, 123–4
accountable decision making 201
active interventions 162–3
administrators 3
aggregate scores 266–7
aggregated losses and gains 291
agricultural projects 128–35, 149–50
AHP see analytic hierarchy process
air quality 284
alternatives
decision making 8, 9
evaluation 8, 9
identification 8, 9
selection and recommendation 8, 10
analysts 4
analytic hierarchy process (AHP) 27, 245, 300–17
concordance techniques 319, 341–2
deriving exact priorities using iterative
eigenvector method 306–15
deriving priorities using approximation
method 304–5, 310
establishing and calculating priorities 303–15
establishing priorities within hierarchies 301–3
exact method for determining priorities
308–15
hierarchies 301
simple additive weighting model 316
analytical decision making 6
annual depreciation charge (DC) 100
annual worth (AW) 82, 93–4
see also equivalent annual worth
approval milestones concept 196–9
approximation methods
analytic hierarchy process 304–5, 310
rate of return 81
arithmetic gradient conversion factors 43
arithmetic gradient present worth factors 45
attitude-oriented techniques 244–5, 253–5, 256
avoidance of risks 202
AW see annual worth
B/C see benefit/cost ratio
base amounts 43
baseline costs 196, 217–20
baseline rankings 264–5
behavioural decision making 10–11
benchmark option 292
benefit transfer method 130
benefit/cost ratio (B/C) 21, 26, 96–9, 104–5
comparing mutually exclusive options 98–9
cost–benefit analysis 116–19, 126–7,
134, 136
costs, benefits and disbenefits 96–7
definitions 97
incremental analysis 98–9, 105
present worth 51
renewable energy supply and energy
efficiency 175, 190–1
Simple Additive Weighting Model 290–1
single project calculations 97–8
strengths and limitations 104–5
bidding games 143–4
biological oxygen demand (BOD) 285
biomass and bioenergy 159–60
bipolar expressions 275

Martin Rogers and Aidan Duffy.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
BOD see biological oxygen demand
book value (BV) 100–1
Borda’s Sum of Ranks Method 263, 297
bounded rationality 11, 20–1
brainstorming 16
BV see book value
C/E see cost effectiveness
CAES see compressed air energy storage
candidate selection 255
capital costs 165–7
capital recovery factors (A/P) 41–2, 45–6, 67–70, 75, 82, 218
capitalised cost (CC) 55–8, 64–5, 75, 224
carbon capture and storage (CCS) 159, 164
carbon dioxide equivalents 180–1
carbon pricing 156–7, 164, 171, 178–9
cash flow diagrams 37, 52, 55–6, 81, 83
cash flows
 equivalent annual worth 71, 73
 present worth 51–2, 55–6
 rate of return 81–95
 renewable energy supply and energy efficiency 170
taxation 102–4
cause–effect–impact pathways 290–1
CBA see cost–benefit analysis
CC see capitalised cost
CCGT see combined cycle gas turbines
CCS see carbon capture and storage
CEQ see Council for Environmental Quality
certainty 14
change management 205
checklists 282–91
CHP see combined heat and power
COBA software 128
collaboration 214–15
combined cycle gas turbines (CCGT) 177, 187
combined heat and power (CHP) 158–9, 171, 176–7
community impacts
 decision making 3, 12
 Planned Balance Sheets 225–7
 value for money 209
compensation 110
complete pre-orders 321
composite indexes 283
compound interest 32–5
compressed air energy storage (CAES) 186–9
compromise-based methods 11, 20–1, 25, 26–7
compulsory land acquisition 108
concentrated solar power (CSP) 162
concordance techniques 27, 245, 318–42
analytic hierarchy process 319, 341–2
concordance indices and matrices 320, 321–2, 328–35, 339–40
concordance scores 319, 324–7, 333, 339–40
credibility indices 333–4, 339
discordance indices and matrices 328–34, 341
discrimination value 334, 336
distillation processes 334–7, 339, 341
dominance 319–21, 328–9, 334
ELECTRE I Model 328–32
ELECTRE III Model 333–9
final ranking 335, 338
indifference thresholds 331–3
landfill sites evaluation 323–8
partial and complete pre-orders 321
