INDEX

Page references followed by f denote figures. Page references followed by t denote tables.

Absorption, 110–118
dermal exposure, 117–118
inhalation exposure, 118
net gastrointestinal, 113t–115t
oral exposure, 110–117, 113t–115t
Acute lymphocytic leukemia (ALL), 333
ADHD (attention-deficit hyperactivity disorder), phthalate effects on, 426–427
Age, impact on excretion, 142
Agent Green, 471
Agent Orange, 469–513. See also 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD)
Bien Hoa city and airbase, 492–495
in Cambodia, 497–498
congressional actions on, 505
dioxin hot spots, 474–476, 481–485, 486f
epidemiological studies of cancer in veterans, 309–310, 317–319, 326–327
exposed populations in Vietnam, 473–474, 475f
in food, 494
health impacts of, 500–501
in Laos, 498–499
mitigation efforts, 485–489
overview, 469–470
Phu Cat airbase, 495–496
postwar international research cooperation, 478–481
remediation at Da Nang base, 489–492
studies in Vietnam, 506–511
support for Vietnamese affected by, 511–512
veterans and, 501–506
“Agent Orange Victim,” 509–511
Agent Pink, 471, 473
Agent Purple, 471, 473
AHH (aromatic hydrocarbon hydrolase), 52, 540–541
AhR. See Aryl hydrocarbon receptor
Air
polybrominated dibenzofurans (PBDFs) in, 274–275
polybrominated dibenzo-p-dioxins (PBDDs) in, 274–275
Aldrin, 6f, 579
ALL (acute lymphocytic leukemia), 333
Allergies, phthalates and adult effects, 430t, 434–435
developmental effects, 422t, 428–429
Anogenital distance, phthalate effects on, 424–425
Antibodies, 173–174
Apoptosis, neuronal, 198–199
Aromatic hydrocarbon hydrolase (AHH), 52, 540–541
Aryl hydrocarbon receptor (AhR)
AhR-response elements (AhRE), 196
binding and activation
by bisphenol A, 384, 384t
by dioxin, 202–204
by dioxin-like compounds (DLCs), 8
by halogenated aromatic hydrocarbons (HAHs), 196
by PCBs, 196
by polybrominated dibenzo-p-dioxins (PBDDs)/polybrominated dibenzofurans (PBDFs), 288–289
by polycyclic aromatic hydrocarbons (PAHs), 196
by TCDD, 46–47, 176–178, 196, 203–204
neurotoxicity and, 195–196, 202–204
nuclear translocator (ARNT), 177–178, 196, 203–204
repressor, 177
toxicity equivalence factor (TEF) methodology and, 42, 45–47
Aryl hydrocarbons, immunotoxicology of, 175–178
mode of action, 177–178
modulation of immune function in animal models, 176–177
modulation of immune function in humans, 176
sources of exposure, 175–176
Asia, persistent organic pollutants (POPs) in food in
dairy and egg, 73–74
fish and seafood, 60–61
meat and poultry, 67–68
Asthma, phthalates and adult effects, 430t, 434–435
developmental effects, 422t, 428–429
Attention-deficit hyperactivity disorder (ADHD), phthalate effects on, 426–427
Australia
case-control study of malignant lymphoma, 316–317
case-control study of prostate cancer, 319
case-control study of soft-tissue sarcoma, 311
persistent organic pollutants (POPs) in food
in dairy and egg, 73–74
fish and seafood, 60–61
meat and poultry, 67–68
Autism spectrum disorder, phthalate effects on, 426–427
Autoinduction of metabolism, 128–129
Basic fibroblast growth factor (bFGF), 198
Basic-helix-loop-helix (bHLH) transcription factors, neurodevelopment regulation by, 197, 202, 203–204
BBzP (butyl benzyl phthalate), 416, 418t, 422t, 428–429
Bcl-2 gene family, 199
Bcl-XL protein, 199
BDNF (brain-derived neurotrophic factor), 198, 201
Behavior Assessment System for Children (BASC), 426
Behavior Rating Inventory of Executive Functioning (BRIEF), 426
BEHTPH (bis(2-ethylhexyl)-2,3,4,5-tetabromophthalate), 90f, 98
Benefits versus risks, 584
Benzidine, 328
BFR. See Brominated flame retardant
Bien Hoa city and airbase, 492–495
Binghamton New York electrical transformer fire incident (1981), 553–564
chemical analyses and environmental sampling, 555–556
overview, 553–555
state communication efforts, 560–563
toxicity and cleanup criteria, 558–560
toxicology studies, 556–558, 558t
Bioaccumulation
emerging persistent organic pollutants (POPs), 580–581
endocrine disrupting compounds (EDCs), 334
of hexabromocyclododecane (HBCD), 601
of hexachlorocyclohexanes, 589
of perfluorooctane sulfonate (PFOS), 597
perfluorooctanoic acid (PFOA), 230
polybrominated dibenzofurans (PBDFs), 287–288
polybrominated dibenzo-p-dioxins (PBDDs), 287–288
Bioavailability
after dermal exposure, 118
after oral exposure, 111–112, 116–117
Biomagnification, 171, 597
Biomonitoring
bisphenol A (BPA), 385–389
in blood and tissues, 387–388
overview, 385–386
toxicokinetics, 388–389
in urine, 386–387
described, 385–386
exposure to persistent organic pollutants, 2
purposes of, 386
Biota and food
polybrominated dibenzofurans (PBDFs) in, 278–279
polybrominated dibenzo-p-dioxins (PBDDs) in, 278–279
Birth defects, Agent Orange and, 366–367, 502, 506–511
Bis(tri-n-butyltin) oxide (TBTO), 184–186
Bisphenol A (BPA), 381–403
animal models of toxicity, 393–399
mammary gland in rodents, 396
mechanisms mediating effects of exposure, 398–399
neurobehavior, 397–398
ovary and reproductive tract development in rodents, 395
prostate development in rodents, 393–395
route of exposure, 396–397
biomonitoring studies, 385–389
in blood and tissues, 387–388
overview, 385–386
toxicokinetics, 388–389
in urine, 386–387
chemical properties, 381–382
data gaps, 402–403
endocrine-disrupting properties, 382–384
human exposure to, 384–385
canned food, 384–385
environmental sources, 385
health studies on, 389–393
cancer, 390
conclusions of studies, 393
fetal and childhood growth outcomes, 392
limitations on studies, 393
metabolic outcomes, 391
neurodevelopmental outcomes, 392–393
overview, 389–390
pubertal development outcomes, 391–392
reproductive outcomes, 390
nonoral sources, 385
plastics, 384, 385
industrial uses, 382
receptor interactions, 382–384, 384t
regulatory concerns, 399–402
structure, 381–382, 383f
Bis(2-ethylhexyl)-2,3,4,5-tetabromophthalate (BEHTPH or TBPH), 90f, 98
Bistribromophenoxyethane (BTBPE), 90f, 99
Black box warning, on lindane, 587
Bladder cancer, 327
Blood
bisphenol A in, 387–388
distribution in, 118–119
B lymphocytes, 173
BNBAS (Brazelton Neonatal Behavioral Assessment Scale), 426
Body fat, impact on excretion, 142, 145
Bone morphogenetic proteins (BMPs), 198, 202
Bone sarcoma, 319
BPA. See Bisphenol A
Brain cancer, case-control studies on, 318–319
Brain-derived neurotrophic factor (BDNF), 198, 201
Brain development, bisphenol A and, 392–393
Brazelton Neonatal Behavioral Assessment Scale (BNBAS), 426
Breast cancer, 335–336
Breast development and prenatal dioxin exposure, 363–364
Breastfeeding
absorption of POPs, 116–117
impact on excretion, 145
perfluorooctanoic acid (PFOA) exposure during, 245
pharmacokinetics and, 152–157
Breast milk
hexabromobiphenyl (HBB) in, 594
hexabromocyclododecane (HBCD) in, 600
hexachlorocyclohexanes in, 586, 589
pentachlorobenzene in, 595
perfluorooctane sulfonate (PFOS) in, 597
polybrominated diphenyl ethers (PBDEs) in, 599
BRIEF (Behavior Rating Inventory of Executive Functioning), 426
Brominated compounds. See also specific chemicals
hexabromocyclododecane (HBCD), 18–20, 19f
polybrominated biphenyls (PBBs), 11–13, 12f
polybrominated diphenyls (PBDEs), 13–18, 14f
POPs (persistent organic pollutants), 11–20
Brominated flame retardant (BFR). See also Polybrominated dibenzofurans (PBDFs); Polybrominated dibenzo-p-dioxins (PBDDs)
hexabromocyclododecane (HBCD), 600
PBDD/F formation, 258–266
during hydrothermal treatment of BFRs, 262
during photolysis of BFRs, 262–263
during thermolysis of BFRs, 259–262, 260t, 261f
PBDD/F sources
in flame-retarded plastics, 263–264
in technical brominated flame retardant (BFR) mixtures, 258–259
Bromoperoxidases, 267
BTBPE (bistribromophenoxyethane), 90f
Butyl benzyl phthalate (BBzP), 416, 418t, 422t, 428–429
Cambodia, Agent Orange in, 497–498
CAMs (cell adhesion molecules), neurodevelopment regulation by, 197
Canada
case-control study of malignant lymphoma, 315
case-control study of prostate cancer, 319
cohort studies on cancer and pesticides/herbicides, 322, 328
cohort studies on cancer in pulp and paper mill workers, 331
Cancer. See also specific cancer locations; specific cancer types
bisphenol A and, 390
epidemiological studies, 303–340
case-control studies, 305–319
gastric cancer, 318
leukemia, 317
liver cancer, 318
malignant lymphoma, 311–317
multiple myeloma, 317
nasal and nasopharyngeal cancer, 317
clinical observations, 304–305
cohort studies on farmers, 328
cohort studies on general public after accidents, 329
Sevesco study, 329
Yucheng study, 330
Yusho study, 330
cohort studies on producers and users of chemicals, 319–328
Canadian, 322
Danish, 320
early studies on pesticide users, 319–320
Finnish, 324–325
German BASF cohort, 322–323
German Boehringer cohort, 323–324
International Agency for Research on Cancer cohort, 325–326
Netherlands, 324
New Zealand, 325–326
U.S., 320–322
cohort studies on pulp and paper mill workers, 330–331
cohort studies on tannery workers, 327–328
cohort studies on Vietnam veterans, 326–327
environmental exposure through pollution, 332–334
in animals, 334
in humans, 332–333
organohalogenated compounds, 334–339
perfluorooctanoic acid (PFOA) and, 237
polybrominated biphenyls (PBBs) and, 13
risk assessment, 583
Sevesco study, 329, 455–459, 457t–458t
2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) and, 10, 12f
Cancer slope factor, 581
Canned foods, bisphenol A in, 384–385
Cardiovascular disease
bisphenol A and, 391
perfluorooctanoic acid (PFOA) and, 235–236
Case-control studies, of cancer epidemiology, 305–319
Cell adhesion molecules (CAMs), neurodevelopment regulation by, 197
Center for Research on Human Reproduction (CERHR), 399–400
Central nervous system, overview of neurodevelopment in, 196–202
Cereals, persistent organic pollutants (POPs) in, 74–79, 75t–77t
Cerebrovascular disease, perfluorooctanoic acid (PFOA) and, 236
Chapel Hill Consensus statement, 399
Chloracne, 9, 321–322, 451
Chlordane
immunotoxicity, 183
lymphoma and, 338
as persistent organic pollutant (POP), 579
Chlordecone
as persistent organic pollutant (POP), 590–592, 591t
risk values, 591t
uses of, 590
Chlorella, effect on fecal excretion, 148
Chlorinated pesticides, immunotoxicology of, 182–184
mode of action, 184
modulation of immune function in animal models, 183–184
modulation of immune function in humans, 182–183
sources of exposure, 182
Chlorobenzenes, 594
4-chloro-2-methylphenoxyacetic acid (MCPA), cancer and, 305, 312–313, 317
Chlorophenols
cancer case-control studies
malignant lymphoma, 312–313, 316
nasal and nasopharyngeal cancer, 317
soft-tissue sarcoma, 305–311, 306t
cancer cohort studies, 321–322, 324–328
human exposure and cancer, 332
Cholesterol, perfluorooctanoic acid (PFOA) effect on, 231–233, 234t

