Contents

Preface XV
List of Contributors XVII

Part I Materials Modeling and Simulation: Crystal Plasticity, Deformation, and Recrystallization 1

1 Through-Process Modeling of Materials Fabrication: Philosophy, Current State, and Future Directions 3
 Günter Gottstein
 1.1 Introduction 3
 1.2 Microstructure Evolution 5
 1.3 Microstructural Processes 6
 1.4 Through-Process Modeling 10
 1.5 Future Directions 14
 References 16

2 Application of the Generalized Schmid Law in Multiscale Models: Opportunities and Limitations 19
 Paul Van Houtte
 2.1 Introduction 19
 2.2 Crystal Plasticity 20
 2.2.1 Generalized Schmid Law 22
 2.2.2 Calculation of Slip Rates, Lattice Rotation, and Stress from a Prescribed Deformation 23
 2.2.3 Taylor Factor 26
 2.3 Polycrystal Plasticity Models for Single-Phase Materials 27
 2.3.1 Sachs Model 28
 2.3.2 Taylor Theory 28
 2.3.3 Relaxed Constraints Taylor Theory 29
 2.3.4 Grain Interaction Models 30
 2.4 Plastic Anisotropy of Polycrystalline Materials 33
 2.5 Experimental Validation 34
3 Crystal Plasticity Modeling 41
Franz Roters, Martin Diehl, Philip Eisenlohr, and Dierk Raabe
3.1 Introduction 41
3.2 Fundamentals 45
3.2.1 Constitutive Models 46
3.2.1.1 Dislocation Slip 47
3.2.1.2 Displacive Transformations 47
3.2.2 Homogenization 48
3.2.3 Boundary Value Solvers 49
3.3 Application Examples 49
3.3.1 Texture and Anisotropy 49
3.3.1.1 Prediction of Texture Evolution 49
3.3.1.2 Prediction of Earing Behavior 50
3.3.1.3 Optimization of Earing Behavior 51
3.3.2 Effective Material Properties 55
3.3.2.1 Direct Transfer of Microstructures 55
3.3.2.2 Representative Volume Elements 57
3.3.2.3 The Virtual Laboratory 59
3.4 Conclusions and Outlook 61
References 62

4 Modeling of Severe Plastic Deformation: Time-Proven Recipes and New Results 69
Yuri Estrin and Alexei Vinogradov
4.1 Introduction 69
4.2 One-Internal Variable Models 70
4.3 Two-Internal Variable Models 77
4.4 Three-Internal Variable Models 81
4.5 Numerical Simulations of SPD Processes 82
4.6 Concluding Remarks 86
References 87

