Contents

List of Figures ... xvii
List of Tables ... xxxiii
Foreword ... xxxv
Series Preface .. xxxvii
Preface .. xli
Acknowledgments ... xlii

PART I INTRODUCING FIXED-WING UAVS

1 Preliminaries ... 3
 1.1 Externally Sourced Components 4
 1.2 Manufacturing Methods 5
 1.3 Project DECODE ... 6
 1.4 The Stages of Design 6
 1.4.1 Concept Design 8
 1.4.2 Preliminary Design 10
 1.4.3 Detail Design 11
 1.4.4 Manufacturing Design 12
 1.4.5 In-service Design and Decommissioning 13
 1.5 Summary .. 13

2 Unmanned Air Vehicles ... 15
 2.1 A Brief Taxonomy of UAVs 15
 2.2 The Morphology of a UAV 19
 2.2.1 Lifting Surfaces 21
 2.2.2 Control Surfaces 22
 2.2.3 Fuselage and Internal Structure 23
 2.2.4 Propulsion Systems 24
PART II THE AIRCRAFT IN MORE DETAIL

3 Wings
3.1 Simple Wing Theory and Aerodynamic Shape 33
3.2 Spars 37
3.3 Covers 37
3.4 Ribs 38
3.5 Fuselage Attachments 38
3.6 Ailerons/Roll Control 40
3.7 Flaps 41
3.8 Wing Tips 42
3.9 Wing-housed Retractable Undercarriage 42
3.10 Integral Fuel Tanks 44

4 Fuselages and Tails (Empennage)
4.1 Main Fuselage/Nacelle Structure 45
4.2 Wing Attachment 47
4.3 Engine and Motor Mountings 48
4.4 Avionics Trays 50
4.5 Payloads – Camera Mountings 51
4.6 Integral Fuel Tanks 52
4.7 Assembly Mechanisms and Access Hatches 54
4.8 Undercarriage Attachment 55
4.9 Tails (Empennage) 57

5 Propulsion
5.1 Liquid-Fueled IC Engines 59
 5.1.1 Glow-plug IC Engines 62
 5.1.2 Spark Ignition Gasoline IC Engines 62
 5.1.3 IC Engine Testing 65
5.2 Rare-earth Brushless Electric Motors 66
5.3 Propellers 68
5.4 Engine/Motor Control 70
5.5 Fuel Systems 70
5.6 Batteries and Generators 71

6 Airframe Avionics and Systems 73
6.1 Primary Control Transmitter and Receivers 73
6.2 Avionics Power Supplies 76
6.3 Servos 78
6.4 Wiring, Buses, and Boards 82
6.5 Autopilots 86
6.6 Payload Communications Systems 87
6.7 Ancillaries 88
6.8 Resilience and Redundancy 90

7 Undercarriages 93
7.1 Wheels 93
7.2 Suspension 95
7.3 Steering 95
7.4 Retractable Systems 97

PART III DESIGNING UAVS

8 The Process of Design 101
8.1 Goals and Constraints 101
8.2 Airworthiness 103
8.3 Likely Failure Modes 104
 8.3.1 Aerodynamic and Stability Failure 105
 8.3.2 Structural Failure 106
 8.3.3 Engine/Motor Failure 107
 8.3.4 Control System Failure 107
8.4 Systems Engineering 110
 8.4.1 Work-breakdown Structure 110
 8.4.2 Interface Definitions 112
 8.4.3 Allocation of Responsibility 112
 8.4.4 Requirements Flowdown 112
 8.4.5 Compliance Testing 113
 8.4.6 Cost and Weight Management 114
 8.4.7 Design “Checklist” 117

9 Tool Selection 119
9.1 Geometry/CAD Codes 120
9.2 Concept Design 123
9.3 Operational Simulation and Mission Planning 125
9.4 Aerodynamic and Structural Analysis Codes 125
9.5 Design and Decision Viewing 125
9.6 Supporting Databases 126

10 Concept Design: Initial Constraint Analysis 127
10.1 The Design Brief 127
 10.1.1 Drawing up a Good Design Brief 127
 10.1.2 Environment and Mission 128
 10.1.3 Constraints 129
13.6.3 Analyzing Decode-1 with XFLR5: Stability
13.6.4 Flight Simulators
13.6.5 Analyzing Decode-1 with Fluent

14 Preliminary Structural Analysis
14.1 Structural Modeling Using AirCONICS
14.2 Structural Analysis Using Simple Beam Theory
14.3 Finite Element Analysis (FEA)
 14.3.1 FEA Model Preparation
 14.3.2 FEA Complete Spar and Boom Model
 14.3.3 FEA Analysis of 3D Printed and Fiber- or Mylar-clad Foam Parts
14.4 Structural Dynamics and Aeroelasticity
 14.4.1 Estimating Wing Divergence, Control Reversal, and Flutter Onset Speeds
14.5 Summary of Preliminary Structural Analysis

