Contents

Preface XIII
List of Contributors XV

1 In-situ Synthesis of Polymer Nanocomposites 1
 Vikas Mittal
 1.1 Introduction 1
 1.2 Synthesis Methods 9
 1.3 In-situ Synthesis of Polymer Nanocomposites 12
 References 24

2 Polyamide Nanocomposites by In-situ Polymerization 27
 Anastasia C. Boussia, Stamatina N. Vouyiouka, and Constantine D. Papaspyrides
 2.1 Introduction 27
 2.2 Manufacturing Processes of Commercially Important Polyamides 29
 2.2.1 Poly(caproamide) (PA 6) 29
 2.2.2 Poly(hexamethylene adipamide) (PA 6.6) 30
 2.2.3 Low-Temperature Polymerization Processes 31
 2.3 Polyamide Nanocomposites 34
 2.3.1 Introduction 34
 2.3.2 Lactam/Amino Acid-Based In-situ Intercalated PA Nanocomposites 36
 2.3.3 Diamine- and Diacid-Based In-situ Intercalated PA Nanocomposites 41
 2.3.3.1 Solution-Melt Polymerization Technique 41
 2.3.3.2 Anhydrous Melt Polymerization Technique 43
 2.3.3.3 Direct SSP Technique 44
 2.3.3.4 Interfacial Polycondensation Technique 46
 2.4 Conclusions 48
 References 49
Contents

3 Polyolefin–Clay Nanocomposites by *In-situ* Polymerization
Abolfazl Maneshi, João Soares, and Leonardo Simon

- 3.1 Introduction 53
- 3.2 Clays 54
 - 3.2.1 General Structure 54
 - 3.2.2 Smectites 54
 - 3.2.3 Clay Particle Morphological Hierarchy 56
 - 3.2.4 Clay Chemical Reactions 58
 - 3.2.4.1 Cation Exchange Reactions 58
 - 3.2.4.2 Interaction with Organic Compounds 58
- 3.3 *In-situ* Polymerization of Olefins with Coordination Catalysts Supported on Clays 59
 - 3.3.1 Olefin Polymerization with Coordination Catalysts 60
 - 3.3.2 Polymerization Mechanism with Coordination Catalysts 60
 - 3.3.3 Coordination Catalysts for in *In-situ* Polymerization 62
 - 3.3.4 Catalyst Supporting 63
 - 3.3.4.1 Catalyst Supporting Methods 63
 - 3.3.5 Clay Surface Modification Methods for *In-situ* Polymerization 64
 - 3.3.5.1 Organic Modification 64
 - 3.3.5.2 Thermal Treatment 66
 - 3.3.5.3 Treatment with Alkylaluminum Compounds 66
 - 3.3.6 Particle Break-Up and Exfoliation 67
 - 3.3.7 *In-situ* Polymerization Approaches 69
 - 3.3.7.1 Clay as a Polymerization Additive 71
 - 3.3.7.2 Clay as a Polymerization Catalyst Support 72
 - 3.3.7.3 Clay as an Activator for Polymerization Catalysts 74
 - 3.3.8 Factors Determining the Success of *In-situ* Polymerization 78
 - 3.3.8.1 Clay Type 78
 - 3.3.8.2 Swellability 79
 - 3.3.8.3 Effect of Clay Surface Treatment 80
 - 3.3.8.4 Catalyst : Clay Ratio 81
 - 3.3.8.5 Effect of Polymerization Conditions 82
 - 3.3.9 Clay Effect on the Polymerization Behavior and Polymer Molecular Structure 83
 - 3.3.10 Future Approaches 84

References 85

4 Gas-Phase-Assisted Surface Polymerization and Thereby Preparation of Polymer Nanocomposites
Haruo Nishida, Yoshito Andou, and Takeshi Endo

- 4.1 Introduction 89
- 4.2 *In-situ* Polymerization for Nanocomposite Preparation 89
- 4.3 Characteristics of GASP 91
VIII

Contents

6.3.2.2 Types of MMT Clays Used 139
6.3.2.3 Resinification of FA with MMT Clay 139
6.3.2.4 Curing of MMT–PFA Composites 139
6.3.2.5 Characterization Techniques 139
6.4 Results and Discussion 140
6.4.1 Reactive Molding of Cellulose Whisker Nanocomposites 140
6.4.1.1 Morphology of CW 141
6.4.1.2 Resinification of FA in the Presence of CWs 142
6.4.1.3 Thermal Resistance of CW–FA Nanocomposites 148
6.4.2 Reactive Molding of MMT Nanocomposites 149
6.4.2.1 Morphology of MMT Clay 150
6.4.2.2 Resinification of FA in the Presence of MMT Clay 150
6.4.2.3 Thermal Resistance of MMT–FA Nanocomposites 161
6.5 Conclusions 164
Abbreviations 164
Acknowledgments 165
References 165