5 Plastic Anisotropy in Magnesium Alloys – Phenomena and Modeling 91
Bevis Hutchinson and Matthew Barnett
5.1 Deformation Modes and Textures 91
5.2 Anisotropy of Stress and Strain 92
5.3 Modeling Anisotropic Stress and Strain 103
5.4 Concluding Remarks 114
References 115
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Implementation of Anisotropic Grain Boundary Properties in Mesoscopic Simulations</td>
<td>Anthony D. Rollett</td>
<td>161-180</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>7.2</td>
<td>Overview of Simulation Methods</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>7.3</td>
<td>Anisotropy of Grain Boundaries</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Energy</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Mobility</td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>7.4</td>
<td>Simulation Approaches</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Potts Model</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Cellular Automata</td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Phase Field</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Cusps in Grain Boundary Energy</td>
<td></td>
<td>174</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Level Set</td>
<td></td>
<td>174</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Vertex</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Moving Finite Element</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>7.4.8</td>
<td>Particle Pinning of Boundaries</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>8</td>
<td>Grain Boundary Junctions: Their Effect on Interfacial Phenomena</td>
<td>Lasar S. Shvindlerman and Günther Gottstein</td>
<td>189-200</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>8.2</td>
<td>Experimental Measurement of Grain Boundary Triple Line Energy</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>8.3</td>
<td>Impact of Triple Line Tension on the Thermodynamics and Kinetics in Solids</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Grain Boundary Triple Line Contribution to the Driving Force for Grain Growth</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Effect of the Triple Junction Line Tension on the Zener Force</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Effect of Triple Junction Line Tension on the Gibbs–Thompson Relation</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>8.4</td>
<td>Why do Crystalline Nanoparticles Agglomerate with Low Misorientations?</td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>8.5</td>
<td>Concluding Remarks</td>
<td></td>
<td>198</td>
</tr>
<tr>
<td>9</td>
<td>Plastic Deformation by Grain Boundary Motion: Experiments and Simulations</td>
<td>Dmitri A. Molodov and Yuri Mishin</td>
<td>201-204</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td></td>
<td>201</td>
</tr>
<tr>
<td>9.2</td>
<td>What is the Coupled Grain Boundary Motion?</td>
<td></td>
<td>202</td>
</tr>
<tr>
<td>9.3</td>
<td>Computer Simulation Methodology</td>
<td></td>
<td>204</td>
</tr>
</tbody>
</table>
10 Grain Boundary Migration Induced by a Magnetic Field: Fundamentals and Implications for Microstructure Evolution 235
Dmitri A. Molodov
10.1 Introduction 235
10.2 Driving Forces for Grain Boundary Migration 236
10.3 Magnetically Driven Grain Boundary Motion in Bicrystals 237
10.3.1 Specimens and Applied Methods to Measure Grain Boundary Migration 237
10.3.2 Measurements of Absolute Grain Boundary Mobility 239
10.3.3 Misorientation Dependence of Grain Boundary Mobility 243
10.3.4 Effect of Boundary Plane Inclination on Tilt Boundary Mobility 245
10.4 Selective Grain Growth in Locally Deformed Zn Single Crystals under a Magnetic Driving Force 246
10.5 Impact of a Magnetic Driving Force on Texture and Grain Structure Development in Magnetically Anisotropic Polycrystals 248
10.5.1 Texture Evolution during Grain Growth 248
10.5.2 Microstructure Evolution and Growth Kinetics 253
10.6 Magnetic Field Influence on Texture and Microstructure Evolution in Polycrystals Due to Enhanced Grain Boundary Motion 258
10.7 Concluding Remarks 261
References 262

11 Interface Segregation in Advanced Steels Studied at the Atomic Scale 267
Dierk Raabe, Dirk Ponge, Reiner Kirchheim, Hamid Assadi, Yujiao Li, Shoji Goto, Aleksander Kostka, Michael Herbig, Stefanie Sandlöbes, Margarita Kuzmina, Julio Millán, Lei Yuan, and Pyuck-Pa Choi
11.1 Motivation for Analyzing Grain and Phase Boundaries in High-Strength Steels 267
11.2 Theory of Equilibrium Grain Boundary Segregation 271
11.2.1 Gibbs Adsorption Isotherm Applied to Grain Boundaries 271
11.2.2 Langmuir–McLean Isotherm Equations for Grain Boundary Segregation 272
11.2.3 Phase-Field Modeling of Grain Boundary Segregation and Phase Transformation at Grain Boundaries 274
11.2.4 Interface Complexions at Grain Boundaries 278
11.3 Atom Probe Tomography and Correlated Electron Microscopy on Interfaces in Steels 280
11.4 Atomic-Scale Experimental Observation of Grain Boundary Segregation in the Ferrite Phase of Pearlitic Steel 282
11.5 Phase Transformation and Nucleation on Chemically Decorated Grain Boundaries 288
11.5.1 Introduction to Phase Transformation at Grain Boundaries 288
11.5.2 Grain Boundary Segregation and Associated Local Phase Transformation in Martensitic Fe-C Steels 290
11.6 Conclusions and Outlook 295
References 295