preference thresholds 331–3
PROMETHEE I and II Models 321–8, 331–2, 333–9
qualification scores 334, 340
sensitivity analysis 339, 341
Simple Additive Weighting Model 318, 341–2
small-scale energy generation projects 338–42
threshold values 330, 331–3, 335–6, 338–40
confidence levels 268–70
conjunctive method 248–9
conservation projects 140–2, 144
consistency 305, 306–8, 311
construction costs
 cost–benefit analysis 122–3, 125–6
 renewable energy supply and energy efficiency 186–7
Simple Additive Weighting Model 261–4, 271–6, 277–9
construction projects 26
 cost–benefit analysis 114
decision making 5
 energy efficiency 162–3
 multicriteria analysis 250–2
 rate of return 89–92
 value for money 193–215
consultation processes 3
consumer surveys 18–19
contingent valuation methods 114, 143–7
continuous compounding 34–5
contracting strategies 214
control procedures 204–5
coordinating panels 288
cost–benefit analysis (CBA) 26, 107–53, 344
 accident frequency reductions 121–2, 123–4
 advantages and limitations 137–8
 analytic hierarchy process 300
cost–benefit analysis (CBA) (cont’d)
 benefit/cost ratio 116–19, 126–7, 134, 136
 case studies 119–37, 225–7
 contingent valuation methods 114, 143–7
 cost effectiveness 216–20
 data requirements 122–3
 decision making 18, 20, 107–8, 119
 discount rates 115, 125–6, 130, 133–4
 final decisions 119
 flood management 108–9, 128, 135–7, 148–9
 Goal Achievement Matrix 227–39
 healthcare projects 149
 hedonic pricing 113, 114, 139–40
 highway and transport projects 108, 112–14, 119–28, 150–1
 historical background 108–9
 identifying costs and benefits 111–12
 identifying main project options 111
 internal rate of return 116–17, 127
 multicriteria analysis 243
 net present value 116–18, 126, 132–6
 non-economics-based techniques 113, 114, 138–48
 non-market valuation of costs and benefits 114
 non-users of proposed facilities 120
 operating and maintenance costs 120–4, 132–4
 performance assessment and comparison 115–17
 placing valuations on costs, benefits and disbenefits 112–14
 Planned Balance Sheets 220–7, 228–9, 338
 procedure 111
 public projects 107–53
 relevance to planning problems 221–2
 renewable energy supply and energy efficiency 180
 sensitivity analysis 117–19, 127
 shadow pricing 113–14
 surrogate market prices 138–9
 sustainability 147–8
 theoretical basis 110–11
 time savings 121, 124–5
 travel cost method 140–2
 waste management projects 128, 135–7
 water resource projects 109, 112, 128–35, 149–50
 cost effectiveness (C/E) 216–20
 cost–utility techniques
 cost effectiveness 216–20
 Goal Achievement Matrix 227–39
 Planned Balance Sheets 220–7, 228–9, 238
 costless choice 145, 146–7
 cotermminated options 52–3, 63
 Council for Environmental Quality (CEQ) 283
cost–benefit analysis (CBA)
 cost effectiveness 216–20
 cost–benefit analysis 107–8
 decision making 8–9, 17–19, 23–5
 Goal Achievement Matrix 227–39
 Planned Balance Sheets 225–7
 rate of return 89–92
 Simple Additive Weighting Model 261–4
 disaggregation 222–4
 disbenefits 96–7, 112–14, 147–8
 discordance indices and matrices 328–34, 341
credibility indices 333–4, 339
CRF see capital recovery factors
criteria
 cost–benefit analysis 107–8
 decision making 8–9, 17–19, 23–5
 see also multicriteria analysis
CSP see concentrated solar power
DC see annual depreciation charge
decision making 3–28
 accountable 201
 analytical 6
 behavioural 10–11
 case studies 22–5
 conditions 14–15
 context 3–4
 cost–benefit analysis 107–8, 119
 Goal Achievement Matrix 228–9
 irrational 11–12
 methods for engineering project appraisal 19–22
 non-analytical 4–6
 political factors 3, 11–14, 25
 project planning process 16–22
 rational approach 7–10, 13–14, 20, 200–1, 228–9
 reasoned choice 6
 techniques 4–13
 value for money 195–6, 200–1, 212
 see also multicriteria analysis
decision matrices 247–9, 252–5, 303, 312–15, 339
