Index

AB interaction, 422
Absolute importance, 368–369
Absolute zero point (ratio), 268
Action plan, 359
Activity duration estimating, 67–68
Activity list, 63
Activity resource estimating, 66
Activity sequencing, 65–66
Actual cost (AC), 78, 148
Adjusted present value (APV), 392, 401–403
Affinity diagram, 355, 365–366
After-tax weighted average cost of capital, 396
Agile approaches, 131, 161–162
Agile/lean project management, 162
Akao, Yoji, 216, 347
Alpha risk, 39
American Production and Inventory Control Society (APICS), 46
Analogous estimate, 67
Analysis of variances, See ANOVA (ANalysis Of VAriances):
Analytical hierarchy process (AHP), 107–108, 143, 369
and consistency, 258–259
example of, 247–258, 436–439
functions of, 242
inconsistent matrix, 261–262
“An Intuitive Explanation of Bayesian Reasoning” (Yudkowsky), 304
Annual employee review, See employee review:
ANOVA (ANalysis Of VAriances), 72, 430
Apgar, David, 96
Approved change request, 61
Architecture design, 127
“A Spiral Model of Software Development and Enhancement” (Boehm), 123
Assignable-cause problem, 32
Attributable cause, 325
Attribute control chart, 324
 types of, 336–338
Attribute p and np charts, 337–338
Attributes, 324
Audit checks, 49
Automated testing and configuration tools, 162
Automatic application generation/4GL, 129–130
Average, defined, 325
Average and range charts, 328
Average chart, 332
Averaging, 328
Awakening stage, 50
Base case NPV, 401
Basis-of-estimate process, 410
Bayes, Thomas, 302–304
Bayesian analysis, 454
Bayesian Theorem, 302–304, 455, 457
Bebchuk, Lucian, 198
Bell curves:
 used in performance reviews, 177–178
 use of, 172
Bell Telephone, 31
Benchmarking, 82
Best practices, 14, 82
Beta risk, 39
Blocks, 419
Bonuses, 175
Bottom-up estimating, 66–67, 75, 153–155
Brainstorming, 98
Buckaroo-Bonzai (risk management approach), 97
Budgets and variances, 154
Bureau of Citizenship and Immigration Services, 188
Business requirements, 348
Business school aptitude example, 299–302
Buy-or-build analysis, 126
Cancellation for cause, 109
Cancellation for convenience, 108
Capability Maturity Model (CMM), 50
Capability Maturity Model (CMM) maturity processes, 213
Capability Maturity Model Integration (CMMI): maturity processes, 213
CASE tools, 129
Cash flows, 390
Causal relationship, 298
Cause-and-effect diagram. See Ishikawa diagram (cause-and-effect or fishbone diagram):
C chart, 336
Certainty stage, 51
Change control system, 61
Change management processes, 410
Change-or-die syndrome, 218–219
Change request, 159
Chaos Report, 12
Characterization experiments, 419
Checksheet, 340–343
Chief executive officers:
 compensation of, 199
 issues regarding, 199–200
 personality profile of, 202
 self-interest of vs. customer, 200
Chrysler:
 changes at, 213
 competition to, 212
Classified data, 266–267
CMM certification, 182
CMM/CMMI (capability maturity model integration) certification, 181–182
CobiT, 214
Command-and-control model (waterfall), 163
Commercial-off-the-shelf (COTS) integration model, 126–127
Common-cause problem, 32
Common causes, defined, 325
Communication, 184
Communications management:
 communications planning, 91–93
 information distribution, 93
 performance reports, 94
 stakeholder management, 94–95
Communications management plan, 94
Communications planning, 91–93
Competition, 212
Competitive benchmarks, 381–382
Competitive satisfaction performance, 370
Competitive satisfaction performance scale, 444
Computers, origins of, 11
Conditional probability, 297–302
 defined, 294
Configuration management processes, 410
Configuration management system, 61
Consistency and analytical hierarchy process (AHP), 258