Ciliary neurotrophic factor (CNTF), 200–201

C-Jun, 199

Colestimide, effect on fecal excretion, 148

Concern List of Chemicals, 601

CREB, 212–213

CYP1A2, role in hepatic distribution, 125–126

Cytochrome p450 genes, 196

Dairy and egg, persistent organic pollutants (POPs) in, 68–74

Australia and Asia, 73–74

Europe, 72–73

mean levels and ranges of POPs in, 69t–71t

North America, 68, 72

Da Nang airbase, 489–492

DBDPE (decabromodiphenyl ethane), 91f

DBP. See Dibutyl phthalate

DDE (dichlorodiphenyldichloroethylene)

in Cambodia, 497–498

cancer and, 336–338

immunotoxicity, 182–183

DDT (dichlorodiphenyltrichloroethylene)

ban on, 2

in Cambodia, 497–498

cancer and, 337

chemical structure, 6f

continued use of, 6

in food

cereals, fruits, vegetables, and miscellaneous, 75t–77t, 78

dairy and egg, 69t–71t, 72–74

fish and seafood, 54–55, 56t–58t, 59–61

meat and poultry, 62, 63t–65t, 67–68

in Vietnam, 494

immunotoxicity, 182, 184

as persistent organic pollutant (POP), 579

DecaBDE, 13–14, 17, 91, 94–96, 599–600

in food, 56t–58t, 63t–65t, 69t–71t, 75t–77t, 79

photolysis, 268

risk values, 598t

Decabromodiphenyl ethane (DBDPE), 91f, 99

DEHP (di(2-ethylhexyl) phthalate), 98, 416–417, 418t, 419–420, 421t–422t, 424–429, 430t, 431–433

Delayed-type hypersensitivity, 183–184

Dendritic cells, 172

Denmark

breast development and prenatal dioxin exposure, 363–364

cohort studies on cancer pesticide users, 320, 328

pulp and paper mill workers, 330–331

Dental signs, in Yusho patients, 538

DEP (diethyl phthalate), 416–417, 418t, 429, 430t

Dermal exposure, absorption/bioavailability following, 117–118

Dermal lesions, 535–536

DES. See Diethylstilbestrol

Detoxification genes, 196

Development

epidemiology of dioxin exposure, 359–374

neurodevelopment, 193–217

neurotoxicity of dioxins, 193–217

perfluorooctanoic acid (PFOA) and, 242–245

Developmental effects

of chlordecone, 592

of hexabromocyclododecane (HBCD), 601

of hexachlorocyclohexanes, 586–588

of perfluorooctane sulfonate (PFOS), 597

Diabetes

bisphenol A and, 391

perfluorooctanoic acid (PFOA) and, 236–237

Dibutyl phthalate (DBP), 416–417, 418t, 421t, 424, 427–429, 430t, 431–432
Dichlorodiphenyldichloroethylene. See DDE (dichlorodiphenyldichloroethylene)

Dichlorodiphenyltrichloroethane. See DDT (dichlorodiphenyltrichloroethane)

2,4-dichlorophenoxyacetic acid (2,4-D), cancer and, 305, 313–319

DiDp (di-isonyl phthalate), 416

Dieldrin, 184, 579

Diet, polybrominated diphenyl ethers (PBDEs) in, 93

Diethylhexylphthalate (DEHP), 98

Diethyl phthalate (DEP), 416–417, 418t, 429, 430t

Diethylstilbestrol (DES) prostate development, effects on, 393–395

structure, 383f

Di-isonyl phthalate (DiDp), 416

Di-n-octyl phthalate (DOP), 416, 418t, 429

Dinoxel, 471

Dioxin(s). See also specific chemicals

chemical structure, 6–7

developmental neurotoxicity, 193–217

reproductive and developmental epidemiology of, 359–374

2,3,7,8-tetrachloro-dibenzo-paradioxin (TCDD), 469–513

toxicity equivalence factors (TEFs), 37–48

Yushenko dioxin poisoning, 567–575

Dioxin-like compounds (DLCs). See also

2,3,7,8-tetrachloro-dibenzo-paradioxin (TCDD); specific chemicals

absorption, 8

aryl hydrocarbon receptor binding and activation, 8

elimination, 8

mode of action, 8–9

overview, 8–10

Di(2-ethylhexyl) phthalate (DEHP), 416–417, 418t, 419–420,

421t–422t, 424–429, 430t,

431–433

Di(2-propylheptyl) phthalate (DPHP), 416

“Dirty dozen,” 2, 171

Distribution, 118–126

blood and lymph, 118–119

hepatic distribution, role of CYP1A2 in, 125–126

tissue distribution
dose-dependent, 125

in humans, 120–122, 121t

in lab animals, 119–120
time-dependent, 122–125, 123t–124t

DLCs. See Dioxin-like compounds

Dogs, cancer in, 334

DOP (di-n-octyl phthalate), 416, 418t, 429

Dose addition, 38. See also Toxicity equivalence factors (TEFs)