decreasing balance depreciation 100–2
decommissioning costs 196
decommissioning emissions 180
decomposition–aggregation strategy 244, 245
Delphi method 19, 144–5
demand management option 292
depreciation 99–104, 105–6
depreciation, straight-line 100–2
discipline 100–2
design 206–11
developing countries 121, 128–35
development projects
cost–benefit analysis 112
multicriteria analysis 246–7
Planned Balance Sheets 225–7
rate of return 89–92
Simple Additive Weighting Model 261–4
disaggregation 222–4
disbenefits 96–7, 112–14, 147–8
discordance indices and matrices 328–34, 341
discount rates
cost effectiveness 218
cost–benefit analysis 115, 125–6, 130, 133–4
equivalent annual worth 78
Goal Achievement Matrix 232
Planned Balance Sheets 221
present worth 63–4
renewable energy supply and energy efficiency 171, 174–5, 187–8
discounted payback period (DPP) 174–5, 187–8
discrimination value 334, 336
disjunctive method 249–50
dissolved oxygen 285–6
distillation processes 334–7, 339, 341
distributional equity 222
dominance
concordance techniques 319–21, 328–9, 334
multicriteria analysis 244, 246–8, 256
double-declining balance (DDB) 100, 101–2
downward distillation 335–7, 339, 341
DPP see discounted payback period
earning power 36
EAW see equivalent annual worth
economic computation 37–50
calculating unknown interest rates 46–7
calculating unknown years 48
geometric series formulae 43–6, 47–9
single payment formulae 38–9, 48
symbols 37–8
uniform series formulae 39–42, 47–9
economic pressure groups 4
economics-based techniques
基本 tools 28–50
benefit/cost ratio, depreciation and taxation 96–106
cost effectiveness 216–20
cost–benefit analysis 26, 107–53, 344
decision making 3–28
economic computation 37–50
equivalent annual worth 67–78
future challenges 344–5
Goal Achievement Matrix 227–39
interest rates 29–50
Planned Balance Sheets 220–7, 228–9, 238
present worth evaluation 51–66
rate of return 79–95
renewable energy supply and energy efficiency 154–92
Simple Additive Weighting Model 271–6, 277–80, 291
value for money 193–215
economy 193
EES see environmental evaluation system
effective interest rates 34
effectiveness 8–9, 193, 207–8, 214
see also cost effectiveness
efficiency 193
EIA see Environmental Impact Assessments
eigenvectors/eigenvalues 301, 306–8, 310
EIU see Environmental Quality Units
ELECTRE I Model 328–32
ELECTRE III Model 333–9
elimination by aspects 252
embodied emissions 180
emissions intensity 181–3
emissions trading schemes (ETS) 156–7, 168, 175, 178–9, 190
end-of-life 170
energy efficient (EE) projects 26, 154–92
backup and storage 161, 169–70, 186–9
benefit/cost ratio 175, 190–1
capital costs 165–7
carbon dioxide equivalents 180–1
case studies 186–91
discount rates 171
discounted payback period 174–5, 187–8
economic measures 163–78
end-of-life 170
energy and GHG accounting methods 181–2
estimating GHG emissions 178–83
externalities 167–9, 190–1
internal rate of return 173, 178, 187
investor perspective 163–4
levelised cost of energy 177–8, 183, 187–91
life-cycle assessment 179–80
marginal abatement costs 179, 183, 189–91
Monte Carlo analysis 186
net present value 171–2, 178, 185, 187–9
operating and maintenance costs 167, 171
policy context 154–7, 163, 179, 189–91
revenues 170–1
savings/investment ratio 176–7
scenarios analysis 185
sensitivity analysis 185
simple payback period 173–4
system boundaries 164
system size 165
technologies 157–63
uncertainty 183–6
Energy Performance in Buildings Directive (EPBD) 156
energy security 155
environmental benefit/cost (EnvBC) ratios 290–1
environmental evaluation system (EES) 283–91
environmental factors 27
analytic hierarchy process 308–15
concordance techniques 338–42
cost–benefit analysis 107, 129–30, 140–2, 144–8
decision making 4, 15, 24–5
Goal Achievement Matrix 229, 235–7
multicriteria analysis 244
Simple Additive Weighting Model 271–6, 277–80, 282, 283–91