Consistency index, 260, 262, 263, 265
Consistency ratio, 259, 260, 262, 263
Constraints:
 multitasking as, 238
 parallel vs. series, 237
 removal of excess contingency, 239
Constraint survey, 235–237
Continuous data, 266, 268
Continuous maturity processes, 213
Continuum/subfeature approach, 385
Contract administration, 108
Contract closure, 108
Contract types, 103
Control chart, 32
Controllable risk elements, 410
Corrective actions, 71
Cost budgeting, 76
Cost control, 77
Cost estimating:
 bottom-up estimate, 75
 enterprise environmental factors, 74
 organizational process assets, 74
parametric estimate., 75–76
project scope statement, 75
Cost estimating relationships (CERs), 75
Cost guide, 158
Cost management, 73–79
cost budgeting, 76
cost control, 77–79
cost estimating, 74–76
Cost of poor quality, 148–149
Cost of quality, 83
real, 51
Cost of Quality (COQ), 24
Cost performance index (CPI), 155–158, 162
Cost-plus contracts, 126
Cost savings, 44
Counting data, 324
Crashing, 69
Cringely, Robert X., 169
Criteria averages, 253
Criteria scores, 251
criteria weighting, 259
Critical chain method, 70
Critical chain project management (CCPM), 70–71, 231
Critical path, 65
Critical path elements, 280–282
Critical path method, 69
Critical-to-quality (CTQ) characteristics, 418
Crosby, Philip B., 50–51
on quality, 24, 81
on real cost of quality, 51
on state of U.S. business, 201
zero defects slogan, 41
“Crystal ball effect”, 275
Cumulative distribution, 281, 327
Current rating, 371
Current ratio, 371
Current satisfaction performance, 371
vs. goals, 371
Customer involvement, 161
Customer needs:
identification and structure of, 353–358
prioritization of, 359
Customer process model, 351
Customers:
dissatisfied with defects and delays, 149
importance lists, 368
irritations suffered by, 204
needs of, 41
quality viewed by, 25
as source of all revenue, 197
treatment of, 202
Customer satisfaction, 153
evaluation criteria, 180
Customer satisfaction performance, 370, 378, 383
Customer segment definition, 350–351
Customer segments table, 351
Customer service:
declining level of, 198
with offshoring, 184
Customers’ needs, 347
Customer specification limit, 334–336
Customer voice table (gemba visit), 349, 351–353
Customer wants and needs, 364, 365
vs. technical response, 362
Customer workflow diagram, 351
Custom software development, 170
Data, average and range of, 329
Data flowcharts, 338
Data measurement and analysis, 265–269
Data types, 265–266
Decision criteria, 243
Decision criteria list, 248–249
Decision forks, 293
Decision processes, 243
Decision tools and processes, 18
Decision tree analysis, 100, 143, 291
terms used in, 293–294
Decision trees, 294–297
Defect prevention, 85
Defined-benefit plan, 200
Deming, W. Edwards, 34–38
adopts cause-and-effect diagrams, 43
on employee review process, 179
on knowledge, 39–40
on learning, 31
on management, 169
meets Roger Smith, 212–213
on models, 278, 283
on psychology, 40
on state of U.S. business, 201
Design of experiments (DOE), 82–83, 216
characterization experiments, 419
defined, 417
fixed-effects model, 419
mixed models, 419
optimization experiments, 419
Design of experiments (Continued)
- random-effects model, 419
- screening experiments, 419
- Design vs. inspection, 45
- Desirable events, 231
- Development resources, 184
- Development standard, 119
- Dilbert postings, 150–151
- Direct and manage project execution, 112
- Discount rate, 390, 398
- Discrete data, 266
- Discretionary dependencies, 65–66
- Dodging bullets ‘R’ Us (risk management approach), 97
- DOE factorial concepts, 217
- Domain analysis, 126
- Do nothing option, 291