Dose-response assessment, 583

Dow Chemical, 321–322

DPHP (di(2-propylheptyl) phthalate), 416

DuPont, 21, 235–236

EFSA (European Food and Safety Association), bisphenol A and, 400–401

EGF (epidermal growth factor), 198, 201–202

Eggs, persistent organic pollutants (POPs) in, 68–74

Australia and Asia, 73–74

Europe, 72–73

mean levels and ranges of POPs in, 69t–71t

North America, 68, 72

EHTBB (2-ethylhexyl-2,3,4,5-tetrabromobenzoate), 90f

Electrical transformer. See Binghamton New York electrical transformer fire incident (1981)

Embryotoxicity of hexachlorocyclohexanes, 588

of pentachlorobenzene, 595

Endocrine-disrupting compounds (EDCs)

bioaccumulation, 334

bisphenol A, 382–384, 390, 396

human exposure to, 334

overview, 415–416

sensitivity of fetuses and infants to, 398–399

testicular dysgenesis syndrome (TDS), 416
Endocrine system
polybrominated dibenzofurans (PBDFs) and, 286–287
polybrominated dibenzo-p-dioxins (PBDDs) and, 286–287

Endometrial cancer, 336–337

Endrin, 579

Environmental Protection Agency, toxicity equivalence factors (TEFs) and, 39

Epidemiology
cancer, epidemiological studies of, 303–340
case-control studies, 305–319
cohort studies on farmers, 328
cohort studies on general public after accidents, 329
cohort studies on producers and users of chemicals, 319–328
cohort studies on pulp and paper mill workers, 330–331
cohort studies on tannery workers, 327–328
cohort studies on Vietnam veterans, 326–327
on dioxin-exposed populations, 304
reproductive and developmental of dioxins, 359–374
biomarkers of exposure compared to environmental exposure indices, 361–362
environmental exposure and reproductive outcomes, 362–365
breast development, 363–364
dioxin and dioxin-like compounds in Japan, 362–363
residence near municipal solid waste incinerators, 364–365
future research, 374
general issues in evaluation of studies, 360–361
issues in assessing evidence, 372–374
literature review, 362–372
overview, 359–360
paternal dioxin exposure and reproductive effects, 365–368
Agent Orange exposure and birth defects, 366–367
pregnancy outcomes in wives of occupationally exposed workers, 365–366
semen quality, 367–368
Sevesco Women’s Health Study, 368–372
age at menarche, 370
age at menopause, 370–371
birth outcomes, 371–372
dioxin exposure, 369
infertility and time to pregnancy, 371
menstrual cycle characteristics, 370
objective, 369
scope of, 303–304
Epidermal growth factor (EGF), 198, 201–202
Epoxi resins, bisphenol A in, 382, 384–385
Epstein-Barr virus, 313, 338
Erb RTK family, 201–202
Estradiol
bisphenol A compared, 383
perfluorooctanoic acid (PFOA) and, 240
structure, 383f
Estrogen receptor, bisphenol A binding to, 382–384, 384t
2-ethylhexyl-2,3,4,5-tetrabromobenzoeate (EHTBB or TBB), 90f
Europe, persistent organic pollutants (POPs) in food in
dairy and egg, 72–73
fish and seafood, 55, 59–60
meat and poultry, 66–67
European Food and Safety Association (EFSA), bisphenol A and, 400–401
E-waste recycling processes, PBDD/F formation in, 265–266
Excretion, 129–148
age, impact of, 142
in animals, 129–130
body burden, impact of, 145
body fat, impact of, 142, 145
breastfeeding, impact of, 145
enhancement of fecal, 147–148
in humans, 130, 131t–141t, 142, 143t–144t, 145, 146t
lactation, 147
net gastrointestinal, 113t–115t
smoking status, impact of, 145
Expanded polystyrene (XPS), 600
Exposure assessment, 582–583
Exposure Opportunity Index, 361
Extruded polystyrene (EPS), 600
Farmers, epidemiological studies of cancer in, 328
“Fat-flush” theory, 116
FDA, bisphenol A and, 400
Fecal excretion, enhancement of, 147–148
Fecundability odds ratio (fOR), 371
Female reproductive tract, and developmental exposure to bisphenol A, 395
Fetal and childhood growth, bisphenol A exposure and, 392
Fiber, effect on fecal excretion, 148
Fibroblast growth factor-2 (FGF-2), 200–201
Finland
case-control study of soft-tissue sarcoma, 311
chlorophenol exposure and cancer, 332
cohort studies on cancer and pesticides, 320, 324–325
Firemaster®, 90f, 92, 98, 100, 593
Fires, PBDD/F formation in, 266
Fish and seafood, persistent organic pollutants (POPs) in, 54–62
Australia and Asia, 60–61
Europe, 55, 59–60
farm raised versus wild caught, 61–62
mean levels and ranges of POPs in, 56t–58t
North America, 54–55
meat and poultry, 62–68
Australia and Asia, 67–68
Europe, 66–67
mean levels and ranges of POPs in, 63t–65t
North America, 62, 66
Food and Drug Administration (FDA), bisphenol A and, 400
France
case-control study of malignant lymphoma, 316
case-control study of multiple myeloma, 317
PCDD/PCDF exposure and cancer, 332–333
Fruits, persistent organic pollutants (POPs) in, 74–79, 75t–77t
Gasoline exhaust, PBDD/F formation in, 265
Gastric cancer, case-control studies on, 318
polybrominated diphenyl ethers (PBDEs), 89–98
replacement, 98–100
tris (1,3-dichloroisopropyl)phosphate (TDCPP), 90f, 92–93, 98–100
Flat-cell assay, in vitro, 556
Food, persistent organic pollutants (POPs) in, 53–80
cereals, fruits, vegetables, and miscellaneous, 74–79
mean levels and ranges of POPs in, 75t–77t
dairy and egg, 68–74
Australia and Asia, 73–74
Europe, 72–73
mean levels and ranges of POPs in, 69t–71t
North America, 68, 72
fish and seafood, 54–62
Australia and Asia, 60–61
Europe, 55, 59–60
farm raised versus wild caught, 61–62
hexachlorocyclohexanes in, 589–590
mean levels and ranges of POPs in, 56t–58t
North America, 54–55
Gastrointestinal absorption, 110–117, 113t–115t
Genotoxicity, of polybrominated diphenyl ethers (PBDEs), 15
Germany
 case-control study of malignant lymphoma, 316
 cohort studies on cancer and pesticides, 320
 BASF cohort, 322–323
 Boehringer cohort, 323–324
Glial fibrillary acidic protein (GFAP), 201
Glioma, 318
Glutathione S-transferase, 196
Growth, bisphenol A exposure and, 392

