CONTENTS

PREFACE x

ACKNOWLEDGMENTS xii

PART I HETEROGENEOUS PLATFORMS: TAXONOMY, TYPICALUSES, AND PROGRAMMING ISSUES 1

1. Heterogeneous Platforms and Their Uses 3
 1.1 Taxonomy of Heterogeneous Platforms 3
 1.2 Vendor-Designed Heterogeneous Systems 4
 1.3 Heterogeneous Clusters 6
 1.4 Local Network of Computers (LNC) 8
 1.5 Global Network of Computers (GNC) 9
 1.6 Grid-Based Systems 10
 1.7 Other Heterogeneous Platforms 11
 1.8 Typical Uses of Heterogeneous Platforms 11
 1.8.1 Traditional Use 11
 1.8.2 Parallel Computing 12
 1.8.3 Distributed Computing 12

2. Programming Issues 13
 2.1 Performance 14
 2.2 Fault Tolerance 17
 2.3 Arithmetic Heterogeneity 19

PART II PERFORMANCE MODELS OF HETEROGENEOUS PLATFORMS AND DESIGN OF HETEROGENEOUS ALGORITHMS 23

3. Distribution of Computations with Constant Performance Models of Heterogeneous Processors 25
CONTENTS

3.1 Simplest Constant Performance Model of Heterogeneous Processors and Optimal Distribution of Independent Units of Computation with This Model 25

3.2 Data Distribution Problems with Constant Performance Models of Heterogeneous Processors 29

3.3 Partitioning Well-Ordered Sets with Constant Performance Models of Heterogeneous Processors 31

3.4 Partitioning Matrices with Constant Performance Models of Heterogeneous Processors 38

4. Distribution of Computations with Nonconstant Performance Models of Heterogeneous Processors 60

4.1 Functional Performance Model of Heterogeneous Processors 60

4.2 Data Partitioning with the Functional Performance Model of Heterogeneous Processors 64

4.3 Other Nonconstant Performance Models of Heterogeneous Processors 77

4.3.1 Stepwise Functional Model 77

4.3.2 Functional Model with Limits on Task Size 78

4.3.3 Band Model 80

5. Communication Performance Models for High-Performance Heterogeneous Platforms 81

5.1 Modeling the Communication Performance for Scientific Computing: The Scope of Interest 81

5.2 Communication Models for Parallel Computing on Heterogeneous Clusters 83

5.3 Communication Performance Models for Local and Global Networks of Computers 97

6. Performance Analysis of Heterogeneous Algorithms 99

6.1 Efficiency Analysis of Heterogeneous Algorithms 99
6.2 Scalability Analysis of Heterogeneous Algorithms

PART III PERFORMANCE: IMPLEMENTATION AND SOFTWARE

7. Implementation Issues

7.1 Portable Implementation of Heterogeneous Algorithms and Self-Adaptable Applications

7.2 Performance Models of Heterogeneous Platforms: Estimation of Parameters

7.2.1 Estimation of Constant Performance Models of Heterogeneous Processors

7.2.2 Estimation of Functional and Band Performance Models of Heterogeneous Processors

7.2.3 Benchmarking of Communication Operations

7.3 Performance Models of Heterogeneous Algorithms and Their Use in Applications and Programming Systems

7.4 Implementation of Homogeneous Algorithms for Heterogeneous Platforms

8. Programming Systems for High-Performance Heterogeneous Computing

8.1 Parallel Programming Systems for Heterogeneous Platforms

8.2 Traditional Parallel Programming Systems

8.2.1 Message-Passing Programming Systems

8.2.2 Linda

8.2.3 HPF

8.3 Heterogeneous Parallel Programming Systems

8.4 Distributed Programming Systems

8.4.1 NetSolve

8.4.2 Nimrod

8.4.3 Java

8.4.4 GridRPC
PART IV APPLICATIONS

9. Numerical Linear Algebra Software for Heterogeneous Clusters

9.1 HeteroPBLAS: Introduction and User Interface

9.2 HeteroPBLAS: Software Design

9.3 Experiments with HeteroPBLAS

10. Parallel Processing of Remotely Sensed Hyperspectral Images on Heterogeneous Clusters

10.1 Hyperspectral Imaging: Introduction and Parallel Techniques

10.2 A Parallel Algorithm for Analysis of Hyperspectral Images and Its Implementation for Heterogeneous Clusters

10.3 Experiments with the Heterogeneous Hyperspectral Imaging Application

10.4 Conclusion

11. Simulation of the Evolution of Clusters of Galaxies on Heterogeneous Computational Grids

11.1 Hydropad: A Simulator of Galaxies’ Evolution

11.2 Enabling Hydropad for Grid Computing

11.2.1 GridRPC Implementation of the Hydropad

11.2.2 Experiments with the GridSolve-Enabled Hydropad

11.3 SmartGridSolve and Hydropad

11.3.1 SmartGridSolve Implementation of the Hydropad

11.3.2 Experiments with the SmartGridSolve-Enabled Hydropad

11.4 Acknowledgment

PART V FUTURE TRENDS

12. Future Trends in Computing

12.1 Introduction
CONTENTS

12.2 Computational Resources 231
 12.2.1 Complex and Heterogeneous Parallel Systems 231
 12.2.2 Intel-ization of the Processor Landscape 232
 12.2.3 New Architectures on the Horizon 232

12.3 Applications 233

12.4 Software 234

12.5 Some Important Concepts for the Future 235
 12.5.1 Heterogeneous Hardware Environments 235
 12.5.2 Software Architecture 235
 12.5.3 Open Source 235
 12.5.4 New Applications 235
 12.5.5 Verification and Validation 236
 12.5.6 Data 236

12.6 2009 and Beyond 236

REFERENCES 239

APPENDICES 251

Appendix A Appendix to Chapter 3 253
 A.1 Proof of Proposition 3.1 253
 A.2 Proof of Proposition 3.5 253

Appendix B Appendix to Chapter 4 256
 B.1 Proof of Proposition 4.1 256
 B.2 Proof of Proposition 4.2 257
 B.3 Proof of Proposition 4.3 257
 B.4 Functional Optimization Problem with Optimal Solution, Locally Nonoptimal 261

INDEX 265