value for money 208–9, 211–12
see also renewable energy supply projects
Environmental Impact Assessments (EIA) 107, 283–4, 286–7, 289–91, 344
Environmental Impact Statements 283
environmental quality (EQ) measurements 285, 291
Environmental Quality Units (EU) 286–7, 291
EPBD see Energy Performance of Buildings Directive
EQ see environmental quality
equal service 52–3, 72
equal weights presumption 270
equity 130, 222
equivalent annual worth (EAW) 26, 67–78
capital recovery 67–70, 75
comparison process 72–7
cost–benefit analysis 116–17
equal service 72
infinite service 75–7
lease or buy problem 72–3
present worth 51
rate of return 95
salvage value 69–70, 71, 74
single project evaluation 71
strengths and limitations 77–8
unequal service 73–5
ERR see external rate of return
ETS see emissions trading schemes
European Wind Energy Association (EWEA) 161
evaluation processes
cost–benefit analysis 112–14
decision making 6, 8, 9, 17–20, 23–5
equivalent annual worth 71
EWEA see European Wind Energy Association
exact priorities 306–15
expected value 264, 265–8
experience curves 165
external costs 129
external rate of return (ERR) 83–4, 85
externalities 167–9, 190–1
F/A see series compound-amount factors
F/P see single payment compound-amount factors
facilitators 4
fatal accidents 122
feed-in-tariff (FIT) 162, 170, 173–5, 177–8, 189–91
financial reviews 196–7
FIT see feed-in-tariff
five-point scales 302
Flood Control Act (1936) 108–9
flood management 108–9, 128, 135–7, 148–9
fossil fuels 155–9, 164, 171–2
future worth factors 38–9
GAM see Goal Achievement Matrix
geographical location 280
geometric series formulae 43–6, 47–9
GHG see greenhouse gas
global warming potentials (GWP) 180–1
Goal Achievement Matrix (GAM) 227–39
advanced method 234–6
basic steps 229
development of technique 227–8
evaluating costs and benefits 230–1
formulating the objectives 229–30
rational planning process 228–9
simplified method 232–4
structure of the matrix 231–2
uncertainty 232
goals 6–8, 10–11
government ministers 3, 13
greenhouse gas (GHG) 155–9, 167–9, 171–2, 178–86, 235–8
GWP see global warming potential
healthcare projects 149
hedonic pricing 113, 114, 139–40
HERR see historical external rate of return
hierarchies 276–80, 301
see also analytic hierarchy process
highway and transport projects 76
accident frequency reductions 121–2, 123–4
benefit/cost ratio 97–9
cost effectiveness 217–18
cost–benefit analysis 108, 112–14, 118–28, 150–1
decision making 3, 12, 23–4
Goal Achievement Matrix 235–8
multicriteria analysis 248–50
non-users of proposed facilities 120
present worth 57–8, 59–60
Simple Additive Weighting Model 277–9, 292–8

time savings 121, 124–5
value for money 210–11
vehicle operating costs 120–1, 124

Hill’s Goal Achievement Matrix 227–39
historical external rate of return (HERR) 84–5, 86
hybrid analysis 181
hydropower 169
hypothetical bias 144, 146

I–O see input–output

IEA see International Energy Agency
impact weightings 285
implicit favourite approach 11–12
importance weightings 232–4
incidence weightings 232–4
incineration plants 24–5
incremental analysis
 benefit/cost ratio 98–9, 105
 rate of return 87–95
indifference thresholds 331–3
infinite service 55–8, 75–7
information bias 146
information searches 6
input–output (I–O) analysis 181–3
instrument bias 146
intangibles 18
future challenges 344–5
Goal Achievement Matrix 230–1
multicriteria analysis 243
Planned Balance Sheets 222–4
present worth 51
interest rates 29–50
calculating unknown rates 46–7
calculating unknown years 48
compound interest 32–5
computation 31–3
continuous compounding 34–5
economic computation 37–50
effective 34
equivalent annual worth 67–77
estimation 30–1
geometric series formulae 43–6, 47–9
nominal 33
present worth evaluation 51–3, 56–8
simple interest 31–3
single payment formulae 38–9, 48
symbols for economic computation 37–8
time equivalence 35–7