15 Weight and Center of Gravity Control
15.1 Weight Control
15.2 Longitudinal Center of Gravity Control

16 Experimental Testing and Validation
16.1 Wind Tunnels Tests
 16.1.1 Mounting the Model
 16.1.2 Calibrating the Test
 16.1.3 Blockage Effects
 16.1.4 Typical Results
16.2 Airframe Load Tests
 16.2.1 Structural Test Instruments
 16.2.2 Structural Mounting and Loading
 16.2.3 Static Structural Testing
 16.2.4 Dynamic Structural Testing
16.3 Avionics Testing

17 Detail Design: Constructing Explicit Design Geometry
17.1 The Generation of Geometry
17.2 Fuselage
17.3 An Example UAV Assembly
 17.3.1 Hand Sketches
 17.3.2 Master Sketches
17.4 3D Printed Parts
 17.4.1 Decode-1: The Development of a Parametric Geometry for the SLS Nylon Wing Spar/Boom “Scaffold Clamp”
 17.4.2 Approach
 17.4.3 Inputs
 17.4.4 Breakdown of Part
 17.4.5 Parametric Capability
17.4.6 More Detailed Model
17.4.7 Manufacture

17.5 Wings
17.5.1 Wing Section Profile
17.5.2 Three-dimensional Wing

PART IV MANUFACTURE AND FLIGHT

18 Manufacture
18.1 Externally Sourced Components
18.2 Three-Dimensional Printing
 18.2.1 Selective Laser Sintering (SLS)
 18.2.2 Fused Deposition Modeling (FDM)
 18.2.3 Sealing Components
18.3 Hot-wire Foam Cutting
 18.3.1 Fiber and Mylar Foam Cladding
18.4 Laser Cutting
18.5 Wiring Looms
18.6 Assembly Mechanisms
 18.6.1 Bayonets and Locking Pins
 18.6.2 Clamps
 18.6.3 Conventional Bolts and Screws
18.7 Storage and Transport Cases

19 Regulatory Approval and Documentation
19.1 Aviation Authority Requirements
19.2 System Description
 19.2.1 Airframe
 19.2.2 Performance
 19.2.3 Avionics and Ground Control System
 19.2.4 Acceptance Flight Data
19.3 Operations Manual
 19.3.1 Organization, Team Roles, and Communications
 19.3.2 Brief Technical Description
 19.3.3 Operating Limits, Conditions, and Control
 19.3.4 Operational Area and Flight Plans
 19.3.5 Operational and Emergency Procedures
 19.3.6 Maintenance Schedule
19.4 Safety Case
 19.4.1 Risk Assessment Process
 19.4.2 Failure Modes and Effects
 19.4.3 Operational Hazards
 19.4.4 Accident List
Contents

19.4.5 Mitigation List 364
19.4.6 Accident Sequences and Mitigation 366
19.5 Flight Planning Manual 368

20 Test Flights and Maintenance 369
20.1 Test Flight Planning 369
 20.1.1 Exploration of Flight Envelope 369
 20.1.2 Ranking of Flight Tests by Risk 370
 20.1.3 Instrumentation and Recording of Flight Test Data 370
 20.1.4 Pre-flight Inspection and Checklists 371
 20.1.5 Atmospheric Conditions 371
 20.1.6 Incident and Crash Contingency Planning, Post Crash Safety, Recording, and Management of Crash Site 371
20.2 Test Flight Examples 375
 20.2.1 UAS Performance Flight Test (MANUAL Mode) 375
 20.2.2 UAS CoG Flight Test (MANUAL Mode) 377
 20.2.3 Fuel Consumption Tests 377
 20.2.4 Engine Failure, Idle, and Throttle Change Tests 377
 20.2.5 Autonomous Flight Control 378
 20.2.6 Auto-Takeoff Test 380
 20.2.7 Auto-Landing Test 380
 20.2.8 Operational and Safety Flight Scenarios 381
20.3 Maintenance 381
 20.3.1 Overall Airframe Maintenance 382
 20.3.2 Time and Flight Expired Items 382
 20.3.3 Batteries 383
 20.3.4 Flight Control Software 383
 20.3.5 Maintenance Record Keeping 384

21 Lessons Learned 385
21.1 Things that Have Gone Wrong and Why 388

PART V APPENDICES, BIBLIOGRAPHY, AND INDEX

A Generic Aircraft Design Flowchart 395
B Example AirCONICS Code for Decode-1 399
C Worked (Manned Aircraft) Detail Design Example 425
 C.1 Stage 1: Concept Sketches 425
 C.2 Stage 2: Part Definition 429
 C.3 Stage 3: “Flying Surfaces” 434
 C.4 Stage 4: Other Items 435
 C.5 Stage 5: Detail Definition 435

Bibliography 439
Index 441