Hairy cell leukemia, 313
Hazard identification, 582
HBB. See Hexabromobiphenyl
HBCD. See Hexabromocyclododecane
HCH. See Hexachlorocyclohexanes
Hepatic distribution, role of CYP1A2 in, 125–126
Hepatocellular carcinoma, chlordecone and, 592
Hepatotoxicity
 of chlordecone, 592
 of hexachlorocyclohexanes, 588
Heptachlor, 183
Herbicides. See also Agent Orange; specific chemicals
 history of military use, 470–473, 472t
 2,3,7,8-tetrachloro-dibenzo-podioxin (TCDD), 469–513
Vietnam, use in, 469–513
 dioxin hot spots, 474–476, 481–485, 486f
 exposed populations in Vietnam, 473–474, 475f
 health impacts, 500–512
 mitigation efforts, 485–489
 Phu Cat airbase, 495–496
 postwar international research cooperation, 478–481
 remediation at Da Nang base, 489–492
 studies in Vietnam, 507–511
 support for Vietnamese affected by Agent Orange, 511–512
HexaBDE, 597–599
Hexabromobiphenyl (HBB)
 as persistent organic pollutants (POPs), 592–594
 risk values, 593t
Hexabromocyclododecane (HBCD), 99
 chemical structure, 19f
 in food
 cereals, fruits, vegetables, and miscellaneous, 75t–77t
dairy and egg, 69t–71t
 fish and seafood, 56t–58t, 59, 62
 meat and poultry, 62, 63t–65t, 66–67
 overview, 18–20
 as persistent organic pollutant (POP), 600–601
 risk values, 600t
Hexachlorobenzene, 498
Hexachlorocyclohexanes (HCH)
 α-HCH, 584, 585t, 586–589
 γ-HCH, 584, 585t, 586–588, 590
 δ-HCH, 584
 as persistent organic pollutants (POPs), 584–590, 585t
 risk values, 585t
Hodgkin’s lymphoma. See Malignant lymphoma, case-control studies of HSP90 chaperones, 196
Human health risk assessment. See Risk assessment
IARC (International Agency for Research on Cancer), 325–326
IGF-1 (insulin-like growth factor-1), 198, 201
Immunoglobulins, 173–174, 238
Immunology, overview of, 172–174
Immunomodulation. See also Immunotoxicology
 aryl hydrocarbons (Ahs)
 in animal models, 176–177
 in humans, 176
 chlorinated pesticides
 in animal models, 183–184
 in humans, 182–183
 perfluorinated compounds (PFCs)
 in animal models, 179–180
 in humans, 179
perfluorooctanoic acid (PFOA) and, 238
by persistent organic pollutants, 171–187
tributyltin (TBT)
in animal models, 185–186
in humans, 185
Immunotoxicology
aryl hydrocarbons (Ahs), 175–178
mode of action, 177–178
modulation of immune function in animal models, 176–177
modulation of immune function in humans, 176
sources of exposure, 175–176
chlorinated pesticides, 182–184
mode of action, 184
modulation of immune function in animal models, 183–184
modulation of immune function in humans, 182–183
sources of exposure, 182
of hexachlorocyclohexanes (HCH), 587–588
overview of, 174–175
perfluorinated compounds (PFCs), 178–182
mode of action, 180–181
modulation of immune function in animal models, 179–180
modulation of immune function in humans, 179
sources of exposure, 178–179
tributyltin (TBT), 184–187
mode of action, 186
modulation of immune function in animal models, 185–186
modulation of immune function in humans, 185
sources of exposure, 184–185
Industrial processes, PBDD/F formation in, 264–266
e-waste recycling processes, 265–266
gasoline exhaust, 265
metallurgical industries, 264
municipal waste incinerators, 264–265
residential fires, 266
textile industries, 265
Inflammation, 173
Inhalation exposure, absorption/bioavailability following, 118
Innate immune system, 172, 184
Insulin-like growth factor-1 (IGF-1), 198, 201
Integrins, neurodevelopment regulation by, 197–198
Intelligence, phthalates in, 427–428
International Agency for Research on Cancer (IARC), 325–326
International Toxicity Equivalence Factors (I-TEF), 39–40
Ischemic heart disease, 235
Isopropylated triarylphosphates (ITPs), 100
Italy
case-control study of malignant lymphoma, 315–316, 334
case-control study of multiple myeloma, 317
case-control study of soft-tissue sarcoma, 311
cohort study on tannery workers, 327
dioxin exposure and cancer, 332
Seveso accident, 329, 445–461
Japan
dioxin and dioxin-like compounds, exposure to, 362–363
Yusho incident, 521–545
Kanechlor-400 (KC-400), 521–524, 523f, 524t
Kidney function, perfluorooctanoic acid (PFOA) and, 242
Lactation. See also Breastfeeding
chemical excretion and, 147
pharmakokinetics and, 152–157
Laos, Agent Orange in, 498–499
Indoor dust
polybrominated dibenzofurans (PBDFs) in, 276
polybrominated dibenzo-\(p\)-dioxins (PBDDs) in, 276
Learning and memory effects of developmental exposure to TCDD, 214–215
Lindane, 586–590
Lipids, perfluoroctanoic acid (PFOA) effect on, 231–233, 234t
Liver cancer
case-control studies on, 318
cohort studies on, 329–330
hepatocellular carcinoma, chlordecone and, 592
Liver function, perfluoroctanoic acid (PFOA) and, 240–242
Love Canal, 560, 563
Lowest observable adverse effect levels (LOAELs), 583
Lung cancer, case-control studies on, 319
Lymph, distribution in, 118–119
Lymphocytes, 173
Lymphoma. See Malignant lymphoma, case-control studies of
MADISH (metabolizing acquired dioxin-induced skin hamartoma), 575
Malignant lymphoma, case-control studies of, 311–317
Australian study, 316–317
Canadian studies, 315
French study, 316
German study, 316
Italian study, 315–316
New Zealand study, 316
Spanish study, 316
Swedish studies, 311–313, 312t
U.S. studies, 313–315
Iowa/Minnesota study, 314–315
Kansas study, 313, 314t
Nebraska study, 314, 314t
Washington State study, 315
Malignant lymphoma, cohort studies of, 320–333, 335
Mammary gland, bisphenol A exposure and, 396
Mash1, 197, 202
MBP (monobutyl phthalate), 417, 421t, 423t, 424–425, 427–429, 430t, 431–434
MCPA (4-chloro-2-methylphenoxyacetic acid), cancer and, 305, 312–313, 317
Meat and poultry, persistent organic pollutants (POPs) in, 62–68
Australia and Asia, 67–68
Europe, 66–67
mean levels and ranges of POPs in, 63t–65t
North America, 62, 66
MEHP (mono(2-ethylhexyl) phthalate), 417, 419–420, 421t, 423t, 424–428, 430t, 431–433
Menarche, age at, 370
Meningioma, 318
Menopause, age at, 370–371
Menstrual cycle and TCDD exposure, 370
MEP (monoethyl phthalate), 417, 420, 421t, 425, 430t, 431, 433, 434
MeSO2 (methylsulfonyl) metabolites, 128
Metabolic disorders, bisphenol A and, 391
Metabolism, 126–148. See also Excretion; specific chemicals
autoinduction of metabolism, 128–129
overview, 126–127
toxicity of metabolites, 127–128
Metabolizing acquired dioxin-induced skin hamartoma (MADISH), 575
Metallurgical industries, PBDD/F formation in, 264
Methylsulfonyl (MeSO2) metabolites, 128
Michigan Chemical Corporation, 593
Milk, human. See also Breastfeeding
absorption of POPs, 116–117
pharmacokinetics and, 152–157
TCDD in, 363
MiNP (mono-isononyl phthalate), 416, 421t, 425
Mirex, 6f, 590
Mitochondria, 539
Monobutyl phthalate (MBP), 417, 421t, 423t, 424–425, 427–429, 430t, 431–434
Monoethyl phthalate (MEP), 417, 420, 421t, 425, 430t, 431, 433–434
Mono-isononyl phthalate (MiNP), 416, 421t, 425
Mono(2-ethylhexyl) phthalate (MEHP), 417, 419–420, 421t, 423t, 424–428, 430t, 431–433
Multiple myeloma, case-control studies of, 317
Municipal waste incinerators
PBDD/F formation in, 264–265
pregnancy outcomes, 364–365
Nasal cancer, case-control studies on, 317
Nasopharyngeal cancer, case-control studies on, 317
National Institute of Environmental Health Sciences (NIEHS), bisphenol A research and, 402–403
National Reports on Human Exposure to Environmental Chemicals, 589
National Research Council (NRC), 582
National Toxicology Program (NTP), bisphenol A and, 383, 399–400
N-cadherin, neurodevelopment regulation by, 197
Nerve growth factor (NGF), 198–199
Netherlands, cohort studies on cancer and pesticides, 324
Neuregulins, 201–202
Neurobehavior
bisphenol A and, 397–398
effects of developmental exposure to TCDD, 208–215
Neurodevelopment, 193–217
AhR activation, dioxin-mediated, 202–204
bisphenol A and, 392–393
epidemiological studies, 194–195
experimental studies of neurobehavioral effects of TCDD, 208–215
experimental studies on molecular and cellular effects of TCDD, 204–207
mechanisms of dioxin toxicity, 195–196
neurogenesis, 199–202
neuronal apoptosis, 198–199
overview of, 196–202
phthalates and, 423t, 426–427
regulating factors, 197–198
Neurogenesis, 199–202
Neuronal apoptosis, 198–199
Neuronal PAS (NPAS) proteins, 203–204
Neurotoxicity
of hexabromocyclododecane (HBCD), 601
hexachlorocyclohexanes (HCH), 586–588
mechanisms of dioxin toxicity, 195–196
polybrominated dibenzofurans (PBDFs), 286
polybrominated dibenzo-p-dioxins (PBDDs), 286
polybrominated diphenyl ethers (PBDEs), 15–17
signs in Yusho patients, 537
Neurotropins, 199
New Zealand
cancer in sheep, 334
case-control study of malignant lymphoma, 316
case-control study of soft-tissue sarcoma, 310–311
cohort studies on cancer and pesticides, 325–326
cohort studies on cancer in pulp and paper mill workers, 331
2,4,5-T exposure and cancer, 333
NGF (nerve growth factor), 198, 199
NIEHS (National Institute of Environmental Health Sciences), bisphenol A research and, 402–403
Noncancer risk assessment, 583–584
Non-Hodgkin’s lymphoma. See Malignant lymphoma, case-control studies of
No observable adverse effect levels (NOAELs), 583, 584
North America, persistent organic pollutants (POPs) in food in
dairy and egg, 68, 72
fish and seafood, 54–55
meat and poultry, 62, 66
North Atlantic Treaty Organization Committee on Challenges of Modern Society (NATO / CCMS), toxicity equivalence factors (TEFs) and, 39–40
NT-3, 200–201
NTP (National Toxicology Program) bisphenol A and, 383, 399–400
Center for Research on Human Reproduction (CERHR), 399–400
Nuclear receptors, bisphenol A interaction with, 382–384, 384t
Nursing. See Breastfeeding
OATs (organic anion transporters), 21–22
Occupational exposure chlordecone, 592
hexabromocyclododecane (HBCD), 601
hexachlorocyclohexanes (HCH), 586, 590
pentachlorobenzene, 595
perfluorooctane sulfonate (PFOS), 597
polybrominated diphenyl ethers (PBDEs), 597
OctaBDE, 13–14, 91, 94, 597–599, 598t
Octachlorodibenzo-p-dioxin (OCDD), 336
Ocular disorders, 536–537
Olestra, effect on fecal excretion, 147–148
Ontario Ministry of Health, toxicity equivalence factors (TEFs) and, 38–39
Operation Pacer Ho, 476
Oral cancer, case-control studies on, 318
Oral exposure, absorption/bioavailability following, 110–117, 113t–115t
Oral signs, in Yusho patients, 538
Organic anion transporters (OATs), 21–22
Organochlorines. See also specific chemicals
cancer and, 333, 334–339
immunotoxicology, 182–184
mode of action, 184
modulation of immune function in animal models, 183–184
modulation of immune function in humans, 182–183
sources of exposure, 182
Ovary, developmental exposure to bisphenol A, 395
PAHs (polycyclic aromatic hydrocarbons), toxicity equivalence factor (TEFs) and, 45
Pancreatic cancer, 337
PBBs. See Polybrominated biphenyls
PBDDs. See Polybrominated dibenz-p-dioxins
PBDEs. See Polybrominated diphenyl ethers
PBDFs. See Polybrominated dibenzofurans
PCBs. See Polychlorinated biphenyls
PCDDs. See Polychlorinated dibenz-p-dioxins
PCDFs. See Polychlorinated dibenzofurans
PCQs (polychlorinated quaterphenyls), 521, 526, 534
PeCB. See Pentachlorobenzene
PentaBDE, 13–14, 91, 93, 95, 97–98, 597–599, 598t
Pentachlorophenol, 321–322, 325–326
Perfluorinated compounds (PFCs), 20–24, 20f. See also Perfluorooctane sulfonate (PFOS); Perfluorooctanoic acid (PFOA)
bleeding levels, 179, 338–339
cancer and, 339
environmental levels, 179
in food, 53, 59, 73, 79
immunotoxicology, 178–182, 338
mode of action, 180–181
modulation of immune function in animal models, 179–180
modulation of immune function in humans, 179
sources of exposure, 178–179
Perfluorobutanesulfonic acid (PFBS), 21
Perfluorononanoic acid (PFNA), immunomodulation by, 179, 181
Perfluorooctane sulfonate (PFOS) chemical structure, 20f
in food
cereals, fruits, vegetables, and miscellaneous, 75t–77t
dairy and egg, 69t–71t, 73
fish and seafood, 55, 56t–58t
meat and poultry, 63t–65t, 66–67
immunomodulation by, 180–181
overview, 20–23
as persistent organic pollutant (POP), 595–597
risk values, 596t
serum concentration, 179, 231
Perfluorooctanoic acid (PFOA) chemical structure, 20f
environmental levels, 179
epidemiological evidence of health effects, 229–247
cancer, 237
cardiovascular disease, 235–236
cerebrovascular disease, 236
diabetes, 236–237
immune function, 238
kidney function, 242
lipids, 231–233, 234t
liver function, 240–242
overview, 230–231
reproductive and developmental outcomes, 242–245
sex hormones, 240
thyroid function, 238–239
uric acid, 233, 235
in food
cereals, fruits, vegetables, and miscellaneous, 75t–77t, 79
dairy and egg, 69t–71t, 73
fish and seafood, 55, 56t–58t
meat and poultry, 63t–65t, 66
half-time, 230
immunomodulation by, 179–181
overview, 20–23
as persistent organic pollutant (POP), 596
serum concentration, 179, 339
Peroxisome proliferator-activated receptor-α (PPARα), 22, 180–182, 231, 238, 241
Persistent organic pollutants (POPs). See also specific compounds
Arctic region contamination with, 335
“dirty dozen,” 2, 171
emerging, 580–581, 580t, 602
bioaccumulation, 580–581
chlordecone, 590–592, 591t
hexabromobiphenyl (HBB), 592–594, 593t
hexabromocyclododecane (HBCD), 600–601, 600t
hexachlorocyclohexanes (HCH), 584–590, 585t
pentachlorobenzene (PeCB), 594–595, 594t
perfluorooctane sulfonate (PFOS), 595–597, 596t
persistence, 580
polybrominated diphenyl ethers (PBDEs), 597–600, 598t
toxicity, 581
in food, 53–80
cereals, fruits, vegetables, and miscellaneous, 74–79
mean levels and ranges of POPs in, 75t–77t
dairy and egg, 68–74
Australia and Asia, 73–74
Europe, 72–73
mean levels and ranges of POPs in, 69t–71t
North America, 68, 72
fish and seafood, 54–62
Australia and Asia, 60–61
Europe, 55, 59–60
farm raised versus wild caught, 61–62
mean levels and ranges of POPs in, 56t–58t
North America, 54–55
Persistent organic pollutants (POPs). See also specific compounds (con'td)
meat and poultry, 62–68
Australia and Asia, 67–68
Europe, 66–67
mean levels and ranges of POPs in, 63t–65t
North America, 62, 66
immunomodulation by, 171–187
long-range transport of, 580
overview, 1–24, 579
brominated compounds, 11–20
hexabromocyclododecane (HBCD), 18–20, 19f
polybrominated biphenyls (PBBs), 11–13, 12f
polybrominated diphenyls (PBDEs), 13–18, 14f
dioxin-like compounds (DLCs), 8–10
dioxins, 6–7, 7f
exposure to POPs, 2, 4, 5t
furans, 7
PCBs, 7, 7f, 11
perfluorinated compounds (PFCs), 20–24, 20f
pesticides as POPs, 4, 6, 6f
toxicity of POPs, 4
Stockholm Convention, 2, 3t, 580–581, 580t, 602
as unintended by-products, 579
“Personal clouds,” 96
Pesticides. See also specific chemicals
bioaccumulation, 4
chemical structures of organochlorine, 6f
immunotoxicology of chlorinated, 182–184
lindane, 586–590
as persistent organic pollutants (POPs), 4, 6, 6f, 579
PFAS (perfluorinated alkylated substances), 20–23
PFBS (perfluorobutanesulfonic acid), 21
PFCs. See Perfluorinated compounds
PFNA (perfluorononanoic acid), immunomodulation by, 179, 181
PFOA. See Perfluorooctanoic acid
PFOS. See Perfluorooctane sulfonate
Pharmacokinetics, 109–157
absorption/bioavailability following exposure, 110–118
dermal exposure, 117–118
inhalation exposure, 118
oral exposure, 110–117, 113t–115t
distribution, 118–126
blood and lymph, 118–119
dose-dependent tissue distribution, 125
hepatic distribution, role of CYP1A2 in, 125–126
time-dependent tissue distribution, 122–125, 123t–124t
tissue in humans, 120–122, 121t
tissue in lab animals, 119–120
excretion, 129–148
age, impact of, 142
in animals, 129–130
body burden, impact of, 145
body fat, impact of, 142, 145
breastfeeding, impact of, 145
enhancement of fecal, 147–148
half-life estimates, 131t–141t, 143t–144t, 146t
in humans, 130, 131t–141t, 142, 143t–144t, 145, 146t
lactation, 147
smoking status, impact of, 145
metabolism, 126–148
autoinduction of metabolism, 128–129
overview, 126–127
toxicity of metabolites, 127–128
overview, 109–110
physiologically based pharmacokinetic (PB-PK) models, 148–152
estimating daily intake of TCDD, 149–152
fugacity-based model, 148–149
mechanistic model, 148–149
receptor-mediated model, 148
polybrominated dibenzofurans (PBDFs), 287
polybrominated dibenzo-p-dioxins (PBDDs), 287
prenatal and postnatal exposure during pregnancy and nursing, 152–157
Phenoxyacetic acids
cancer case-control studies
brain cancer, 318
gastric cancer, 318
liver cancer, 318
malignant lymphoma, 312–317
multiple myeloma, 317
nasal and nasopharyngeal cancer, 317
oral cancer, 318
prostate cancer, 319
soft-tissue sarcoma, 305–311, 306t
cancer cohort studies, 319–320, 324–326, 328
Phenoxy herbicides. See Phenoxyacetic acids
Photolysis
polybrominated dibenzo-\(p\)-dioxins (PBDDs), 268
Polybrominated dibenzofurans (PBDFs), 255–290
analytical methods, 268–269, 274
bioaccumulation, 287–288
environmental distribution and concentrations, 270t–273t, 274–282
air, 274–275
biota and food, 278–279
homologues and congeners, 279–282, 280f
humans, 279
indoor dust, 276
sediment, 277–278
sludge, 277
soil, 276–277
water, 274
formation, 258–266
during hydrothermal treatment of BFRs, 262
in industrial processes, 264–266
e-waste recycling processes, 265–266
gasoline exhaust, 265
metallurgical industries, 264
municipal waster incinerators, 264–265
residential fires, 266
textile industries, 265
during photolysis of BFRs, 262–263
during thermolysis of BFRs, 259–262, 260t, 261f
overview, 255–256
pharmacokinetics, 287
photolysis, 268