- Drucker, Peter:
 - on customers’ needs, 347
 - on idea dilution, 201
 - on incentives, 151
 - on quality, 26

Earned value, 155
- computation of, 17
- for software project, 160
- Earned value (EV), 78
- Earned value (EV) management, 388
- Earned value analysis, 72
- Earned value calculation, 77
- Earned value technique (EVT), 78, 112
- benefits of, 79
- Effect interactions, 429
- Effects, 429
- The Eight Wastes, 142
- 80/20 Rule, 313–315
- Empirical model (agile/iterative: Plan-Do-Check-Act), 163
- Employee recognition, 202–203
- Employee review:
 - annual review, 173
 - bell curves used in, 177–178
 - Deming on process of, 179
 - and forced ranking, 174
 - management’s view of, 198
 - uses of, 174
- Employee review process failure:
 - management’s responsibility for, 179
 - pseudostatistics, 175–179
 - steps to improve, 179–180
- summary of, 179
- Employment taxes, 188
- Enlightenment stage, 50
- Enron, 214
- Enterprise environmental factors, 74
- Equally spaced (interval), 268
- “Essay Towards Solving a Problem in the Doctrine of Chances”, 302
- Estimates:
 - analogous, 67
 - basis-of-estimate process, 410
 - bottom-up, 75, 153–155
 - cost estimating, 75–76
 - estimates, 75, 153–155
 - forecasted completion, 78
 - multiple critical path, 282–288
 - padded, 240
 - parametric, 67, 75–76
 - PERT, 67–68
 - REBE (rectally extracted basis approach), 153–154
 - single path, 280–282
 - three-point, 67–68
- Evaluations (employee). See employee review:
- Evolutionary model, 123–126
- Excel spreadsheet, 68, 193
- triangular distribution example, 284–285
- Excel spreadsheets, 328
- Expected value, 291
- defined, 293
- External affinity diagram, 365–366
- External dependencies, 66
- Failure modes and effect analysis (FMEA), 217
- False acceptance rate (FAR), 453
- False rejection rate (FRR), 453
- Fast tracking, 69–70. See also merge bias
- Feigenbaum, Armand, 144–145
- 50% Pad, 145
- Financial incentives, 151
- Financial tools, 389–395
- Finish-to-finish relationship, 65
- Finish-to-start relationship, 65, 120, 447
- Fishbone diagram. See Ishikawa diagram
- (cause-and-effect or fishbone diagram):
 - Fisher, Ronald, 217
- “Fitness of Quality” concept, 42
- 5W And H, 351
Index

5W And H list, 91–93, 97
The Five Whys, 142
Fixed-effects model, 419
Float, 69
Flowcharts, 338
Flows to equity (FTE), 392, 398–401
Forced ranking and employee evaluation, 174
Ford Motors, 225
Forecasted completion estimates, 78
4GL Tools, 129–130
Four Ms and E, 319
14 Points” (Deming), 35, 36–37
Frequency distribution, 267
Frequency histogram, 308
Fried, Jesse, 198
Functional hierarchy, 246, 247
Functional requirements, 359
Future cash flows, 390
Galvin, Bob, 29
Gantt software tools, 68–69
Gantt chart, 147
Gantt limitations, 192–193
Gates, Bill, 186–187
Gemba visit. See customer voice table (*gemba* visit):
General Motors (GM):
financial condition of, 225
plant closings, 212
Global Crossing, 214
Goals, 370
vs. current satisfaction performance, 371
Goldratt, Eliyahu, 70, 231
Good decisions vs. positive outcomes, 294
“Greenbeans”, 147
Guide To Quality Control (Ishikawa), 85, 216, 307, 317, 340
H1-B/L1 visa program, 187–188
H1-B visa resources, 186
Hidden factory, 145, 198
Hidden plant, 144–145
Hierarchy diagram, 365, 366
Hierarchy process, 246
Histogram, 308–309
Hoffman, Robert, 187
Honda, 213
House of Quality (HOQ), 4, 348, 359–362
example of, 365–366
Human resource management, 86–91
human resource planning, 87
project team acquisition, 87–88
project team development, 88
project team management, 89–91
Human resource planning, 87
“If it moves-kill it” (risk management approach), 97
Immediate feedback, 49
