Contents

List of Boxes XVII
Preface XIX
Acknowledgments XXV
List of Abbreviations XXVII

1 Introduction 1
1.1 Photochemistry and Photophysics in Science and Technology 1
1.2 Historical Notes 2
1.3 A New Dimension of Chemistry and Physics 3
1.4 The Nature of Light 5
1.5 Absorption of Light 7
1.6 Quantum Yield, Efficiencies, and Excited-State Reactivity 8
References 10

2 Elementary Molecular Orbital Theory 11
2.1 Introduction 11
2.2 The Hydrogen Atom 11
2.3 Polyelectronic Atoms 13
2.4 From Atoms to Molecules 17
2.5 Electronic Structure of Homonuclear Diatomic Molecules 21
2.6 Electronic Structure of Heteronuclear Diatomic Molecules 25
2.7 Simple Polyatomic Molecules and Elements of Group Theory 26
2.7.1 Elements of Group Theory 26
2.7.2 Water 29
2.7.3 Ammonia 31
2.8 Typical Organic Molecules 33
2.8.1 Methane 33
2.8.2 Ethene 35
2.8.3 Benzene 37
2.8.4 Formaldehyde 39
2.9 Transition Metal Complexes 41
2.9.1 General Concepts 41
2.9.2 Typical Metal Complexes 48
References 52

3 Light Absorption and Excited-State Deactivation 55
3.1 Light Absorption 55
3.1.1 Selection Rules 57
3.1.2 Symmetry Selection Rules 58
3.1.3 Spin Selection Rules 59
3.1.4 The Franck–Condon Principle 60
3.1.5 Visualization of Photochemical Reactions on Potential Energy Surfaces 62
3.2 Jablonski Diagram 64
3.3 Excited-State Deactivation 68
3.3.1 Vibrational Relaxation 68
3.3.2 Radiationless Deactivation 68
3.3.3 Radiative Deactivation 71
3.3.4 Radiative Lifetime 72
3.4 Chemical Reactions 73
3.5 Kinetic Aspects 74
3.6 Solvent and Temperature Effects 75
3.6.1 Solvatochromic Shift 75
3.6.2 Crossing of States 77
3.6.3 Temperature Effects on Excited-State Lifetime 79
3.6.4 Thermally Activated Delayed Fluorescence 80
3.7 Selected Molecules 81
3.7.1 Oxygen 81
3.7.2 Naphthalene 83
3.7.3 Benzophenone 85
3.7.4 Zinc(II) Tetraphenyl Porphyrin 87
3.7.5 [Cr(en)₃]³⁺ 90
3.7.6 [Co(NH₃)₆]³⁺ 92
3.7.7 [Ru(bpy)₃]²⁺ 94
3.8 Semiconductors 96
References 100

4 Excited States: Physical and Chemical Properties 103
4.1 Excited State as a New Molecule 103
4.2 Lifetime 103
4.3 Energy 104
4.4 Geometry 105
4.4.1 Small Molecules 106
4.4.2 Ethene 107
4.4.3 Ethyne 108
4.4.4 Benzene 109
4.4.5 Formaldehyde 109
4.4.6 Square Planar Metal Complexes 111
4.5 Dipole Moments 112
4.6 Electron Transfer 114
4.7 Proton Transfer 117
4.8 Excimers and Exciplexes 120

References 122

5 From Molecules to Supramolecular Systems 125
5.1 Supramolecular (Multicomponent) Systems and Large Molecules 125
5.2 Electronic Interaction in Mixed-Valence Compounds 127
5.3 Electronic Interaction in Donor–Acceptor Complexes 129
5.4 Electronic Stimulation and Electronic Interaction in the Excited State 131
5.5 Formation of Excimers and Exciplexes in Supramolecular Systems 134

References 136

6 Quenching and Sensitization Processes in Molecular and Supramolecular Species 139
6.1 Introduction 139
6.2 Bimolecular Quenching 140
6.2.1 Stern–Volmer Equation 140
6.2.2 Kinetic Details 143
6.2.3 Static versus Dynamic Quenching 144
6.2.4 Sensitized Processes 145
6.2.5 Spin Considerations 146
6.3 Quenching and Sensitization Processes in Supramolecular Systems 146
6.4 Electron-Transfer Kinetics 150
6.4.1 Marcus Theory 150
6.4.2 Quantum Mechanical Theory 153
6.4.2.1 The Electronic Factor 154
6.4.2.2 The Nuclear Factor 156
6.4.2.3 Optical Electron Transfer 156
6.5 Energy Transfer 157
6.5.1 Coulombic Mechanism 159
6.5.2 Exchange Mechanism 161
6.6 Role of the Bridge 163
6.7 Catalyzed Deactivation 164