12 Interface Structure-Dependent Grain Growth Behavior in Polycrystals 299
Suk-Joong L. Kang, Yang-Il Jung, Sang-Hyun Jung, and John G. Fisher
12.1 Introduction 299
12.2 Fundamentals: Equilibrium Shape of the Interface 300
12.2.1 Equilibrium Crystal Shape 300
12.2.2 Equilibrium Boundary Shape 301
12.3 Grain Growth in Solid–Liquid Two-Phase Systems 302
12.3.1 Growth Mechanisms and Kinetics of a Single Crystal in a Liquid 302
12.3.1.1 Diffusion-Controlled Crystal Growth 302
12.3.1.2 Interface Reaction-Controlled Crystal Growth 303
12.3.1.3 Mixed Controlled Growth of a Faceted Crystal 306
12.3.2 Grain Growth Behavior 307
12.3.2.1 Stationary Grain Growth in Systems with Spherical Grains 308
12.3.2.2 Nonstationary Grain Growth in Systems with Faceted Grains 309
12.4 Grain Growth in Solid-State Single-Phase Systems 312
12.4.1 Migration Mechanisms and Kinetics of the Grain Boundary 312
12.4.2 Grain Growth Behavior 315
12.5 Concluding Remarks 317
References 318

13 Capillary-Mediated Interface Energy Fields: Deterministic Dendritic Branching 323
Martin E. Glicksman
13.1 Introduction 323
13.2 Capillary Energy Fields 324
13.2.1 Background 324
13.2.2 Melting Experiments 325
13.2.3 Self-Similar Melting 326
13.2.4 Influence of Capillarity on Melting 327
13.3 Capillarity-Mediated Branching 329
13.3.1 Local Equilibrium 329
13.3.2 Gibbs–Thomson–Herring Interface Potential 329
13.3.3 Tangential Gradients and Fluxes 330
13.3.4 Capillary-Mediated Energy 331
13.4 Branching 333
13.4.1 Stefan Balance 333
13.4.2 Zeros of the Surface Laplacian 333
13.5 Dynamic Solver Results 334
13.6 Conclusions 336
References 337

Part III Advanced Experimental Approaches for Microstructure Characterization 339

14 High Angular Resolution EBSD and Its Materials Applications 341
Claire Maurice, Romain Quey, Roland Fortunier, and Julian H. Driver
14.1 Introduction: Some History of HR-EBSD 341
14.2 HR-EBSD Methods 342
14.2.1 Basic Geometry of HR-EBSD 342
14.2.2 EBSP Numerical Simulations 345
14.2.3 Practical Problems 345
14.2.3.1 Lens Distortion 346
14.2.3.2 Orientation Gradients 347
14.2.3.3 Pattern Center 349
14.3 Applications 351
14.3.1 Low-Angle Grain Boundaries 351
14.3.2 Pure Elastic Strains 351
14.3.3 Crystal Defects and Lattice Misorientations: GND Analysis 354
14.3.4 Crystal Defects and Elastic Strains 359
14.4 Discussion 359
14.5 Conclusions 362
References 363

15 4D Characterization of Metal Microstructures 367
Dorte Juul Jensen
15.1 Introduction 367
15.2 4D Characterizations by 3DXRD – From Idea to Implementation 368
15.2.1 The 3DXRD Microscope 369
15.2.2 Another Approach for 3D Mapping of Crystallographic Contrast Microstructure by Synchrotron x-rays 371
15.3 Examples of Applications 372
15.3.1 Recrystallization Studies 373
15.3.1.1 Nucleation 373
15.3.1.2 Grain Boundary Migration 374
15.3.1.3 Recrystallization Kinetics 376
15.3.2 Other 4D Studies 377
15.3.2.1 Plastic Deformation 377
15.3.2.2 Grain Growth 378
15.3.2.3 Phase Transformation 379
15.4 Challenges and Suggestions for the Future Success of 3D Materials Science 379
15.5 Concluding Remarks 381
References 382