time value of money 29–30, 35–7
uniform series formulae 39–42, 47–9

interest tables 47–8, 81, 346–67
internal rate of return (IRR) 21, 80–95
benefit/cost ratio 102–4
cost–benefit analysis 116–17, 127
renewable energy supply and energy
efficiency 173, 178, 187
International Energy Agency (IEA) 160

interpolation
interest rates 47
rate of return 81, 88
renewable energy supply and energy
efficiency 174
Simple Additive Weighting Model 262
taxation 104

intuitive decisions 4–5
investment capital, rate of return 79
investor perspectives 163–4
IRR see internal rate of return
irrational decision making 11–12
island generation systems 170
iterative eigenvector method 306–15
judgement matrices 304–8, 310–15
judgemental decisions 5–6, 16–17
justified expenditure 135–7

Kaldor–Hicks criterion 110–11

land reclamation projects 114
landfill sites
 concordance techniques 323–8
cost–benefit analysis 146–7
 multicriteria analysis 253–4
 Planned Balance Sheets 222
technologies 159
LCA see life-cycle assessment
LCM see least common multiple
LCOE see levelised cost of energy
learning rates 160, 162, 165
lease or buy problem 72–3
least common multiple (LCM) approach 54–5,
 63, 73, 78
least-cost analysis 117
Leopold Interaction Matrix 344
levelised cost of energy (LCOE) 177–8, 183,
 187–91
lexicographic method 250–2, 256
Lichfield’s Planned Balance Sheets 220–7,
 228–9, 238
life-cycle assessment (LCA) 179–80
life-cycle cost analysis
 cost–benefit analysis 117
 present worth 58–60, 66
linear scoring functions 219
liquidity 61
lump sums 49
MAC see marginal abatement costs
MACRS see Modified Accelerated Cost Recovery System
maintenance costs see operating and maintenance costs
 maintenance emissions 180
 manufacturing projects 260–1, 266–70
 marginal abatement costs (MAC) 179, 183, 189–91
MARR see minimum acceptable rate of return
MAUT see multi-attribute utility theory
Maximax technique 254–5
Maximin technique 253–4
measures of effectiveness 8–9
median rankings 323
medical costs 122
milestones concept 196–9
minimum acceptable rate of return (MARR) 51, 79, 84, 86–7, 89–91, 93–5
mitigation 290
Modified Accelerated Cost Recovery System (MACRS) Model 106
Mongkol’s methodology 289–91
Monte Carlo analysis 186
multi-attribute utility theory (MAUT) 245, 257–9
multicriteria analysis 26–7, 243–56, 344–5
 attitude-oriented techniques 244–5, 253–5, 256
 decision making 18, 21–2, 24–5
 decomposition–aggregation strategy 244, 245
 dominance techniques 244, 246–8, 256
 evaluation models 244–6
 satisficing 244, 248–50, 256
 sequential elimination techniques 244, 250–2, 256
 simple non-compensatory methods 244–5, 246–56
see also analytic hierarchy process; concordance analysis; simple additive weighting model
multiple weighting systems 279–81
mutually exclusive options 87–92, 98–9
NAS see net annual savings
National Audit Office 207, 212–15
National Environmental Policy Act (NEPA) 344
net annual savings (NAS) 61–2
net present value (NPV) 21
 benefit/cost ratio 98–9
 cost–benefit analysis 116–18, 126, 132–6
 rate of return 95
 renewable energy supply and energy efficiency 171–2, 178, 185, 187–9
nine-point scales 302–4, 315
noise pollution 284
nominal interest rates 33
non-analytical decision making 4–6
non-compensatory multicriteria methods 244–5, 246–56, 318–42
non-economics-based techniques 26–7
analytic hierarchy process 27, 245, 300–17, 319, 341–2
 concordance techniques 27, 245, 318–42
 contingent valuation methods 114, 143–7
 cost–benefit analysis 113, 114, 138–48
 decision making 18
 future challenges 344–5
 Goal Achievement Matrix 227, 231, 239–40
 hedonic pricing 113, 114, 139–40
 multicriteria analysis 243–56, 344–5
 Planned Balance Sheets 222–4
 surrogate market prices 138–9
 sustainability 147–8
 travel cost method 140–2
 non-programmed decisions 5–6
 non-users of proposed facilities 120, 150
 normalised importance weighting 271–6, 277–9, 294–5, 324