References 166

7 Molecular Organic Photochemistry 169
7.1 Introduction 169
7.2 Alkenes and Related Compounds 169
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1</td>
<td>Basic Concepts</td>
<td>169</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Photoisomerization of Double Bonds</td>
<td>170</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Electroyclic Processes</td>
<td>172</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Sigmatropic Rearrangements</td>
<td>173</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Di-π-Methane Reaction</td>
<td>174</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Photocycloaddition Reactions</td>
<td>174</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Photoinduced Nucleophile, Proton, and Electron Addition</td>
<td>175</td>
</tr>
<tr>
<td>7.3</td>
<td>Aromatic Compounds</td>
<td>176</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Introduction</td>
<td>176</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Photosubstitution</td>
<td>179</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Photorearrangement</td>
<td>180</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Phototransposition</td>
<td>181</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Photocycloadditions</td>
<td>181</td>
</tr>
<tr>
<td>7.4</td>
<td>Carbonyl Compounds</td>
<td>182</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Introduction</td>
<td>182</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Photochemical Primary Processes</td>
<td>183</td>
</tr>
<tr>
<td>7.5</td>
<td>Photochemistry of Other Organic Compounds</td>
<td>185</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Nitrogen Compounds</td>
<td>185</td>
</tr>
<tr>
<td>7.5.1.1</td>
<td>Overview</td>
<td>185</td>
</tr>
<tr>
<td>7.5.1.2</td>
<td>Photoisomerization of Azocompounds</td>
<td>186</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Saturated Oxygen and Sulfur Compounds</td>
<td>186</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Halogen Compounds</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>189</td>
</tr>
</tbody>
</table>

8 Photochemistry and Photophysics of Metal Complexes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Metal Complexes</td>
<td>191</td>
</tr>
<tr>
<td>8.2</td>
<td>Photophysical Properties</td>
<td>191</td>
</tr>
<tr>
<td>8.3</td>
<td>Photochemical Reactivity</td>
<td>192</td>
</tr>
<tr>
<td>8.4</td>
<td>Relationships between Electrochemistry and Photochemistry</td>
<td>194</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Cobalt (III) Complexes</td>
<td>195</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Copper (I) Complexes</td>
<td>196</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Ru(II) Polypyridine Complexes</td>
<td>196</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Excited-State Redox Potentials</td>
<td>199</td>
</tr>
<tr>
<td>8.5</td>
<td>Luminescent Metal Complexes</td>
<td>201</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Polypyridine Metal Complexes</td>
<td>201</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Cyclometallated Complexes</td>
<td>203</td>
</tr>
<tr>
<td>8.5.2.1</td>
<td>Ruthenium Complexes</td>
<td>204</td>
</tr>
<tr>
<td>8.5.2.2</td>
<td>Rhodium Complexes</td>
<td>204</td>
</tr>
<tr>
<td>8.5.2.3</td>
<td>Iridium Complexes</td>
<td>205</td>
</tr>
<tr>
<td>8.5.2.4</td>
<td>Platinum Complexes</td>
<td>207</td>
</tr>
<tr>
<td>8.5.2.5</td>
<td>Orbital Nature of the Emitting Excited State</td>
<td>212</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Porphyrin Complexes</td>
<td>213</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Chromium (III) Complexes</td>
<td>216</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Lanthanoid Complexes</td>
<td>219</td>
</tr>
<tr>
<td>8.6</td>
<td>Photochemical Processes</td>
<td>223</td>
</tr>
</tbody>
</table>
8.6.1 Types of Photoreactions 223
8.6.1.1 Photodissociation and Related Reactions 223
8.6.1.2 Photooxidation–Reduction Reactions 224
8.6.1.3 Intramolecular Rearrangements 225
References 226

9 Interconversion of Light and Chemical Energy by Bimolecular Redox Processes 231
9.1 Light as a Reactant 231
9.2 Light as a Product 232
9.3 Conversion of Light into Chemical Energy 233
9.4 Chemiluminescence 235
9.5 Electrochemiluminescence 235
9.6 Light Absorption Sensitizers 237
9.7 Light Emission Sensitizers 240
References 242