16 Crystallographic Textures and a Magnifying Glass to Investigate Materials 387

Jürgen Hirsch
16.1 Introduction 387
16.2 Texture Evolution and Exploitation of Related Information in Metal Processing 388
16.2.1 Casting 389
16.2.2 Deformation 389
16.2.2.1 Textures Revealing Details on the Mechanisms of Deformation 391
16.2.2.2 Stacking Fault Energy Analysis in Rolling Texture Formation 395
16.2.2.3 Surface Shearing and Lubrication Effects 395
16.2.3 Recrystallization 397
16.2.3.1 Oriented Nucleation, Oriented Growth and in situ Recrystallization in Aluminum Alloys 397
16.2.3.2 Recrystallization in Particle Containing Al Alloys 399
16.3 Summary 399
References 400

Part IV Applications: Grain Boundary Engineering and Microstructural Design for Advanced Properties 403

17 The Advent and Recent Progress of Grain Boundary Engineering (GBE): In Focus on GBE for Fracture Control through Texturing 405

Tadao Watanabe
17.1 Introduction 405
17.2 Historical Background 406
17.2.1 Demand for Strong and Tough Structural Materials 406
17.2.2 Long Pending Materials Problem and Dilemma 407
17.2.3 Origin of Heterogeneity of Grain Boundary Phenomena 409
17.3 Basic Concept of Grain Boundary Engineering 410
17.3.1 Beneficial and Detrimental Effects of Grain Boundaries 410
17.3.2 Basic Concept of Grain Boundary Engineering 411
17.3.3 Structure-Dependent Grain Boundary Properties in Bicrystals 413
17.3.4 Structure-Dependent Fracture Processes in Polycrystals 417
17.3.5 Parameters to Characterize Grain Boundary Microstructure 419
17.4 Characteristic Features of Grain Boundary Microstructures 420
17.4.1 Grain Size Dependence of Grain Boundary Microstructure 420
17.4.2 Change in Grain Boundary Energy during Grain Growth 420
17.4.3 Relation between Grain Boundary Character Distribution and Grain Size 421
17.5 Relation between Texture and Grain Boundary Microstructure 426
17.5.1 Theoretical Basis of GB Microstructure in Textured Polycrystals 426
17.5.2 Characteristic Features of GB Microstructures in Textured Polycrystals 427
17.6 Grain Boundary Engineering for Fracture Control through Texturing 434
17.6.1 The Control of Microscale Texture and GB Microstructure 434
17.6.2 GB Microstructure-Dependent Brittle Fracture in Molybdenum 437
17.6.3 Percolation-Controlled and GB Microstructure-Dependent Fracture 438
17.6.4 Fracture Control Based on Fractal Analysis of GB Microstructure 439
17.7 Conclusion 441
References 441

18 Microstructure and Texture Design of NiAl via Thermomechanical Processing 447
Werner Skrotzki
18.1 Introduction 447
18.2 Experimental 447
18.3 Microstructure and Texture Development 450
18.4 Texture Simulations 457
18.5 Mechanical Anisotropy 459
18.6 Conclusions 463
References 463

19 Development of Novel Metallic High Temperature Materials by Microstructural Design 467
Martin Heilmayer, Joachim Rössler, Debashis Mukherji, and Manja Krüger
19.1 Introduction 467
19.2 Alloy System Mo–Si–B 468
19.2.1 Manufacturing and Microstructure 468
19.2.2 Strength and Ductility at Ambient Temperatures 471
19.2.2.1 Single-phase Mo Solid Solutions 471
19.2.2.2 Multiphase Mo–Si–B Alloys 475
19.2.3 Oxidation Resistance 476
19.2.4 Creep Resistance 478
19.3 Alloy System Co–Re–Cr 480
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.1 Oxidation</td>
<td>480</td>
</tr>
<tr>
<td>19.3.2 Strength and Ductility at Ambient Temperatures</td>
<td>483</td>
</tr>
<tr>
<td>19.3.3 Creep Resistance</td>
<td>486</td>
</tr>
<tr>
<td>19.4 Conclusions</td>
<td>489</td>
</tr>
<tr>
<td>References</td>
<td>490</td>
</tr>
</tbody>
</table>

Index 495