7 Polyurethane Nanocomposites by In-situ Polymerization Approach and Their Properties 169
Mo Song and Dongyu Cai
7.1 Introduction 169
7.2 PU/Carbon Nanotube Nanocomposites (PUCNs) 170
7.2.1 Fabrication 170
7.2.2 Morphology and Characterizations of PUCNs 176
7.2.3 Physical Properties of PUCNs 183
7.3 PU/Clay Nanocomposites (PUCLN) 188
7.3.1 Fabrication 189
7.3.1.1 Exfoliation and Intercalation of Nanoclays in PU Matrix 189
7.3.1.2 Rheological Behavior of Polyol–Nanoclay Mixture 194
7.3.2 Morphology and Characterization 196
7.3.3 Physical Properties 200
7.3.3.1 Mechanical Properties 200
7.3.3.2 Scratch Resistance and Barrier Performance 204
7.3.3.3 Thermal Stability and Flame Retardancy 207
7.4 PU/Functionalized Graphene Nanocomposites (PUFGNs) 208
7.4.1 Fabrication 209
7.4.2 Morphology and Characterization 210
7.4.3 Physical Properties 214
7.5 Prospective of PUNs 217
References 218

8 In-situ Synthesis and Properties of Epoxy Nanocomposites 221
Vikas Mittal
8.1 Introduction 221
8.2 Optimization of the Curing Conditions 222
12.2 Multiwall CNTs 305
12.3 *In-situ* Synthesis of P3HT–MWNT Composites 307
12.4 The Properties and Characterization of P3HT–MWNT Nanocomposites 310
12.4.1 The Dispersion and Morphology of the P3HT–MWNT Nanocomposites 310
12.4.2 HT Regioregularity 311
12.4.3 Mechanical Properties 311
12.4.4 Thermal Stability 313
12.4.5 Optical Properties 316
12.4.6 Charge Transportability 321
12.5 Conclusion and Outlook 325
References 326

13 Polystyrene–Montmorillonite Nanocomposites by *In-situ* Polymerization and Their Properties 331
 Ranya Simons, Greg G. Qiao, and Stuart A. Bateman

13.1 Introduction 331
13.2 Morphology of Polymer–Clay Nanocomposites 331
13.3 Modification of MMT 332
13.3.1 NonReactive Modifications 333
13.3.2 Reactive Modifications 343
13.3.3 Polymeric Initiator-Based Modifications 345
13.4 *In-situ* Polymerization Methods 346
13.4.1 Free Radical Polymerization Techniques 347
13.4.1.1 Bulk Polymerization 347
13.4.1.2 Emulsion Polymerization 348
13.4.1.3 Solution Polymerization 349
13.4.2 Controlled Polymerization Techniques 350
13.4.2.1 Atom Transfer Radical Polymerization 351
13.4.2.2 Reverse Addition-Fragmentation Transfer 351
13.4.2.3 Nitroxide-Mediated Polymerization 351
13.4.3 Dispersion of MMT in Styrene 352
13.5 Properties of PS–MMT Nanocomposites Prepared via *In-situ* Techniques 352
13.5.1 Mechanical Properties 353
13.5.1.1 Tensile 353
13.5.1.2 Impact and Flexural Properties 354
13.5.1.3 Dynamic Mechanical Thermal Analysis 354
13.5.1.4 Rheological Properties 355
13.5.1.5 Barrier Properties 355
13.5.2 Thermal Properties 356
13.5.2.1 Thermal Gravimetric Analysis 356
13.5.2.2 Dynamic Scanning Calorimetry (DSC) 358
13.5.2.3 Fire Performance 359
14 Aliphatic Polyester and Poly(ester amide) Clay Nanocomposites by In-situ Polymerization 367
Laura Morales-Gámez, Alfonso Rodríguez-Galán, Lourdes Franco, and Jordi Puiggalí

14.1 Introduction: Biodegradable Polymers and Their Nanocomposites 367

14.2 Aliphatic Polyester Clay Nanocomposites by In-situ Polymerization 368

14.2.1 Poly(ε-Caprolactone)-Based Nanocomposites 368
14.2.2 Polylactide-Based Nanocomposites 375
14.2.3 PBS-Based Nanocomposites 380
14.2.4 PPDO-Based Nanocomposites 381

14.3 PEAs Clay Nanocomposites by In-situ Polymerization 382

14.4 Conclusion 384
Acknowledgments 384
References 384

Index 387