 normalised judgement matrices 304–8, 310–15
NPV see net present value
O&M see operation and maintenance objectives 7–8, 16
OFT see Office of Fuel Transport
OOF see Office of Fuel Transport
OE see Organisation for Economic Co-operation and Development
OPEC 155
operation and maintenance (O&M) costs
 benefit/cost ratio 97–9, 103
 cost effectiveness 218
 cost–benefit analysis 120–4, 132–4
 equivalent annual worth 74–7
 present worth 57–8
 rate of return 88
 renewable energy supply and energy efficiency 167, 171
 value for money 196, 208–9
operational emissions 180
optimisation 10, 20–2, 25, 26
ordinal scales 233–4
organisations 3

P/A see series present worth factors
pairwise comparison weighting system 273–4, 302–4, 316
pairwise dominance relationships 321, 328–9
Parameter Importance Units (PIU) 285–6
Pareto optimum 110
partial pre-orders 321
partial ranking 318
partially-compensatory methods 245
passive interventions 162–3
payback comparison method 60–2, 66
payback periods 117
payment plans 36–7
PBS see Planned Balance Sheets
penetration levels 160–1
performance matrices 247–9, 252–5, 303, 312–15, 339
performance measures
cost–benefit analysis 115–17
decision making 8–9, 25
Goal Achievement Matrix 227–39
value for money 196, 208, 213–15
personnel appointment decisions 255
photovoltaic (PV) systems 162, 165–6, 174–5, 177, 179, 189–91
PIU see Parameter Importance Units
Planned Balance Sheets (PBS) 220–7
case study 225–7
development of technique 220–1
disaggregation 222–4
Hill’s criticisms of technique 228–9, 238
layout 224
relevance of CBA to planning problems 221–2
planning authorities 13
planning horizon approach 55
planning proposals 12–13
political acceptability
decision making 3, 11–14, 25
Simple Additive Model 271–6, 277–80
political planning process 12–13, 14
preference thresholds 331–3
present worth 26, 51–66
comparison process 52–65
economic computation 39, 42, 45, 49
equal service 52–3
equivalent annual worth 73, 78
evaluation 51–66
infinite service 55–8
life cycle cost analysis 58–60, 66
payback comparison method 60–2, 66
rate of return 80–1, 84, 87–92, 94
taxation 103
unequal service 53–5
primary stakeholders 3–4
priorities see analytic hierarchy process
private costs 129
probabilistic additive weighting 264–70, 298
process analysis 181–3
procurement strategies 214
professional expertise 280–1
professional representative institutions 3
programmed decisions 5–6
project balance method 85–6
project execution plans 203–4
project management
delivery systems review 196–7
effectiveness 207–8, 214
performance measures 213–15
project reports 205–6
PROMETHEE I and II Models 321–8, 331–2, 333–9
property damage 122
property values see hedonic pricing
public acceptability 235–8, 244
public participation 287
public policy
cost–benefit analysis 108–9
renewable energy supply and energy efficiency 154–7, 163, 179, 189–91
PV see photovoltaic
qualification scores 334, 340
qualitative risk assessments 202
quality control 205
quantitative risk assessments 202
rank-sum weighting method 263, 271–2, 297
ranking multiple mutually exclusive options 87–92
ranking system for obtaining weights 270–2, 297
rate of return 26, 79–95
annual worth 82
cost–benefit analysis 116–17, 127
decision making 21
equivalent annual worth 71, 74
external rate of return 83–4, 85
historical external rate of return 84–5, 86
incremental analysis 87–95
internal rate of return 21, 80–95, 102–4, 116–17, 127, 173, 178, 187
rate of return (cont’d)
minimum acceptable rate of return 51, 79, 84, 86–7, 89–91, 93–5
multiple rates in a single project 82–4
present worth 51, 80–1, 84, 87–92, 94
project balance method 85–6
ranking multiple mutually exclusive options 87–92
renewable energy supply and energy efficiency 173, 178, 187
single project calculations 80–6
strengths and limitations 94–5
taxonomy 102–4
unequal service 86, 93–4
rating panels 288