Plastics, bisphenol A in, 382, 384
Point of departure (POD), 584
Poland, cohort studies on cancer in pulp and paper mill workers, 331
Polybrominated biphenyls (PBBs)
chemical structure, 12f, 90f
decabromobiphenyl, 592
as flame retardants, 92
hexabromobiphenyl (HBB), 592–594, 593t
metabolism of, 12
octabromobiphenyl, 592
overview, 11–13
toxicological effects, 12–13
Polybrominated dibenzofurans (PBDFs), 255–290
future research needs, 435–436
human exposure, 416–420
assessing, 417–420
overview, 416–417
human health effects, 420–435
adult effects, 429–435
asthma/allergies, 430t, 434–435
reproductive/endocrine effects, 430t, 432–433
semen quality, 429–432
developmental, 420–429
asthma/allergies, 422t, 428–429
in infants and children, 421t–423t
neurodevelopment, 423t, 426–427
pregnancy outcomes, 420, 424
reproductive, 421t, 424–426
urinary metabolites, 417, 418t, 419–420
Phu Cat airbase, 495–496
Physiologically based pharmacokinetic (PBPK) model, 583, 596
Placental transfer
of hexabromobiphenyl (HBB), 594
of hexachlorocyclohexanes, 589
of pentachlorobenzene, 595
of perfluoroctane sulfonate (PFOS), 597
Polybrominated dibenzo-p-dioxins (PBDDs), (con'td)
physiochemical properties, 256–258, 257t
sources, 258–266
 in flame-retarded plastics, 263–264
 in technical brominated flame retardant (BFR) mixtures, 258–259
structure, 256f
thermolysis, 268
toxicity, 282–287
 acute, 282–283
 chromic, 283, 286
 endocrine effects, 286–287
 mechanisms of, 288–289
 neurotoxicity, 286
relative potency values, 284t–285t
TEFs, 289–290
Polybrominated dibenzo-p-dioxins (PBDDs), 255–290
analytical methods, 268–269, 274
bioaccumulation, 287–288
environmental distribution and concentrations, 270t–273t, 274–282
air, 274–275
biota and food, 278–279
homologues and congeners, 279–282, 280f
humans, 279
indoor dust, 276
sediment, 277–278
sludge, 277
soil, 276–277
water, 274
formation, 258–268
during hydrothermal treatment of BFRs, 262
in industrial processes, 264–266
e-waste recycling processes, 265–266
gasoline exhaust, 265
metallurgical industries, 264
municipal waster incinerators, 264–265
residential fires, 266
textile industries, 265
natural, 266–268, 267f
during photolysis of BFRs, 262–263
during thermolysis of BFRs, 259–262, 260t, 261f
overview, 255–256
pharmacokinetics, 287
photolysis, 268
physiochemical properties, 256–258, 257t
sources, 258–268
 in flame-retarded plastics, 263–264
 in technical brominated flame retardant (BFR) mixtures, 258–259
structure, 256f
thermolysis, 268
toxicity, 282–287
 acute, 282–283
 chromic, 283, 286
 endocrine effects, 286–287
 mechanisms of, 288–289
 neurotoxicity, 286
relative potency values, 284t–285t
TEFs, 289–290
Polybrominated diphenyl ethers (PBDEs)
BDE-47, 13–16, 59, 61, 79
BDE-99, 13–14, 61, 79
BDE-209, 14, 17–18, 59, 61–62, 66, 72–73, 78–79
chemical structure, 14f, 90f
decaBDE, 13–14, 17, 91, 94–96, 599–600
 in food, 56t–58t, 63t–65t, 69t–71t, 75t–77t, 79
photolysis, 268
risk values, 598t
exposure, 93–97
 children and geography, 96–97
 diet, 93
 indoor environment, 93–94
exposure factor approach
 microenvironments to personal exposure and body burdens, 95–96
 sources to microenvironments, 94–95
 source to disease paradigm, 94f
flame retardants, 89–98
in food
 cereals, fruits, vegetables, and miscellaneous, 75t–77t, 78–79
dairy and eggs, 69t–71t, 72–73
fish and seafood, 55, 56t–58t, 59–62
meat and poultry, 62, 63t–65t, 67
health effects, 599
hexaBDE, 597–599
history, 89–93, 92t
octaBDE, 13–14, 91, 94, 597–599, 598t
overview, 13–18, 14f
pentaBDE, 13–14, 91, 93, 95, 97–98, 597–599, 598t
as persistent organic pollutants (POPs), 597–600, 598t
risk values, 598t
tetraBDE, 597–599, 598t
toxicology and epidemiology of, 97–98
Polycarbonate plastics, bisphenol A in, 382, 385
Polychlorinated biphenyls (PCBs)
in Binghamton New York electrical transformer fire incident (1981), 553–554, 559–561
cancer and, 330, 332–333, 336
chemical structure, 7, 7f
in food
cereals, fruits, vegetables, and miscellaneous, 75t–77t, 78
dairy and egg, 68, 69t–71t, 72–74
fish and seafood, 55, 56t–58t, 59–60
meat and poultry, 62, 63t–65t, 66–68
immunotoxicology, 175–176
neurodevelopmental effects, 194–195
nondioxin like, 11
pharmacokinetics, 109–157
absorption/bioavailability following exposure, 112, 114t–115t, 116–117
distribution, 121–122, 126
excretion, 130, 140t–141t, 142, 145, 146t, 147
half-life estimates, 131t–135t, 143t
metabolism, 126, 129
overview, 109–110
prenatal and postnatal exposure during pregnancy and nursing, 152–156
in rice oil, 525t
toxic equivalency factors (TEFs), 43f
Yucheng accident, 330
Yusho incident, 330, 526–529, 527t, 529t–531t, 532, 533t, 534–535, 536t, 537–545, 543f–544f
Polychlorinated dibenzofuran (PCDFs), 6, 499
in Binghamton New York electrical transformer fire incident (1981), 555–556
cancer and, 330, 332–333, 336
chemical structure, 6, 7f, 256f
in food
cereals, fruits, vegetables, and miscellaneous, 75t–77t, 78
dairy and egg, 68, 69t–71t, 72
fish and seafood, 54–55, 56t–58t, 59–60
meat and poultry, 62, 63t–65t, 66–68
human exposure and cancer, 332–333
pharmacokinetics, 109–157
absorption/bioavailability following exposure, 111–112, 113t, 116–117
distribution, 119–122, 121t, 123t–124t, 125–126
excretion, 130, 135t–140t, 142, 143t–144t, 145, 147–148
half-life estimates, 131t–135t, 143t
metabolism, 126, 129
overview, 109–110
prenatal and postnatal exposure during pregnancy and nursing, 152–156
in rice oil, 525t
toxic equivalency factors (TEFs), 43f
Yucheng accident, 330
Yusho incident, 330, 529, 530t–531t, 532, 533f
Polychlorinated dibenzo-p-dioxins (PCDDs), 6. See also specific chemicals
in Binghamton New York electrical transformer fire incident (1981), 555–556
cancer and, 330, 332–333, 336
chemical structure, 6, 7f, 256f
in food
cereals, fruits, vegetables, and miscellaneous, 75t–77t, 78
dairy and egg, 68, 69t–71t, 72
Polychlorinated dibenzo-p-dioxins (PCDDs), 6. See also specific chemicals (cont’d)
 fish and seafood, 54–55, 56t–58t, 59–60
 meat and poultry, 62, 63t–65t, 66–68
human exposure and cancer, 332–333
 immunotoxicology, 175–178
 mode of action, 177–178
 modulation of immune function in animal models, 176–177
 modulation of immune function in humans, 176
 sources of exposure, 175–176
pharmacokinetics, 109–157
 absorption/bioavailability following exposure, 110–118, 113t–114t
 daily intake, estimating, 149–152
 distribution, 118–126, 121t, 123t
 excretion, 129–148, 131t–135t, 143t
 half-life estimates, 131t–135t, 143t
 metabolism, 126–148
 overview, 109–110
 physiologically based pharmacokinetic (PB-PK) models, 148–152
 prenatal and postnatal exposure during pregnancy and nursing, 152–157
in rice oil, 525t
 toxic equivalency factors (TEFs), 43f
Polychlorinated quaterphenyls (PCQs), 521, 526, 534
Polycyclic aromatic hydrocarbons (PAHs), toxicity equivalence factor (TEFs) and, 45
Polyluerminated alkylated substances (PFAS), 20–23
POPs. See Persistent organic pollutants
Porphyria, 593
Poultry, persistent organic pollutants (POPs) in, 62–68
 Australia and Asia, 67–68
 Europe, 66–67
 mean levels and ranges of POPs in, 63t–65t
 North America, 62, 66
PPARα (peroxisome proliferator-activated receptor-α), 22, 180–182, 231, 238, 241
Pregnancy
 neurodevelopment during (see Neurodevelopment)
 outcomes in wives of occupationally exposed workers, 365–366
 perfluorooctanoic acid (PFOA) exposure during, 242–245
 pharmacokinetics and, 152–153
 phthalates effect on, 420, 424
 residence near municipal solid waste incinerators, 364–365
 time to pregnancy, 371
Pre-School Activities Inventory (PSAI), 427
Programmed cell death, neuronal, 198–199
Prostate, bisphenol A effects on development, 393–395
Prostate cancer, 319, 327, 337
Pubertal development, bisphenol A exposure and, 391–392
Pulp and paper mill workers, epidemiological studies of cancer in, 330–331
PVC products, phthalates and, 428, 434
Ranch Hand Study, 502–504
“Red Book,” 582
Reference concentration, 581, 584
Reference dose, 581, 584
Relative potency factor, 41
Reproductive system
 bisphenol A and
 animal model studies of toxicity, 393–396
 mammary gland, 396
 ovary and female tract, 395
 prostate, 393–395
 endocrine disruption, 382–384
 estrogen-receptor binding, 382–384, 384t
 human health studies on exposure, 390
chlordecone and, 591–592
epidemiology of dioxin exposure, 359–374
hexachlorocyclohexanes and, 586, 588
pentachlorobenzene and, 595
perfluorooctane sulfonate (PFOS) and, 597
perfluorooctanoic acid (PFOA) and, 242–245
phthalates, effect of
 adult effects, 430t, 432–433
 developmental, 421t, 424–426
Seveso accident outcomes, 451–452, 452f–454t, 455
Yusho incident and, 538–539
Residential fires, PBDD/F formation in, 266
Respiratory system
 inhalation exposure, absorption/bioavailability following, 118
 phthalates
 adult effects, 430t, 434–435
 developmental effects, 422t, 428–429
 signs and symptoms in Yusho patients, 537
Response addition, 38
Rice oil poisoning. See Yucheng incident; Yusho incident
Risk assessment
 benefits versus risks, 584
 defined, 581
 process steps, 582–584
 dose-response assessment, 583
 exposure assessment, 582–583
 hazard identification, 582
 risk characterization, 583–584
 cancer risk, 583
 noncancer risk, 583–584
Risk Assessment in the Federal Government: Managing the Process, 582
Risk characterization, 583–584
 cancer risk, 583
 noncancer risk, 583–584
Risk profile, 581