Impact ranking, 411
Implied needs, 25–26, 357–358
Improvement ratio, 371
In control process, 325
Independent events, 298
Information distribution, 93
Information technology (IT):
 development of industry, 11
 failure and success rates of projects, 12–14
 Governance Institute (ITGI), 214
 resource shortage, 186–191
Information Technology Infrastructure Library (ITIL), 214
Integrated change control, 113
Intelligent waterfall design, 117
Interactive voice response (IVR) systems alternative, 205
Internal affinity diagram, 365–366
Internal rate of return (IRR) analysis, 403–407
defined, 404
limitations of, 407
and negative cash flows, 405
International Standards Organization (ISO), 25
Interval scale, 267
Interviews, 98
Ishikawa, Kaoru, 43–45, 85, 307, 340
Ishikawa diagram (cause-and-effect or fishbone diagram), 43, 98, 460
benefits of, 317, 319
examples of, 316–317, 320–324
steps in creating, 320
Issue log, 90
Iterative/agile model, 121–123
Japan:
 approach to quality in, 35–36, 186
 customer-focused model of, 224
 quality changes in, 28
Japan (Continued)
receptivity to quality focus, 40–41, 43–44, 224
Robust Design movement in, 46
software error rates in, 86
Japanese auto industry, 212, 217
Japanese programmers, 186
Japanese Union of Scientists and Engineers
(JUSE), 40, 43, 216, 307, 317
Juran, Joseph, 40–43
models for quality, 205–206
quality defined by, 42
on quality development, 43
on state of U.S. business, 201
Juran, Joseph M., 313
Juran Institute, 42
Just-in-time concept, 46
Kaizen (continuous improvement), 46–47, 216
Kawakita, Jiro, 355
Kepner-Tregoe process, 84
Key requirements, 126
KJ Method, 355
Knowledge:
about variation, 39
theory of, 39–40
Knowledge worker model, 151
L1 visa program, 188
Latin square, 419
Leadership vs. management, 152
Lean (concept), 29
Lean manufacturing, 46
Lean production, 32
Lean Six Sigma, 216
Learning pipeline, 98
Lessons learned, 90
Leverage, 393
Leveraged buyout (LBO), 393
Levered firms/equity, 393–394
Linear graphs, 45
Logical fallacy, 298
Logic flow diagram flowcharts, 338, 340
Loss function, 45, 46, 216
Lower control limit (LCL), 32–33
defined, 325
Lower specification limit (LSL), 325
Low hanging fruit focus, 315
Main effects plot, 420
Maintenance model, 128–129
Make-or-buy decisions, 103
Management:
Deming on, 169
incompetence of, 205
vs. leadership, 152
quality leadership of, 35
quality responsibility of, 215
by sounding smart, 225
Management process (MP) tools, 348
Management reserve, 76, 411
Mandatory dependencies, 65
Maximum value table (MVT), 359
McCoy, John, 200
Measurement scales, 265–266
Merge bias, 65, 70, 277, 283
Merge bias calculation, 448
Microsoft, 186
Microsoft Project Professional (software), 66, 68, 70, 146–147, 155, 167, 192
Milestone list, 63
Minitab (software), 83, 193
Mistake-proofing concept, 41, 49. See also poka-yoke (mistake-proofing) process
Mistakes, 49
Mixed models, 419
Mizuno, Shigeru, 347
Models:
“A Spiral Model of Software Development and Enhancement” (Boehm), 123
Capability Maturity Model (CMM), 50
Capability Maturity Model (CMM) maturity processes, 213
Capability Maturity Model Integration (CMMI), 191, 213
CMM/CMMI (capability maturity model integration), 191
CMM/CMMI (capability maturity model integration) certification, 181–182
command-and-control (waterfall), 163
customer-focused, of Japan, 224
customer process, 351
Deming on, 278, 283
eight basic plus one, 119–137
empirical (agile/iterative: Plan–Do–Check–Act), 163
evolutionary, 123–126
fixed-effects, 419
iterative/agile, 121–123
Monitor and control project work, 112
Monte Carlo analysis, 100, 143, 273–275
“what if” analysis, 70
Example of, 278–280, 445–451
