INDEX

Adhesive, 200
Adipic acid, 27
Agriculture, 45, 47, 109, 122, 160, 172, 192
AIChE, 1, 6, 9, 10
Algae, 75, 240, 245
Aluminium, 221
American Institute of Chemical Engineers, see AIChE
Ammonia, 26, 146, 199, 201
synthesis, 210
Animal feed, 169
Anodizing, 222
Antibiotics, 147
Aquaculture, 45
Arabinose, 180
ATP, 240
Auto shredder residue, 86

Bacterium, 181
 genetic engineering, 239
Backeland, Leo, 211
Bakelite, 211
Benchmarking, 17, 164, 222, 233
Biodiesel, 49, 109, 194
Biodiversity, 188, 211
Biofuel, 49, 54, 109, 157, 159, 171–198
 cellulosic, 171, 195
 feasibility, 194
 greenhouse gas emissions, 186
 lignocellulosic, 192
 second generation, 110
Biogas, 47
Biogenic resource, 40
Bioleaching, 237–246
 reactor, 241
Biolime, 146
Biological nanotubes, 238
Biomass, 41, 74, 84, 109, 123, 149, 171, 174, 178, 182
 lignocellulosic, 163, 164, 187
 production costs, 192
 thermal decomposition, 111
Biomass Technology Group, see BTG
Bio-oil, 139, 142
 chemicals, 144
 gasification, 143
 health and safety, 120
 hydrotreating, 143
Bioplastics, 213
Biopolymer, 214
Biorefinery, 48, 110, 157, 159, 168, 182
Bio-remediation, 245
Biosludge, 64
Boustead model, 14
BPS, 94, 99, 103, 104, 106, 250. See also
 By-product synergy
 barriers, 94
 economic challenges, 96
 network, 91, 97
 BTG, 109, 122, 129, 131, 132, 140, 150
 Business Council for Sustainable
 Development for the Gulf of Mexico, 85
Business Council for Sustainable Development of Latin America, 85
Business Resource Efficiency and Waste (BREW), 99
By-product, 81, 106, 120, 205
By-product synergy, 3, 23, 81–106, 249–262
 Dow, 252
 keys, 97
 legal barriers, 252
 people factor, 252
 principles, 252
 system factor, 252
 value, 254
California Low Carbon Fuel Standard, 167
Calvert social index, 9
Caprolactam, 27
Carbon capture, 186
Carbon cycle, 53
Carbon emissions, 98
Cascading, 87
Catalyst, 178, 179
 poison, 195
Cellulase, 181
Celluloid, 211
Cellulose, 112, 145, 173, 179, 182
Cellulose ether polymer (Methocel), 259
Cement, 84
CemStar process, 86
Center for Sustainable Technology Practices, 12
Center for Waste Reduction Technologies, 11
Chaparral Steel, 85
Char, 111, 126, 127
Charcoal, 110
Chemical industry, 209
Chemicals, 169, 172
Chemviron, 147
Chicago Manufacturing Center, 104
Chicago Waste to Profit Network, 104
Choren, 174, 176
City development index, 7
Cleaner production, 219–235
CleanTech, 16
Climate change, 44, 82, 95, 157, 171
CMLCA, 14
Coal, 41, 60, 84, 161, 166
Cobalt, 238
Cogeneration, 84, 94, 161, 168
Cold storage, 66
Combined heat and power, 52
Combustion, 163
Compliance, 222, 231
Compressed air system, 63, 69
Concrete, 104
Contextualization, regional, 44
Cook Composites and Polymers, 103
Copper, 238
Corn, 47, 54, 157, 159, 168
 stover, 160, 163, 164, 168, 184
 yield, 164
Counter-tops, 200
Cradle-to-gate, 158, 165
 fossil energy, 163
Creative destruction, 209
Crops, 47
 perennial vs. annual, 185
Crude oil, 60, 74
De-centralization, 56
Deltalinqs, 61
Density, 51, 56
 biomass, 193
 of biogenic raw materials, 42
 separation, 86
Designing Industrial Ecosystems Tool, 91
Detergents, 215
Diesel, 142
Dinitrotoluene, 27
Disposal cost, 98
Dow, 100, 249, 252, 254
Dow Jones sustainability index, 9
Dry mills, 163
Drying, 174