10 Light-Powered Molecular Devices and Machines 245
10.1 Molecules, Self-Organization, and Covalent Synthetic Design 245
10.2 Light Inputs and Outputs: Reading, Writing, and Erasing 246
10.3 Molecular Devices for Information Processing 247
10.3.1 Photochromic Systems as Molecular Memories 247
10.3.2 Molecular Logics 249
10.3.2.1 Luminescent Sensors as Simple Logic Gates 250
10.3.2.2 AND Logic Gate 251
10.3.2.3 XOR Logic Gate with an Intrinsic Threshold Mechanism 251
10.3.2.4 Encoding and Decoding 253
10.4 Molecular Devices Based on Energy Transfer 255
10.4.1 Wires 255
10.4.2 Switches 257
10.4.3 Plug/Socket Systems 258
10.4.4 Light-Harvesting Antennas 259
10.5 Molecular Devices Based on Electron Transfer 260
10.5.1 Wires 260
10.5.2 Switches 263
10.5.3 Extension Cables 265
10.6 Light-Powered Molecular Machines 268
10.6.1 Basic Remarks 268
10.6.2 The Role of Light 268
10.6.3 Rotary Motors Based on cis–trans Photoisomerization 269
10.6.4 Linear Motions: Molecular Shuttles and Related Systems 271
10.6.5 Photocontrolled Valves, Boxes, and Related Systems 275
References 276
Contents

11 Natural and Artificial Photosynthesis

11.1 Energy for Spaceship Earth 281
11.2 Natural Photosynthesis 284

11.2.1 Light Harvesting: Absorption and Energy Transfer 285
11.2.2 Photoinduced Electron Transfer Leading to Charge Separation 285

11.2.2.1 Bacterial Photosynthesis 285
11.2.2.2 Green Plants Photosynthesis: Photosystem II 287
11.2.3 Efficiency of Photosynthesis 288

11.3 Artificial Photosynthesis 290

11.3.1 Artificial Antenna 293
11.3.2 Artificial Reaction Centers 296

11.3.3 Coupling Artificial Antenna and Reaction Center 299
11.3.4 Coupling One-Photon Charge Separation with Multielectron Water Splitting 301

11.4 Water Splitting by Semiconductor Photocatalysis 302

References 304

12 Experimental Techniques

12.1 Apparatus 309

12.1.1 Light Sources 309

12.1.2 Monochromators, Filters, and Solvents 317
12.1.3 Cells and Irradiation Equipment 319
12.1.4 Detectors 321

12.2 Steady-State Absorption and Emission Spectroscopy 323

12.2.1 Absorption Spectroscopy 323

12.2.1.1 Instrumentation 324
12.2.1.2 Qualitative and Quantitative Applications 325
12.2.1.3 Sample Measurement 325
12.2.2 Emission Spectroscopy 326

12.2.2.1 Instrumentation 326

12.2.2.2 Emission Spectra 328
12.2.2.3 Excitation Spectra 329
12.2.2.4 Presence of Spurious Bands 330
12.2.2.5 Quantitative Relationship between Luminescence Intensity and Concentration 331

12.2.2.6 Stern–Volmer Luminescence Quenching 332
12.2.2.7 Emission Quantum Yields 333

12.3 Time-Resolved Absorption and Emission Spectroscopy 335

12.3.1 Transient Absorption Spectroscopy 335

12.3.1.1 Transient Absorption with Nanosecond Resolution 335
12.3.1.2 Transient Absorption with Femtosecond Resolution 337
12.3.2 Emission Lifetime Measurements 338

12.3.2.1 Single Flash 338
12.3.2.2 Gated Sampling 339
12.3.2.3 Upconversion Techniques 339
12.3.2.4 Single-Photon Counting 341
12.3.2.5 Data Analysis 342
12.3.2.6 Phase Shift 343
12.3.2.7 Luminescence Lifetime Standards 345
12.4 Absorption and Emission Measurements with Polarized Light 346
12.4.1 Linear Dichroism 346
12.4.2 Luminescence Anisotropy 347
12.5 Reaction Quantum Yields and Actinometry 349
12.5.1 Reaction Quantum Yields 349
12.5.2 Actinometry 350
12.5.2.1 Potassium Ferrioxalate 351
12.5.2.2 Potassium Reineckate 352
12.5.2.3 Azobenzene 353
12.6 Other Techniques 353
12.6.1 Photothermal Methods 353
12.6.1.1 Photoacoustic Spectroscopy 354
12.6.1.2 Photorefractive Spectroscopy 355
12.6.2 Single-Molecule Spectroscopy 357
12.6.3 Fluorescence Correlation Spectroscopy 358
12.6.4 X-ray Techniques 360
References 361