Merge bias, 70
Moore, Michael, 212
Multiple critical path estimate, 282–288
Multiple critical tasks, 278
Multitasking as a constraint, 238

Offshore companies, 191
Offshoring:
 communication and, 184
 customer service with, 184
 of development resources, 184
 of problems, 180–181
 reliability problems with, 183–184
Offshoring jobs, 198
Ohno, Taiichi, 46
One-factor-at-at time (OFAT) approach, 418
One-factor two-level design, 420–421
100% Audit checks, 49
Opportunity cost of capital (OCC), 390
Optimization experiments, 419
Oracle, 186
Ordinal importance, 369
Ordinal scale, 267
Organizational development, 88
Organizational process assets, 74
Orthogonal arrays, 45, 249–252, 427
Out of control process, 325
Out of the Crisis (Deming), 35

Padded estimates, 240
Parameter design, 45
Parametric estimate, 67, 75–76
Pareto, Vilfredo, 313–315
Pareto analysis, 460
Pareto approach, 56
Pareto chart, 313–315
Pareto’s Principle, 313
Pay without Performance (Bebchuk and
Fried), 198
P chart, 336
Performance measurements, 71, 78
Performance reports, 90, 94
Performance reviews. See employee review:
Personal computers, 11
PERT (Program Evaluation and Review
Technique), 68, 446
PERT estimate, 67–68
Plan contracting, 105
Plan-Do-Check-Act (Deming), 161
Plan-Do-Study-Act (PDSA) Cycle (Deming),
33–34
Planned value (PV), 78
Planning matrix, 362, 364, 368
Planning process steps, 362
PMBOK:
 limitations of, 55
 process areas of, 56–57
PMBOK process:
 adapts to IT projects, 11
 areas of, 17
 limitations of, 14, 15
 loss of, 23
 as quality process, 24
 tools of, 16–17
Point-of-origin inspection, 49
Poka-yoke (mistake-proofing) process, 41,
46, 48–50, 216
Positive risk, 102
Potential dollar loss, 411
Index

Precedence diagramming method, 17, 65
Preliminary scope statement, 111
Preliminary scope statement development, 111
Primavera Team Play, 66
Priorities, 371–378
Prioritization matrix method, 365
Probability, defined, 293
Probability ranking, 411
Problem identification, 168–169
Problem reports, 128–129
Process flowcharts, 338
Procurement management:
 contract administration, 108
 contract closure, 108
 plan contracting, 105
 purchases and acquisition plans, 103–105
 seller responses, 106
 seller selection, 107–109
Product analysis, 60
Productivity of software development, 186
Program Evaluation and Review Technique (PERT), 67–68, 446
Project charter development, 109–110
Project closure, 113–114
Project dependencies, 447, 451
Project goal definition, 350
Project integration management:
 direct and manage project execution, 112
 integrated change control, 113
 monitor and control project work, 112
 plan development, 111
 preliminary scope statement development, 111
 project charter development, 109–110
 project closure, 113–114
Project management:
 current status of, 12
 history of, 10–11
 myths and inaccuracies about, 9
 plan development, 111
 waterfall approach to, 117
Project Management Institute (PMI), 10, 214
 earned value defined by, 78
 process areas, 56
 on quality planning, 80
Project management principles, 143–158
 build vs. buy decision, 169
 cost of quality vs. cost of doing business, 148
 customers vs. investors, 152–153
 Gantt Chart limitations, 192–193
 iterative development, 155
 low-hanging fruit focus, 149–150
 on offshoring quality problems, 180–181
 process simplification, 144
 quick fixes, 168–169
 REBE (rectally extracted basis of estimate) approach, 153–154
 resource utilization, 146
 on rework as cost of doing business, 144–145
 state of management competency (SMC), 150–151
Project Management Professional certification, 14, 15
Project Management Professional status, 14