Seaweed, persistent organic pollutants (POPs) in, 54–62
 Australia and Asia, 60–61
 Europe, 55, 59–60
 farm raised versus wild caught, 61–62
 mean levels and ranges of POPs in, 56t–58t
 North America, 54–55
Sediment
 polybrominated dibenzofurans (PBDFs) in, 277–278
 polybrominated dibenzo-p-dioxins (PBDDs) in, 277–278
Selected Cancers Cooperative Study Group, 309–310, 317–318
Semen quality
 dioxin exposure and, 367–368, 451–452
 perfluorooctanoic acid (PFOA) and, 243
 phthalates effect on, 429–432
 Seveso accident and, 451–452
Sevesco Women’s Health Study, 368–372
 age at menarche, 370
 age at menopause, 370–371
 birth outcomes, 371–372
 dioxin exposure, 369
 infertility and time to pregnancy, 371
 menstrual cycle characteristics, 370
 objective, 369
Seveso accident, 445–461
 exposure assessment, 446–450, 447f
 environmental exposure, 447–449, 448f
 human exposure and dose, 449–450, 450t
 health effects, 450–460
 cancer, 329
 chloracne, 451
 minor, 460
 mortality and cancer incidence studies, 455–459, 457t, 458t
 neonatal thyroid function, 455, 455t
 reproductive outcomes, 451–452, 452f, 453t–454t, 455
 semen quality, 451–452
 sex ratio of offspring, 451, 452f
 Women’s Health Study, 452, 453t–454t, 455
 health study of male offspring, 367–368
 overview, 445–446
 reclamation and restoration, 460
Sex hormones, perfluorooctanoic acid (PFOA) and, 240
Sex ratio of offspring, Seveso accident and, 451, 452f
Sexual behavioral effects of developmental exposure to TCDD, 208–210
Sexual dimorphisms, 208–215, 397
Sheep, cancer in, 334
Sludge
polybrominated dibenzofurans (PBDFs) in, 277
polybrominated dibenzo-p-dioxins (PBDDs) in, 277
Smoking status, impact on excretion, 145
Social Responsiveness Scale, 426
Soft-tissue sarcoma, case-control studies of, 305–311
Australian study, 311
Finnish study, 311
Italian study, 311
New Zealand studies, 310–311
Swedish, 305–309, 306t, 307t
design issues, 308–309
meta-analysis, 307
U.S. studies, 309–310
Kansas study, 309
Vietnam veterans, 309–310
Soft-tissue sarcoma, cohort studies of, 320–333
Soil
polybrominated dibenzofurans (PBDFs) in, 276–277
polybrominated dibenzo-p-dioxins (PBDDs) in, 276–277
Sox B1 transcription factors, neurodevelopment regulation by, 197
Spain
case-control study of malignant lymphoma, 316
cohort studies on cancer in pulp and paper mill workers, 331
Stockholm Convention, 2, 3t, 171, 182, 580–581
emerging persistent organic pollutants (POPs), 580–581, 580t
chlordecone, 590–592, 591t
hexabromobiphenyl (HBB), 592–594, 593t
hexabromocyclododecane (HBCD), 600–601, 600t
hexachlorocyclohexanes, 584–590, 585t
pentachlorobenzene (PeCB), 594–595, 594t
perfluorooctane sulfonate (PFOS), 595–597, 596t
polybrominated diphenyl ethers (PBDEs), 597–600, 598t
original POPs, 580t
permanence, bioaccumulation, and toxicity (PBT) criteria, 580–581, 602
Surfactant, 596
Sweden
case-control studies of gastric cancer, 318
of liver cancer, 318
of malignant lymphoma, 311–313, 312t
of multiple myeloma, 317
of nasal and nasopharyngeal cancer, 317
of oral cancer, 318
of soft-tissue sarcoma, 305–309, 306t, 307t
design issues, 308–309
meta-analysis, 307
cohort studies on cancer paper mill workers, 331
pesticide users, 319
tannery workers, 327–328
exposure to POPs, 335
prostate cancer study, 337
Taiwan. See Yucheng incident
Tannery workers, epidemiological studies of cancer in, 327–328
TBB (2-ethylhexyl-2,3,4,5-tetrabromobenzoate), 90f, 98
TBDD, 283, 284t–285t, 286–289
TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane), 99
TBPH (bis(2-ethylhexyl)-2,3,4,5-tetrabromomethylphthalate), 90f, 98
TBT chloride (TBTC), 184–186
TBTP (bis(tri-n-butyltin) oxide), 184–186
TCDD. See 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD)
TCEP (tris (2-chloroethyl) phosphate), 98
TDCPP (tris (1,3-dichloroisopropyl) phosphate), 90f, 92–93, 98–100
TEFs. See Toxicity equivalence factors
TEQ (toxic equivalent quantity), 289–290, 541–545
Testicular cancer, 337
Testicular dysgenesis syndrome (TDS), 416
Testosterone
perfluoroctanoic acid (PFOA) and, 240
phthalate effects on, 432–433
TetraBDE, 597–599, 598t
2,3,4,5-tetrabromobenzoate (TBB), 90f, 98
Tetrabromobisphenol-A (TBBPA), 99
2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD)
aryl hydrocarbon receptor (AhR) interaction, 46–47, 176–178, 196, 203–204
in Binghamton New York electrical transformer fire incident (1981), 554–559, 558t
in Cambodia, 497–498
cancer
cohort studies and, 320–327, 329
human exposure and, 332–333
soft-tissue sarcomas, 307, 307f
effects of, 9–10, 12f
immunotoxicology, 175–178
mode of action, 177–178
modulation of immune function in animal models, 176–177
modulation of immune function in humans, 176
sources of exposure, 175–176
as index chemical for toxicity equivalence factors (TEFs), 38, 42
in Laos, 498–499
neurodevelopment and
aryl hydrocarbon receptor (AhR) interaction, 46–47, 176–178, 196, 203–204
experimental studies of
neurobehavioral effects, 208–215
experimental studies on molecular and cellular effects, 204–207
pharmacokinetics, 109–157
absorption/bioavailability following exposure, 110–118
dermal exposure, 117–118
inhalation exposure, 118
oral exposure, 110–117, 113t
daily intake, estimating, 149–152
distribution, 118–126
blood and lymph, 118–119
dose-dependent tissue distribution, 125
hepatic distribution, role of CYP1A2 in, 125–126
time-dependent tissue distribution, 122–125, 123t
tissue in humans, 120–122, 121t
tissue in lab animals, 119–120
excretion, 129–148
age, impact of, 142
in animals, 129–130
body burden, impact of, 145
body fat, impact of, 142, 145
breastfeeding, impact of, 145
enhancement of fecal, 147–148
half-life estimates, 131t–132t, 143t
in humans, 130, 131t–132t, 142, 143t, 145
lactation, 147
smoking status, impact of, 145
metabolism, 126–148
autoinduction of metabolism, 128–129
overview, 126–127
toxicity of metabolites, 127–128
overview, 109–110
physiologically based pharmacokinetic (PB-PK) models, 148–152
prenatal and postnatal exposure during pregnancy and nursing, 152–157
INDEX