DSM, 200, 204
Dupont, 157, 158, 159
Dynamotive, 127
Eco-efficiency, 229, 230
EcoFlow, 92
Eco-industrial park, 58–78, 82
Ecoinvent, 14
Ecological footprint, 7, 56
Ecological impact, 48, 53, 54
Ecological symbiosis, 74
Economy of scale, 51, 64
Ecoprofit, 222
 Club, 235
 Graz, 231
Ecosystems, 41, 43
Efficiency, 25, 27, 64, 163, 166, 167, 179, 210, 211, 221
 energy, 100
Einstein, 219
EIO-LCA, 14
Electricity, 47, 54, 66, 69, 99, 161, 172, 223 renewable, 172
Electron transport membrane, 240
Elephant ivory, 211
Eloxieranstalt A. Heuberger, 221
Emissions, 86, 219, 229
Energy, 30, 33, 40, 74, 81, 157, 196, 205, 220, 224
balance, 46, 90, 136, 137, 139, 164, 165, 221
demand, 172
duty, 174
efficiency, 17
savings, 70, 250
yield from biomass, 187
Energy and mobility, 210
Energy density, 42, 110, 172, 178
Energy Independence and Security Act, 167
Ensyn Technologies, 128
Environmental adjusted domestic product, 8
Environmental cost, 91
Environmental Excellence Business Network, 102
Environmental impacts, 158
Environmental management system, 61, 221, 230
Environmental performance index, 8
Environmental science, 212
Environmental sustainability index, 8
Environmental vulnerability index, 8
Enzyme, 160, 166, 179
cost, 182
submerged liquid culture, 182
Enzyme kinetics, 238
EPA, 82, 85, 89, 91, 95, 98, 100, 103, 212
Epichlorohydrin, 27
Escherichia coli, 240
Ethanol, 34, 51, 109, 160, 174, 179, 180, 195
case study, 52
cellulosic, 159, 164
titer, 166
Ethylene, 73
Eucalyptus, 184
European Environmental Agency, 8
Eutrophication, 215
FaST (Facility Synergy Tool), 91
Fast pyrolysis, 109, 110, 120
Fatty acids, 173
Feedstock, 111, 158, 194
lignocellulosic, 160
renewable, 183
Fermentation, 110, 160, 166, 179, 180
Fertilizer, 40, 56, 84, 102, 146, 164, 166, 169, 182, 185, 186, 195, 210
Fischer-Tropsch synthesis, 175–176
Fish farm, 84
Flame retardant, 201, 211
Flaring, 64
Flue gas, 66, 93
Food, 47, 74, 147, 159, 185, 190, 195, 210
Forest, 42, 47, 49, 160, 168, 184, 189, 192, 210
Formaldehyde, 145, 200
Formic acid, 179
Fossil fuel, 30, 48, 52, 111, 139, 157, 172
FTSE4Good, 9
Fuel, 74
Fuel vs. food, 189
Full-cost accounting, 96
Funding
government, 94
hybrid, 93
Furan, 179
Furfural, 145, 179
Gabi4, 14
Galileo, 5
Gas turbines, 142
Gasification, 30, 110, 174, 175, 176	entrained flow, 112
Gasoline, 172
Gemi, 9
Genuine savings index, 8
Glass, 211
Global warming, 74, 162, 215
Global warming potential, 13, 163, 250
Glucans, 112
Glucose, 179, 238
Glycol, 102
Gold, 238
Graz, 39, 48, 221, 231, 232, 235
Green chemistry, 13, 215
Green Chemistry Award, 209
Green engineering, 15
Green procurement, 225
Green twinning, 82
Greenhouse, 71
Greenhouse gas, 82, 157, 159, 167, 186, 213
GREET, 14
Gulf Coast By-Product Synergy Initiative, 100
Gutta-percha, 211
Happy Shrimp Farm, 74
Harvest, 160, 185, 195
Hazardous waste, 95, 99
Health, 210
Heat, 47, 84, 120, 122, 126, 131, 149, 168, 175, 177, 181, 202, 206, 233
Heat integration, 149
Heat recovery, 205, 207
Heat transfer, 121
Heating system, 72
Hemicellulose, 112, 173, 179
Hexose, 181
Housing, 210
Human development index, 7
Hydrogen chloride, 102
Hydrolysis, 174, 179, 180
ICHEME, 6, 10
IFS, see Institute for Sustainability
IISD, 8, 9
Impact assessment, 161
Incineration, alternatives to, 103