Project management software, 66–67
 Gantt software tools, 68–69
 Microsoft Project Professional (software), 66, 68, 70, 146–147, 155, 167, 192
 Minitab (software), 83, 193
Project management tools, 17
 application of, 167
 familiarity with, 165–166
 lack of fit, 166–167
Project postmortem, 90
Project quality management:
 quality assurance performance, 83–84
 quality control performance, 84–85
 quality planning, 80–83
Project risk, overall evaluation of, 131–137
Project risk management, 95–103, 407–412
 business risks, 408
 project risks, 408
 qualitative risk analysis, 99
 quantitative risk analysis, 100–101
 risk factors, 409
 risk identification, 98–99
 risk management planning, 97–98
 risk monitoring and control, 102–103
 risk response planning, 101–102
 tools for, 408
Project scope statement, 75, 103
Project team acquisition, 87–88
Project team development, 88
Project team management, 89–91
Project teams, 164
Project timeline, 451–452
Quality: defined, 355
 defined by Juran, 42
 defined by Taguchi, 46
 implementation practices of U.S. business, 220–221
 International Standards Organization (ISO) on, 25
 management responsibility for, 215
 methodologies of, 26–31
 vs. quantity, 211–212
 real cost of, 51
 timeline of, 26–31
Quality adoption levels:
 House of Quality, 220
 Quality Bunker, 221
 Quality Condo, 220–221
 Quality Crypt, 223
 Quality Dungeon, 222–223
 Quality Factory, 220
 Quality Landfill, 221–222
 Quality Outhouse, 222
 Quality Tenement, 221
Quality assurance performance, 83–84
Quality characteristics, 372
Quality control (QC), 41
 performance of, 84–85
Quality control circles, 43
Quality Control Handbook (Juran), 40
Quality dispersion, 319
Quality functional deployment (QFD), 29, 216
 defined, 347
 example of, 439–444
 steps of, 349
 tools of, 349
Quality functional deployment (QFD) diagram:
 nonnumeric target modeling, 385–386
 priorities, 371–378
 targets, 382–384
 technical benchmarks, 381–382
 technical correlations, 379–380
Quality Functional Deployment (QFD) Institute, 348
Quality functional deployment II (QFD II), 348
Quality improvement, 41
Quality is Free (Crosby), 24, 50
Quality personnel types:
 Quality Homeless, 223
 Quality Practitioner, 223
 Quality Prostitute, 224
 Quality Roadkill, 223–224
 Quality Zombie, 223
Quality planning, 41
 cost–benefit analysis, 81
 quality checklists, 81
 quality metrics, 81
Quality problems:
 how not to resolve, 219
 on offshoring of, 180–181
Quality processes:
 essence of, 217
 failure causes of, 28–29
Quality trilogy, 41
Quantitative risk analysis, 100–101
Quantitative risk analysis matrix (QRAM), 411
 example of, 445–451
Quantity vs. quality, 211–212
Questionable cause fallacy, 298
RAD tools, 129–130
Random consistency, 261
Random consistency table, 263
Random-effects model, 419
Randomized-block-design, 419
Range average, 330
Range chart, 331, 332
Range checking, 328
Rank order (ordinal), 268
Rapid application development (RAD) tools, 129–130
Rational Unified Process (RUP), 214
Ratio scale, 268
Raw weight, 371
 seven tools plus one, 371
Real random number sequence generator, 276
Recommended corrective action, 61
Reengineering model, 128
Rehost model, 127
Relationships, 365, 372, 373
Relative importance, 369
Requested changes, 61, 71
Index

Requirements analysis, 127
Resource availability, 451
Resource leveling, 70
Resource-leveling, 146
Resource utilization, 147
Reverse-engineering process, 128
RFP games, 106
Risk:
 defined, 102
 sequences of, 447
 summary of, 412
 ways to handle, 101
Risk assessment, 444
Risk-assessment matrix, 131–137
Risk evaluation, 412
Risk factors, 409–410
Risk identification, 98–99
