Contents

Preface x

Chapter 1 Why Do Plants Need Defenses? 1
1.1 Plants as sources of food 1
1.2 Organisms that use plants as food 2
 1.2.1 Microorganisms 2
 1.2.2 Parasitic angiosperms 3
 1.2.3 Nematodes 5
 1.2.4 Insects 5
 1.2.5 Vertebrates 6
1.3 Impact of infection and herbivory in natural and agricultural ecosystems 6
 1.3.1 Microorganisms 6
 1.3.2 Parasitic angiosperms 7
 1.3.3 Nematodes 8
 1.3.4 Insects 8
 1.3.5 Vertebrates 10
1.4 Conclusions 11

Chapter 2 What Defenses Do Plants Use? 15
2.1 Introduction 15
2.2 Defenses used against pathogens 15
 2.2.1 Background 15
 2.2.2 Passive or preexisting defenses 17
 2.2.2.1 Preexisting structural defenses 17
 2.2.2.2 Preexisting chemical defenses 18
 2.2.3 Active or inducible defenses 25
 2.2.3.1 Inducible structural defenses 25
 2.2.3.2 Inducible chemical defenses 29
 2.2.4 Defenses used against pathogens—the next step 37
2.3 Defenses used against parasitic plants 37
 2.3.1 Background 37
 2.3.2 Preattachment defense mechanisms 38

Recommended reading 11

References 12
2.3.3 Prehaustorial defense mechanisms 38
2.3.4 Posthaustorial defense mechanisms 40

2.4 Defenses used against nematodes 41
2.4.1 Background 41
2.4.2 Passive or preexisting defenses 42
2.4.3 Active or inducible defenses 43
 2.4.3.1 Phenylpropanoid metabolism 43
 2.4.3.2 Hypersensitive response 43

2.5 Defenses used against herbivorous insects 44
2.5.1 Background 44
2.5.2 Physical barriers 45
 2.5.2.1 Waxes on the leaf surface 45
 2.5.2.2 Trichomes 45
 2.5.2.3 Secretory canals 46
 2.5.2.4 Leaf toughness and leaf folding 47
2.5.3 Chemical defenses 49
 2.5.3.1 Terpenes 50
 2.5.3.2 Phenolics 52
 2.5.3.3 Nitrogen-containing organic compounds 53
 2.5.3.4 Arthropod-inducible proteins 55
 2.5.3.5 Volatile compounds 56

2.6 Defenses used against vertebrate herbivores 58
2.6.1 Background 58
2.6.2 Physical defenses 58
2.6.3 Chemical defenses 59
 2.6.3.1 Phenolic compounds 59
 2.6.3.2 Terpenoids 62
 2.6.3.3 Nitrogen-containing compounds 63
 2.6.3.4 Other chemicals 64
 2.6.3.5 A final word on chemical defenses against vertebrate herbivory 64

2.7 Defenses used against neighboring plants—allelopathy 64
2.7.1 Background 64
2.7.2 Allelopathy and the black walnut 65
2.7.3 Allelopathy and the Californian chaparral 65
2.7.4 Allelopathy and spotted knapweed 65

2.8 Conclusions 66
Recommended reading 67
References 67

Chapter 3 Sounding the Alarm: Signaling and Communication in Plant Defense 77
3.1 Introduction 77
3.2 Signaling in plant–pathogen interactions 77
 3.2.1 Introduction 77
 3.2.2 Local signaling and basal resistance 78
3.2.2.1 SA signaling 78
3.2.2.2 JA signaling 79
3.2.2.3 ET signaling 80
3.2.2.4 Signaling involving other plant hormones 83
3.2.3 Systemic signaling and induced resistance 84
 3.2.3.1 Induced resistance 84
 3.2.3.2 Signaling during SAR 84
 3.2.3.3 Signaling during ISR 85
 3.2.3.4 Priming 86
3.2.4 Volatile signaling 90
3.3 Signaling in plant–nematode interactions 91
 3.3.1 Introduction 91
 3.3.2 SA signaling 92
 3.3.3 JA signaling 92
3.4 Signaling in plant–insect herbivore interactions 93
 3.4.1 Introduction 93
 3.4.2 Local signaling 95
 3.4.2.1 JA signaling 95
 3.4.2.2 ET signaling 97
 3.4.2.3 SA signaling 97
 3.4.2.4 Specificity and regulation of jasmonate-based defenses 97
 3.4.3 Systemic signaling 99
 3.4.3.1 Systemin 99
 3.4.3.2 JA signaling 100
 3.4.3.3 Within leaf signaling 101
 3.4.4 Volatile signaling 103
 3.4.5 Priming 106
3.5 Signaling in interactions between plants and vertebrate herbivores 110
3.6 Signaling in interactions between plants and parasitic plants 110
3.7 Conclusions 111
Recommended reading 112
References 112