Index of sustainable economic welfare, 8
Indicators, 5
Industrial boiler, 139
Industrial ecological cluster instrument, 72
Industrial ecology, 3, 12, 59, 62, 66, 67, 73, 83, 88, 249, 250
Industrial ecosystem, 59, 249, 250, 262
sustainability of, 250
Industrial park, 73, 93, 169
Industrial symbiosis, 60, 82, 94, 249–262
INES Project, 60, 65, 69, 77
Infrastructure, 73, 82, 94
Innovation network, 104
Inorganic waste, 24
Institute for Sustainability, sustainability index, 9
Institution of Chemical Engineers, see ICHEME
Integrated corn-based biorefinery, 159
Intergovernmental Panel on Climate Change, 163
International Institute for Sustainable Development, 9
Iogen, 175, 180, 181, 195
Isocyanates, 215
Jobs, 98, 99, 190
Kalundborg Industrial Symbiosis project, 60
Kalundborg, Denmark, 60, 77, 83
Laminate flooring, 200
Land use, 73, 191, 210
Landfill, 82, 84, 87, 94, 95, 98, 99, 105
Land-use change, 186, 188
Levulinic acid, 179
Life cycle, 87
cost, 96
product, 250
Life cycle analysis, 32, 53
Life cycle approach, 56
Life cycle assessment, 3, 11, 12, 158, 160, 254
Life cycle inventory, 11, 12, 163
Lignin, 112, 145, 160, 173, 179
Lignocellulose, 173
Liquefaction, 110
Liquid smoke, 121
Liquid surfactant membrane, 242
Living planet index, 7
Local Government Association (LGA), 99
Logistics, 39, 41, 46, 73, 82
Malthus, 210
Management system, 9, 220, 231
Manufacturing chains, 23
Material balance, 44, 90, 92, 221, 229
Materials budgeting, 90
Melamine, 199–208
Metal, 238
Metal recovery, 238
Metallic ores, 237
Methane, 13, 26, 49, 161
Methocel, 102, see Cellulose ether polymer
Methylmethacrylate, 27
Metrics, 2, 3, 5–19, 6, 91, 92, 96, 98, 99, 105, 106, 162
Microbial engineering, 237
Mid-America Regional Council, 102
Mineral resources, 40
Miscanthus, 184, 187
Mitsubishi Chemical Corporation, 93
Mizushima Regional Cooperation Complex, 93
Monod model, 238
N₂O, 161, 168, 215
Nanoparticles, 238
Natural ecosystems, 60
Natural farming, 49
Natural gas, 41, 51, 64, 74, 161, 166, 223, 224
Network, 56, 235
NGO, 68, 162
Nickel, 238
Nitrogen, 116
Normalization, 13
NREL, 123, 175, 180
<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrients</td>
<td>55</td>
</tr>
<tr>
<td>Nylon</td>
<td>24, 210, 211, 215</td>
</tr>
<tr>
<td>Ore</td>
<td>244</td>
</tr>
<tr>
<td>Organic acids</td>
<td>116</td>
</tr>
<tr>
<td>Organizational barriers</td>
<td>94</td>
</tr>
<tr>
<td>Out of sight, out of mind</td>
<td>252</td>
</tr>
<tr>
<td>Ozone</td>
<td>215</td>
</tr>
<tr>
<td>Packaging</td>
<td>24, 32, 222</td>
</tr>
<tr>
<td>Paint additives</td>
<td>88</td>
</tr>
<tr>
<td>Palm oil</td>
<td>132, 150, 184</td>
</tr>
<tr>
<td>Paperboard</td>
<td>32</td>
</tr>
<tr>
<td>Penicillin</td>
<td>84, 212</td>
</tr>
<tr>
<td>Pentose</td>
<td>181</td>
</tr>
<tr>
<td>People, planet and profits</td>
<td>2, 6</td>
</tr>
<tr>
<td>Per capita energy demand</td>
<td>41</td>
</tr>
<tr>
<td>Pesticides</td>
<td>40, 185</td>
</tr>
<tr>
<td>Petroleum</td>
<td>161</td>
</tr>
<tr>
<td>Phenolics</td>
<td>147</td>
</tr>
<tr>
<td>Phenols</td>
<td>145</td>
</tr>
<tr>
<td>Pheromones</td>
<td>147</td>
</tr>
<tr>
<td>Phosgene</td>
<td>27, 215</td>
</tr>
<tr>
<td>Pinch-analysis</td>
<td>46</td>
</tr>
<tr>
<td>Pine</td>
<td>118</td>