13 Light Control of Biologically Relevant Processes 365
13.1 Introduction 365
13.2 Vision 365
13.2.1 Basic Principle 365
13.2.2 Primary Photochemical Events 367
13.3 Light, Skin, and Sunscreens 367
13.4 Photochemical Damage in Living Systems 369
13.4.1 Photochemical Damage to DNA 369
13.4.2 Photochemical Damage to Proteins 369
13.5 Therapeutic Strategies Using Light 370
13.5.1 Phototherapy 370
13.5.2 Photochemotherapy of Psoriasis 370
13.5.3 Photodynamic Therapy 371
13.5.4 Photocontrolled Delivery 373
13.6 Photocatalysis in Environmental Protection 375
13.6.1 Principles 375
13.6.2 Solar Disinfection (SODIS) 375
13.6.3 Photoassisted Fenton Reaction 376
13.6.4 Heterogeneous Photocatalysis 376
13.7 DNA Photocleavage and Charge Transport 377
13.7.1 Photocleaving Agents of Nucleic Acid 377
13.7.2 Photoinduced Electron-Transfer Processes in DNA 378
13.8 Fluorescence 379
14 Technological Applications of Photochemistry and Photophysics 385

14.1 Introduction 385
14.2 Photochromism 385
14.3 Luminescent Sensors 388
14.3.1 Principles 388
14.3.2 Amplifying Signal 389
14.3.3 Wind Tunnel Research 389
14.3.4 Thermometers 391
14.3.5 Measuring Blood Analytes 393
14.3.6 Detecting Warfare Chemical Agents 395
14.3.7 Detecting Explosives 397
14.4 Optical Brightening Agents 399
14.5 Atmospheric Photochemistry 400
14.5.1 Natural Processes Involving Oxygen 400
14.5.2 Ozone Hole 401
14.6 Solar Cells 402
14.6.1 Inorganic Photovoltaic (PV) Cells 402
14.6.2 Organic Solar Cells (OSCs) 403
14.6.3 Dye-Sensitized Solar Cells (DSSCs) 405
14.7 Electroluminescent Materials 407
14.7.1 Light-Emitting Diodes (LEDs) 407
14.7.2 Organic Light-Emitting Diodes (OLEDs) 407
14.7.3 Light-Emitting Electrochemical Cells (LECs) 409
14.8 Polymers and Light 411
14.8.1 Photopolymerization 411
14.8.2 Photodegradation 411
14.8.3 Stabilization of Commercial Polymers 412
14.8.4 Photochemical Curing 413
14.8.5 Other Light-Induced Processes 413
14.8.6 Photolithography 414
14.8.7 Stereolithography 415
14.8.8 Holography 416
14.9 Light for Chemical Synthesis 417
14.9.1 Photochlorination of Polymers 418
14.9.2 Synthesis of Caprolactam 418
14.9.3 Synthesis of Vitamins 418
14.9.4 Perfumes 419

References 420

15 Green (Photo)Chemistry 425

15.1 Definition, Origins, and Motivations 425
15.2 Photochemistry for Green Chemical Synthesis 426
15.3 Photocatalysis 428
15.3.1 Heterogeneous Photocatalysis 428
15.3.2 Homogeneous Photocatalysis 429
15.4 Photocatalysis in Synthesis 429
15.4.1 Alkanes 430
15.4.2 Alkenes 430
15.4.3 Alkynes 432
15.4.4 Sulfides 432
15.5 Photocatalytic Pollution Remediation 433
15.6 Use of Solar Energy in Green Synthesis 434
References 436

16 Research Frontiers 439
16.1 Introduction 439
16.2 Aggregation-Induced Emission 439
16.3 Phosphorescence from Purely Organic Materials by Crystal Design 441
16.4 Synthesis of a 2D Polymer 443
16.5 Photocatalyzed Relative Unidirectional Transit of a Nonsymmetric Molecular Wire through a Molecular Ring 444
16.6 Molecular Rotary Motors Powered by Visible Light via Energy Transfer 445
16.7 Cooperation and Interference in Multifunction Compounds 447
16.8 Singlet Fission 449
16.9 One-Color Photochromic System 452
16.10 Photonic Modulation of Electron Transfer with Switchable Phase Inversion 454
16.11 Dye-Sensitized Photoelectrosynthesis Cells (DSPECs) 457
References 459

Index 463