ratio system for obtaining weights 272–3, 293–5
rational approach to decision making 7–10, 13–14, 20, 200–1, 228–9
reasoned choice 6
recreational facilities 140–2, 144
recurring costs
benefit/cost ratio 97–9, 103
equivalent annual worth 74–7
present worth 57–8
rate of return 88
reduction of risks 202–3
reflexivity 302
reformist techniques see cost–utility techniques
reliability 222
renewable energy supply (RES) projects 26, 154–92
backup and storage 161, 169–70, 186–9
benefit/cost ratio 175, 190–1
capital costs 165–7
carbon dioxide equivalents 180–1
case studies 186–91
discount rates 171
discounted payback period 174–5, 187–8
end-of-life 170
energy and GHG accounting methods 181–2
estimating GHG emissions 178–83
externalities 167–9, 190–1
internal rate of return 173, 178, 187
investor perspective 163–4
levelised cost of energy 177–8, 183, 187–91
life-cycle assessment 179–80
marginal abatement costs 179, 183, 189–91
Monte Carlo analysis 186
net present value 171–2, 178, 185, 187–9
operation and maintenance costs 167
policy context 154–7, 163, 179, 189–91
revenues 170–1
savings/investment ratio 176–7
scenarios analysis 185
sensitivity analysis 185
simple payback period 173–4
system boundaries 164
system size 165
technologies 157–63
uncertainty 183–6
Renewable Heat Incentive (RHI) 160
residual value see salvage value
resistance-to-change grids 274–6
retention of risks 203
RHI see Renewable Heat Incentive
risk assessment and management
cost–benefit analysis 107
decision making 15
Simple Additive Weighting Model 287
value for money 194, 201–3
risk response 202–3
Rivers and Harbours Act (1902) 108
Roskill Commission 150
Saaty’s nine-point scales 302–4, 315
salvage value
benefit/cost ratio 98–9
equivalent annual worth 69–70, 71, 74
present worth 53, 55
satisficing 11, 20–1, 244, 248–50, 256
savings/investment ratio (SIR) 176–7
SAW see Simple Additive Weighting
scale-weighted checklists 282–91
SCC see social cost of carbon
scenarios analysis 185
scoping 287
scoring systems for criteria 281–2
secondary stakeholders 4
semantic evaluations 317
sensitivity analysis
concordance techniques 339, 341
cost–benefit analysis 117–19, 127
renewable energy supply and energy efficiency 185
Sequential Additive Weighting Model 261–5, 297–8
sequential elimination techniques 244, 250–2, 256
series compound-amount factors (F/A) 41, 47
series present worth factors (P/A) 42, 56, 61, 64–5, 90–2
seven-point scales 302
shadow pricing 113–14, 223
shadow projects 148
analytic hierarchy process 316
assigning weights to decision criteria 270–82, 293–6
basic principles and techniques 259–61
case study 292–8
checklists 282–91
concordance techniques 318–19, 341–2
decision making hierarchy 281
environmental evaluation system 283–91
expected value 264, 265–8
geographical location 280
hierarchy of weights 276–80
impact weightings 285
Mongkol’s methodology 289–91
multi-attribute utility theory 245, 257–9
multiple weighting systems 279–81
pairwise comparison weighting system 273–4
presumption of equal weights 270
probabilistic additive weighting 264–70, 298
professional expertise 280–1
ranking system for obtaining weights 270–2, 297
ratio system for obtaining weights 272–3, 293–5
resistance-to-change grids 274–6
scoring systems for criteria 281–2
sensitivity analysis 261–5, 297–8
Sondheim’s environmental assessment method 287–9
urban transport strategies 292–8
variance 264, 266–70
simple interest 31–2
simple non-compensatory multicriteria methods 244–5, 246–56
simple payback period (SPP) 173–4
single payment compound-amount factors (F/P) 38–9, 48
sinking fund factors (A/F) 39–40, 44, 58–9, 64–5, 82
SIR see savings/investment ratio
small-scale energy generation projects 338–42
SMP see system marginal prices
social cost of carbon (SCC) 168–9
social impacts
cost–benefit analysis 107–8, 135, 145
Goal Achievement Matrix 229
multicriteria analysis 244