</tr>
<tr>
<td>Pipeline</td>
<td>66, 71</td>
</tr>
<tr>
<td>Plastic bags</td>
<td>32</td>
</tr>
<tr>
<td>Plasticizer</td>
<td>201</td>
</tr>
<tr>
<td>Pollution</td>
<td>67</td>
</tr>
<tr>
<td>Pollution prevention</td>
<td>254</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>24, 27, 215</td>
</tr>
<tr>
<td>Polyester</td>
<td>24, 102, 103, 104, 210</td>
</tr>
<tr>
<td>Polyether</td>
<td>102</td>
</tr>
<tr>
<td>Polymer</td>
<td>34, 211</td>
</tr>
<tr>
<td>Polylefins</td>
<td>24</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>24</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>24</td>
</tr>
<tr>
<td>Poplar</td>
<td>184</td>
</tr>
<tr>
<td>Population</td>
<td>41, 210</td>
</tr>
<tr>
<td>Preference Index</td>
<td>13</td>
</tr>
<tr>
<td>Pre-treatment</td>
<td>181</td>
</tr>
<tr>
<td>Process intensification</td>
<td>63</td>
</tr>
<tr>
<td>Product chain</td>
<td>63</td>
</tr>
<tr>
<td>management</td>
<td>60</td>
</tr>
<tr>
<td>Product development</td>
<td>199</td>
</tr>
<tr>
<td>Product life cycle</td>
<td>63</td>
</tr>
<tr>
<td>Project champion</td>
<td>88, 89</td>
</tr>
<tr>
<td>Protein</td>
<td>173, 237, 238</td>
</tr>
<tr>
<td>PVC</td>
<td>24</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>30, 66, 109–150, 174, 177</td>
</tr>
<tr>
<td>ablativa</td>
<td>122</td>
</tr>
<tr>
<td>fast</td>
<td>148</td>
</tr>
<tr>
<td>flash</td>
<td>111</td>
</tr>
<tr>
<td>fluid bed</td>
<td>124</td>
</tr>
<tr>
<td>vacuum</td>
<td>129</td>
</tr>
<tr>
<td>Pyrolysis oil</td>
<td>114, 139</td>
</tr>
<tr>
<td>Quality management</td>
<td>220</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>187</td>
</tr>
<tr>
<td>Rapid thermal processing</td>
<td>125</td>
</tr>
<tr>
<td>Raw materials</td>
<td>39, 54, 74, 82, 86, 88, 220</td>
</tr>
<tr>
<td>REACH</td>
<td>9, 216</td>
</tr>
<tr>
<td>Reactor</td>
<td></td>
</tr>
<tr>
<td>circulating fluid bed</td>
<td>128</td>
</tr>
<tr>
<td>entrained flow</td>
<td>122</td>
</tr>
<tr>
<td>jet sparged</td>
<td>242</td>
</tr>
<tr>
<td>rotating cone</td>
<td>129, 149</td>
</tr>
<tr>
<td>vortex</td>
<td>123</td>
</tr>
<tr>
<td>Red Arrow Products</td>
<td>147</td>
</tr>
<tr>
<td>Refinery</td>
<td>60, 74, 84, 93, 109</td>
</tr>
<tr>
<td>Regional development</td>
<td>65; 39–57</td>
</tr>
<tr>
<td>Regulation</td>
<td>94, 97, 252</td>
</tr>
<tr>
<td>Regulatory mechanisms</td>
<td>93, 94</td>
</tr>
<tr>
<td>Regulatory, economic, and logistics tool</td>
<td>91</td>
</tr>
<tr>
<td>Renewable</td>
<td>29, 49, 53</td>
</tr>
<tr>
<td>energy</td>
<td>171</td>
</tr>
<tr>
<td>feedstock</td>
<td>29, 33, 213</td>
</tr>
<tr>
<td>fuel</td>
<td>11</td>
</tr>
<tr>
<td>resources</td>
<td>40, 122, 159, 229, 250</td>
</tr>
<tr>
<td>Renewable Transport Fuel Obligation Order,</td>
<td>167</td>
</tr>
<tr>
<td>Reputation</td>
<td>98</td>
</tr>
<tr>
<td>Resins</td>
<td>24, 200, 212</td>
</tr>
<tr>
<td>Resource Conservation and Recovery Act</td>
<td>95</td>
</tr>
<tr>
<td>Resource Conservation Challenge</td>
<td>95</td>
</tr>
<tr>
<td>Resource depletion</td>
<td>162</td>
</tr>
<tr>
<td>Resource efficiency</td>
<td>23</td>
</tr>
<tr>
<td>Resource scarcity</td>
<td>93, 94</td>
</tr>
<tr>
<td>Responsible Care</td>
<td>9, 216, 256</td>
</tr>
<tr>
<td>Reuse</td>