Risk management, 412
Risk management planning, 97–98
Risk management training, 412
Risk monitoring and control, 102–103
Risk probability and impact assessment, 100
Risk register, 101
Risk response planning, 101–102
Robustness, 45
Roger and Me (Moore), 212
Rolled throughput yield (RTY), 143, 145
Roosevelt, Eleanor, 166
Root-cause analysis, 168–169
Root cause analysis (RCA), 84
R. S. Means, 14
R.S. Means-Building Construction Cost Data, 156
“Rule of Seven”, defined, 325
Rules, 142, 153
Saaty, Thomas L., 245
 on precision, 261
Safety net, 145
Sales point, 371
Sarbanes-Oxley Act (SOX), 214
Scatter diagram:
 example, 309–313
 interpretation of, 310–313
Schedule compression, 69
Schedule control, 71–73
Schedule development, 68
Schedule performance index (SPI), 155–158
 earned value for, 162
Schedule risks, 409
Scientific management, 173
Scope control, 61
Scope creep, 154
Scope definition, 59–60
Scope planning, 59
Scope risks, 409
Scope verification, 61
Screening experiments, 419
SEI (Software Engineering Institute), 412–413
SEI certification, 182
Selected criteria, 243
Self-improvement methods, 183
Seller responses, 106
Seller selection, 107–109
Sensitivity analysis, 297–302
 defined, 293
Service level agreement (SLA), 129
“Seven Deadly Sins” (Deming), 38
“Seven Quality Tools”, 216
Seven tools:
 checksheet, 340–343
 defined, 307
 flowcharts, 338
 histogram, 308–309
 Ishikawa diagram (cause-and-effect or fishbone diagram), 315–324
 Pareto chart, 313–315
 scatter diagram, 309–313
 statistical process chart (SPC), 324–336
“Seven Tools of Quality” (Ishikawa), 43
Seven tools plus one:
 competitive satisfaction performance, 370
 current satisfaction performance, 371
 customers importance lists, 368
 goals, 371
 improvement ratio, 371
 normalized raw weight, 372
 raw weight, 371
 sales point, 371
Sheehan, George, 199
Shewhart, Walter, 31–34, 216
Shingo, Shigeo, 46–50
 on poka-yoke process, 48
Shrink-wrapped solution, 170
Siemens, 188
Single minute exchange of dies (SMED), 46, 47–48
Single path estimate, 280–282
Six Sigma, 42, 72, 214
 origins of elements of, 216
 tools of, 349
Slack, 69
Slogans, 37, 41, 222
SMED (single minute exchange of dies), 46–48
Smith, Roger, 212–213
Soft skills, 10, 88
Software:
 - development sequence, 158–159
 - error rate of, 185
 - productivity development of, 186
 - version 1.0 of, 172
Software Development Life Cycle (SDLC) steps, 117
“Software Development Worldwide: The State of the Practice”, 185
Software industry:
 - business processes, 15
 - lack of cost guide for, 158
Software project, earned value on, 160
Solution options, 353–358
Space program development, 11
Sprint, 122
Staff burnout rate, 148
Staged maturity processes, 213
Stakeholder analysis, 60
Stakeholder feedback, 93
Stakeholder information, 94–95
Stakeholder management, 94–95
Standard deviation, 330
 - defined, 325
Standard distribution, 327
Standish Group, 12, 170
Start-to-start relationship, 65
Stated needs, 25
Statement of work (SOW), 103
State variables, defined, 294
Statistical Method from the Viewpoint of Quality Control (Shewhart), 33–34
Statistical process chart (SPC):
 - invention of, 31, 216
 - for risk, 408
 - seven tools, 324–336
 - terms used in, 325
 - tools, 460
Statistical quality control approach, 49
Statistical tools list, 85
Structural hierarchy, 246
Student syndrome, 69
Subprocess areas, 57
Substitute quality characteristics (SQC), 364, 372
Supplemental executive retirement program (SERP), 200
SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis, 98, 411
System design, 45
System integrators, 171
“System of Profound Knowledge” (Deming), 38
System quality control (SQC), 211