value for money 209, 213
solar energy 162
solar water heating (SWH) 162
Sondheim’s environmental assessment method 287–9
SPP see simple payback period
stakeholders
cost–benefit analysis 108
decision making 3–4
Goal Achievement Matrix 229–30, 235–8
Planned Balance Sheets 222–3, 225–7
renewable energy supply and energy efficiency 163–4
Simple Additive Weighting Model 294
value for money 210, 214
standard deviation 266, 268–70
standardised ratings 289
storage technologies 161, 169–70, 186–9
straight-line depreciation 99–100, 101, 104
strategic bias 144, 145
structured problems 5–6
Sum of Ranks Method 263, 271–2, 297
surrogate market prices 114, 138–9
survey-based monetary valuation techniques 144–7
sustainability 147–8, 195, 211–12
SWH see solar water heating system boundaries 164
system marginal prices (SMP) 187
systems analysis 7
T-charts 17
take-it-or-leave-it experiments 144
taxation 99, 102–4, 106
technical documentation 19
technical experts 3, 12
technical factors 24–5
third-party requirements 210
threshold values 330, 331–3, 335–6, 338–40
tidal power 169–70
time control 205, 213–15
time equivalence 35–7
time savings 121, 124–5
time value of money 29–30, 35–7
toll roads 210–11
top-up energy supply 169–70
trade-offs 25
analytic hierarchy process 316
concordance techniques 319
Goal Achievement Matrix 229
Planned Balance Sheets 223
transferral of risks 203
transport see highway and transport projects
top-up energy supply 169–70
trade-offs 25
analytic hierarchy process 316
concordance techniques 319
Goal Achievement Matrix 229
Planned Balance Sheets 223
transferral of risks 203
transport see highway and transport projects
travel cost method 140–2
trial-and-error methods
basic tools 47–8
rate of return 81
taxation 104
uncertainty
cost–benefit analysis 130
decision making 15
Goal Achievement Matrix 232
multicriteria analysis 256
renewable energy supply and energy efficiency 183–6
Simple Additive Weighting Model 261, 265–6, 287
unequal service
equivalent annual worth 73–5
present worth 53–5
rates of return 86, 93–4
uniform series formulae 39–42, 47–9
unrecovered capital 67–8
unstructured problems 5–6
upward distillation 335–7, 339, 341
urban transport strategies 292–8
utility functions 257–9

value functions 285
value management 199–201
value for money (VFM) 26, 193–215
averaging relative importance of value drivers 210
collaboration 214–15
community impacts 209
construction projects 193–215
control procedures 204–5
decision making 195–6, 200–1, 212
definitions and concepts 193–4
design 206–11
effectiveness 193, 207–8, 214
environmental factors 208–9, 211–12
framework 194–5, 197–206
milestones concept 196–9
operating and maintenance costs 196, 208–9
performance measures 196, 208, 213–15
procurement and contracting strategies 214
project execution plans 203–4
project reports 205–6
review systems 196–7
risk assessment and management 194, 201–3
sustainability 195, 211–12
third-party requirements 210
value management 199–201
well-focused and capable clients 214
whole-life costing 194, 195–6, 200, 208, 214
varying 264, 266–70
vehicle operating costs 120–1, 124
veto thresholds 333, 338–9
VFM see value for money
visual impact 282

WACC see weighted average cost of capital
waste management projects
cost–benefit analysis 128, 135–7, 146–7
decision making 24–5
rates of return 93–4
Simple Additive Weighting Model 271–6
see also landfill sites
water resource projects
Simple Additive Weighting Model 283–91
Water Services Regulation Authority (OFWAT) 135–6
weighted average cost of capital (WACC) 131, 171, 173
weighting panels 288–9
weighting schemes
concordance techniques 319–20
Goal Achievement Matrix 229, 231–7
see also Simple Additive Weighting Model
whole-life costing 194, 195–6, 200, 208, 214
worst-case willingness to pay/accept (WTP/WTA) 130, 140–5
wind power 160–1, 164–7, 177
WTP/A see willingness to pay/accept