2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) (con'td)
reproductive and developmental epidemiology, 359–374
Seveso accident and, 329, 446–461, 450t
trichlorophenol contamination by, 305
in Vietnam, 469–513
Bien Hoa city and airbase, 492–495
birth defects, 366–367, 502, 506
contamination of 2,4,5-T, 469, 471, 473t, 474, 476
early studies, 476–478
exposed populations in Vietnam, 473–474, 475f
in food, 494
health impacts of, 500–501
“hot spots,” 499
mitigation efforts, 485–489
Phu Cat airbase, 495–496
postwar international research cooperation, 478–481
remediation at Da Nang base, 489–492
studies in Vietnam, 506–511
support for Vietnamese affected by, 511–512
veterans and Agent Orange, 501–506
Yushchenko poisoning, 567–575
Tetrachlorophenol, 322, 325
Textile industries, PBDD/F formation in, 265
T helper cells, 173
Thermolysis
polybrominated dibenzofurans (PBDFs), 268
polybrominated dibenzo-\(p\)-dioxins (PBDDs), 268
Thyroid function
neonatal, 455, 455t
perfluorooctanoic acid (PFOA) and, 230–231, 238–239
phthalate effects on, 433
polybrominated diphenyl ethers (PBDEs) effect on, 14–15
Seveso accident and, 455, 455t
Yusho incident and, 539
Thyroid hormone receptor, bisphenol A binding to, 383–384, 384t
Time to pregnancy, 371
Tissue distribution, 118–126
blood and lymph, 118–119
dose-dependent, 125
hepatic distribution, role of CYP1A2 in, 125–126
in humans, 120–122, 121t
in lab animals, 119–120
time-dependent, 122–125, 123t–125t
Tissues, bisphenol A in, 387–388
T lymphocytes, 173
Toxaphene, 579
Toxic equivalent quantity (TEQ), 289–290, 541–545
Toxicity. See also specific compounds
developmental effects
of chlordane, 592
of hexabromocyclododecane (HBCD), 601
of hexachlorocyclohexanes, 586–588
of perfluorooctane sulfonate (PFOS), 597
embryotoxicity
of hexachlorocyclohexanes, 588
of pentachlorobenzene, 595
emerging persistent organic pollutants (POPs), 580–581
hepatotoxicity
of chlordane, 592
of hexachlorocyclohexanes, 588
immunotoxicology
aryl hydrocarbons (Ahs), 175–178
chlorinated pesticides, 182–184
of hexachlorocyclohexanes (HCH), 587–588
overview of, 174–175
perfluorinated compounds (PFCs), 178–182
tributyltin (TBT), 184–187
of metabolites, 127–128
neurotoxicity
mechanisms of dioxin toxicity, 195–196
polybrominated dibenzofurans (PBDFs), 286
polybrominated dibenzo-\(p\)-dioxins (PBDDs), 286
polybrominated diphenyl ethers (PBDEs), 15–17
signs in Yusho patients, 537
toxicokinetics of bisphenol A, 388–389
Toxicity equivalence factors (TEFs), 37–48
assumptions and uncertainties in use of methodology, 42, 45–47
described, 289–290
future directions, 47–48
historical context, 38–42
of polybrominated dibenzo-\(p\)-dioxins (PBDDs)/polybrominated
dibenzo furans (PBDFs), 290
tetrachloro-dibenzo-para-dioxin (TCCD) as index chemical, 38
Toxicokinetics, of bisphenol A, 388–389
TPP (triphenyl phosphate), 98
Transcription factors, regulating neurodevelopment, 197
Tributyltin (TBT), immunotoxicology of, 184–187
mode of action, 186
modulation of immune function in animal models, 185–186
modulation of immune function in humans, 185
sources of exposure, 184–185
Trichlorophenol, 305, 322, 325–326
2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 305, 333
cancer epidemiological studies and, 305, 313, 315, 317
contamination with 2,3,7,8-tetrachloro-
dibenzo-\(p\)-dioxin (TCCD), 469, 471, 473t, 474, 476
Triglycerides, 540
Triphenyl phosphate (TPP), 98
Tris (1,3-dichloroisopropyl)phosphate (TDCPP), 90f, 92–93, 98–100
Tris (2-chloroethyl) phosphate (TCEP), 98
United Nations Environmental Program (UNEP), 581
United States
animal exposure and cancer, 334
case-control studies of malignant lymphoma, 313–315
Iowa/Minnesota study, 314–315
Kansas study, 313, 314t
Nebraska study, 314, 314t
Washington State study, 315
case-control study of brain cancer, 318–319
case-control study of gastric cancer, 318
case-control study of multiple myeloma, 317
case-control study of nasal and nasopharyngeal cancer, 317
case-control study of soft-tissue sarcoma, 309–310
Kansas study, 309
Vietnam veterans, 309–310
cohort studies on cancer, 320–322, 328, 330
Uric acid, perfluorooctanoic acid (PFOA) association with, 233, 235
Urine, bisphenol A in, 386–387
U.S. Fish and Wildlife Service, toxicity equivalence factor (TEFs) and, 41
Vegetables, persistent organic pollutants (POPs) in, 74–79, 75t–77t
Veterans
Agent Orange and, 501–506
epidemiological studies of cancer in, 309–310, 317–319, 326–327
TCDD in, 361–362
Vietnam, 469–513. See also Agent Orange
Bien Hoa city and airbase, 492–495
cancer in military dogs, 334
Da Nang base, remediation at, 489–492
dioxin hot spots, 474–476, 481–485, 486f, 499
epidemiological studies of cancer in veterans, 309–310, 317–319, 326–327
exposed populations in, 473–474, 475f
map of herbicide spray missions, 475
Phu Cat airbase, 495–496
TCDD in veterans, 361–362
Vietnam Association for Victims of Agent Orange/Dioxin (VAVA), 508–509, 512