Systems, defined, 30–39
Taguchi, Genichi, 44–46, 216
 - quality defined by, 46
Targets, 382–384
Tata, 188
Taxes, 188
Tax rate, 392
Tax shield, 392, 395
Taylor, Frederick W., 173, 212
Team-building challenges, 152
Teams, profit sharing within, 180
Technical benchmarks, 381–382
Technical correlations, 362, 379–380
Technical matrix, 362, 376
Technical response, 364, 372
 - vs. customer wants and needs, 362
Texas Instruments, 11
The Apprentice (tv show), 164
The New Economics (Deming), 35
Theory of constraints, 231, 234
Thinking tools, 142
Three-point estimate, 67–68
Time and material contracts, 126
Time-boxed deliverables, 161
Time management:
 - activity definition, 63–65
 - activity duration estimating, 67–73
 - activity resource estimating, 66–67
 - activity sequencing, 65–66
 - milestone list, 63
 - schedule control, 71–73
 - schedule development, 68–71
Time value of money, 392
Tolerance design, 45
Tools:
 - automated testing and configuration, 162
 - CASE, 129
Index

Tools (Continued)

- decision, 18
- financial, 389–395
- 4GL, 129–130
- Gantt software, 68–69
- management process (MP), 348
- of PMBOK process, 16–17
- for project management, 17, 165–167
- for project risk management, 408
- of quality function deployment (QFD), 349
- rapid application development (RAD), 129–130
- seven tools plus one, 368, 370–372
- of Six Sigma, 349
- for specific issues, 453
- statistical, 85
- thinking, 142
- Total quality control (TQC), 26–31, 144–145
- Total quality management (TQM), 26–31
- Toyota, 212, 225
- Transactions of the Royal Society of London, 302
- Tree diagram, 364, 365–367
- Triangular distribution, 281
- Triangular distribution formula, 284
- Trouble tickets, 128–129
- Tsuda, Yoshikazu, 35–36
- Two factorial design, 421–431
- Two-level factorial design, 430

- U chart, 337
- Uncertainty fork, 293
- Uncertainty stage, 50
- Uncontrollable risk elements, 410
- Undesirable effects (UDEs), 234
- Union of Japanese Scientists and Engineers (JUSE), 43, 307
- Unlevered firms/equity, 393–394
- Upper control limit (UCL), 325
- Upper control limits (UCL), 32–33
- Upper specification limit (USL), 325
- Upside risk, 102
- U.S. Army, 211
- U.S. auto industry, 212
- U.S. business:
 - Crosby on state of, 201
 - Deming on state of, 201
 - failures of, 201–202
 - Juran on state of, 201
- quality failures of, 213
- quality implementation practices of, 220–221
- U.S. Department of Defense (DOD), 160
- Utility, defined, 293
- Value of information, defined, 293
- Vaporware, 171
- Variable control chart, 324, 328
- Variable data, 324
- Variance analysis, 61–62
- Variances, 72
- Variation, 39
- Varying debt to equity ratio, 401
- Version 1.0 of software, 172
- Virtual teams, 88
- Voice of the customer (VOC), 220, 364, 365
- Waterfall approach, 61, 95, 166
- change adversity of, 63
- to project management, 117
- Waterfall model, 120–121
- vs. Spiral Software, System Development Lifecycle Model (SDLM), 119
- Waterfall SDLC approach, 119
- Weighted average cost of capital (WACC), 392, 395–398
- Weighted criteria averages, 251
- Weighted scores, 243
- Weight ranking of selected criteria, 245
- Western Electric, 40
- Western Electric Statistical Quality Control Handbook (Juran), 40
- “What if” analysis, 70
- “Who Killed the Virtual Case File?”, 154–155
- Wide Band Delphi, 98
- Wisdom stage, 51
- Work breakdown structure (WBS), 61
- Workday-length, 146
- Working environment, 179
- Work-made-for-hire, 172
- Work performance information, 90
- World Com, 214
- Yates Notation (Yates Standard Order), 425–426
- Yudkowsky, E., 304
- Zero defects quality (ZDQ) system, 49
- Zero defects quality control, 41