<td>94, 97, 103, 252</td>
</tr>
<tr>
<td>Reverse osmosis</td>
<td>258</td>
</tr>
<tr>
<td>Rotterdam Harbor and Industry Complex</td>
<td>59, 77</td>
</tr>
<tr>
<td>Saccarification</td>
<td>166</td>
</tr>
<tr>
<td>Schumpeter</td>
<td>209</td>
</tr>
<tr>
<td>Sea vegetables</td>
<td>75</td>
</tr>
<tr>
<td>Shareholder value</td>
<td>7</td>
</tr>
<tr>
<td>Shelf life</td>
<td>42</td>
</tr>
<tr>
<td>Shell</td>
<td>1, 72, 174, 176, 177</td>
</tr>
<tr>
<td>Silver</td>
<td>238</td>
</tr>
<tr>
<td>Simapro</td>
<td>14</td>
</tr>
<tr>
<td>Slag</td>
<td>86</td>
</tr>
<tr>
<td>Small-medium enterprises</td>
<td>219–235</td>
</tr>
<tr>
<td>Social dimension</td>
<td>6, 10, 39, 42, 47, 67, 81, 98, 183, 189, 190, 252</td>
</tr>
</tbody>
</table>
Social network, 97
Socio-technological process, 59
Sodium hydroxide, 102
Soil, 43, 65, 146, 157, 168, 172, 183, 187, 188
remediation, 245
tillage, 186
Solar energy, 40, 165
Solvent, 88, 102, 117, 118, 120, 174, 181, 195, 212
Spine, 14
SPOLD, 14
Stakeholder, 7, 13, 68, 82, 89, 95, 162, 226, 259
Stamicarbon urea stripping process, 202
Starch, 160, 190
Steam, 66, 71, 84, 133, 146, 164, 202, 206, 207
explosion, 180
Steel, 85, 93, 116, 210
STENUM, 219
Styrene-butadiene rubber, 210
Sugar, 160, 179, 185, 190
Sugar cane, 183, 190, 193
Sulfur, 116
Sulfuric acid, 102, 210
Sustainability, 12, 158, 175, 195, 209, 216, 219, 237
index, 7
Sustainable development, 1, 6, 60, 83, 100, 200, 230, 250
design principles, 200
Sustainable growth, 158
Sustainable process index, 53
Switchgrass, 184
Synthesis gas, 175
Synthetic fibers, 211
System diversity, 250
Systems and Technologies for Advanced
Recycling (STAR), 85

T. ferrooxidans, 240
Tallow, 49
Tariff, 54
TCAce, 14
TEAM, 14
Technology networks, 47
Technosphere, 59, 63
Terneuzen, 256
Tool for reduction and assessment of
chemical and other environmental
impacts, see TRACI

Total cost analysis, 11
Toxic emissions, 13
TRACI, 13
Transport, 53, 56, 95, 110, 160, 186, 193, 195
Transportation, 42, 97, 98, 163, 171, 172
Transportation fuel, 144
Triple bottom line, 2, 216

U.S. Business Council for Sustainable
Development, see U.S. BCSD
U.S. Department of Energy,
industries of the future, 100
U.S. Environmental Protection Agency,
see EPA
Umberto, 14
United Nations Conference on Environment
and Development in Rio de Janeiro,
85
Uranium, 238
Urea, 200
U.S. BCSD, 83, 87, 92, 94, 100, 103, 104
Gulf of Mexico, 99
model, 89
U.S. President’s Council on Sustainable
Development, 93
Utilities consumption, 205
Utility, 70, 74, 82
Utility sharing, 65

Value chain, 158
Vegetable oil, 109, 183, 190
Vinylchloride, 27

Waste, 25, 44, 51, 59, 65, 81, 87, 92, 93, 96,
103, 168, 219, 229, 253
hazardous, 222
minimization, 166, 254
process, 102
Waste exchange, 82
Waste heat, 64, 71, 72, 74, 148
Waste reduction, 102
Waste treatment, 73, 74
Waste water, 64, 84, 94, 102, 219, 222, 226
municipal, 256
treatment, 88
Water, 81, 99, 163, 167, 168, 181, 182, 188,
205, 224, 257
Well being index, 8
Well-to-wheels, 158, 164, 167
Wet mill, 164
Whale oil, 211
Wheat, 51, 54, 187
straw, 163, 184
Willow, 184
Wood, 42, 90, 110, 111, 112, 125, 134, 136,
139, 145, 178, 184, 191, 200, 201
pellets, 49
World Business Council for Sustainable
Development, 8

Xylans, 112
Xylose, 180