Chapter 4 Plant Defense in the Real World: Multiple Attackers and Beneficial Interactions 125
4.1 Introduction 125
4.2 Dealing with multiple attackers: cross-talk between signaling pathways 126
 4.2.1 Trade-offs associated with triggering SA-mediated defenses 126
 4.2.1.1 SA suppression of JA-induced defenses 126
 4.2.1.2 Molecular basis of SA suppression of JA defenses 128
 4.2.1.3 Ecological costs of resistance to biotrophic versus necrotrophic pathogens 130
4.2.1.4 Trade-offs with mutualistic symbioses 131
4.2.1.5 Effects of SA- and JA-mediated defenses on bacterial communities associated with plants 132
4.2.2 Triggering SA-dependent defenses does not always compromise defense against insect herbivores 133
4.2.3 Trade-offs and positive outcomes associated with triggering JA-dependent defenses 134
4.2.4 Putting it all together: orchestrating the appropriate defense response 137

4.3 Can beneficial plant–microbe interactions induce resistance in plants? 143
4.3.1 Introduction 143
4.3.2 Induction of resistance by mycorrhizas 143
4.3.3 Resistance induced by endophytic and other beneficial fungi 145

4.4 Conclusions 146
Recommended reading 147
References 147

Chapter 5 The Evolution of Plant Defense 153

5.1 Introduction 153
5.2 Hypotheses of plant defense 153
5.2.1 The growth–differentiation balance hypothesis 155
5.2.2 Optimal defense hypotheses 157
5.2.3 Plant apparency hypothesis 160
5.2.4 The carbon–nutrient balance hypothesis 160
5.2.5 The growth rate hypothesis 161
5.2.6 Hypotheses of plant defense—where next? 163
5.3 Evolution of plant defense strategies 163
5.3.1 The univariate trade-off hypothesis 163
5.3.2 The resistance–regrowth trade-off hypothesis 165
5.3.3 The plant apparency hypothesis 165
5.3.4 The resource availability hypothesis 167
5.3.5 Plant defense syndromes 167
5.4 Patterns of plant defense evolution 169
5.4.1 Adaptive radiation 170
5.4.2 Escalation of defense potency 170
5.4.3 Phylogenetic conservatism 171
5.4.4 Phylogenetic escalation and decline of plant defense strategies 171
5.5 Why do plants have induced defenses? 172
5.5.1 Costs 172
5.5.1.1 Allocation costs associated with induced responses to herbivory 175
5.5.1.2 Allocation costs associated with induced responses to pathogens 178
5.5.2 Targeting of inducible direct defenses 181
5.5.3 Targeting of inducible indirect defenses 182
5.5.4 Dispersal of damage 182
5.5.5 Possible role of pathogenic bacteria in the evolution of SAR 182
5.5.6 Conclusion 183
5.6 The coevolutionary arms race 183
5.7 Conclusions 191
Recommended reading 191
References 192

Chapter 6 Exploiting Plant Defense 201
6.1 Introduction 201
6.2 Using plant resistance to protect crops—breeding 201
6.2.1 Introduction 201
6.2.2 Breeding for resistance 202
6.2.2.1 Sources of resistance 202
6.2.2.2 Breeding methods and selection strategies 203
6.2.3 Resistance in practice 205
6.2.4 Types of resistance 205
6.2.4.1 Monogenic resistance 206
6.2.4.2 Polygenic resistance 208
6.2.4.3 Durable resistance 208
6.2.4.4 Gene-for-gene concept 209
6.2.5 Making life more difficult for the attacker 211
6.3 Using plant resistance to protect crops—induced resistance 213
6.3.1 Introduction 213
6.3.2 Induced resistance for pathogen control 213
6.3.3 Induced resistance for control of herbivorous insects 218
6.3.4 Induced resistance for control of nematodes and parasitic plants 219
6.4 Using plant resistance to protect crops—biotechnological approaches 220
6.4.1 Introduction 220
6.4.2 Engineering resistance to pathogens 220
6.4.3 Engineering resistance to insects 223
6.4.4 Prospects for using transgenic resistance 224
6.5 Conclusions 224
Recommended reading 225
References 225

Index 231