Waste incinerators
PBDD/F formation in, 264–265
pregnancy outcomes, 364–365

Water
polybrominated dibenzofurans (PBDFs) in, 274
polybrominated dibenzo-p-dioxins (PBDDs) in, 274

World Health Organization European Centre for Environmental Health (WHO-ECEH), 40–42

Yucheng incident, 330, 532, 533t, 534, 540–541

Yushchenko, Viktor, 567–575, 568f
Yushchenko dioxin poisoning, 567–575
chronology, 568–569, 570t
pharmacokinetics, 571–572, 573t, 574t
symptoms and treatment, 570–571, 571t

Yusho incident, 521–545
clinical features, 534–539, 535t–536t
in babies and infants born to patients, 538–539
cancer, 330
dermal signs, 535–536
neurological signs, 537
ocular signs, 536–537
oral and dental signs, 538
respiratory signs and symptoms signs, 537
deaths, 541
epidemiology study, 521–522
hormone and enzyme effects, 539–541
intake of contaminated rice oil, 524, 526, 526t
risk assessment, 541–545
toxic agents in rice oil, 522–524, 523f, 524t–525t
toxic agents in tissues and blood of patients, 526–534
PCBs, 526–529, 527t, 529t
PCDFs, 529, 530t–531t, 532, 533f
PCQs, 534