Contents

About the Editors xxiii

List of Contributors xxv

Preface to the 2nd Edition xxxi

1 Achievements and Challenges of Solar Electricity from Photovoltaics 1
Steven Hegedus and Antonio Luque

1.1 The Big Picture 1

1.2 What is Photovoltaics? 4

 1.2.1 Rating of PV Modules and Generators 6

 1.2.2 Collecting Sunlight: Tilt, Orientation, Tracking and Shading 8

 1.2.3 PV Module and System Costs and Forecasts 9

1.3 Photovoltaics Today 10

 1.3.1 But First, Some PV History 10

 1.3.2 The PV Picture Today 11

 1.3.3 The Crucial Role of National Policies 13

 1.3.4 Grid Parity: The Ultimate Goal for PV 14

1.4 The Great Challenge 17

 1.4.1 How Much Land Is Needed? 21

 1.4.2 Raw Materials Availability 23

 1.4.3 Is Photovoltaics a Clean Green Technology? 23

 1.4.4 Energy Payback 24

 1.4.5 Reliability 25

 1.4.6 Dispatchability: Providing Energy on Demand 25

1.5 Trends in Technology 27

 1.5.1 Crystalline Silicon Progress and Challenges 27

 1.5.2 Thin Film Progress and Challenges 30

 1.5.3 Concentrator Photovoltaics Progress and Challenges 34

 1.5.4 Third-Generation Concepts 35

1.6 Conclusions 35

References 36
4 Theoretical Limits of Photovoltaic Conversion and New-generation Solar Cells
Antonio Luque and Antonio Martí

4.1 Introduction 130
4.2 Thermodynamic Background 131
4.2.1 Basic Relationships 131
4.2.2 The Two Laws of Thermodynamics 133
4.2.3 Local Entropy Production 133
4.2.4 An Integral View 133
4.2.5 Thermodynamic Functions of Radiation 134
4.2.6 Thermodynamic Functions of Electrons 135
4.3 Photovoltaic Converters 136
4.3.1 The Balance Equation of a PV Converter 136
4.3.2 The Monochromatic Cell 140
4.3.3 Thermodynamic Consistency of the Shockley–Queisser Photovoltaic Cell 142
4.3.4 Entropy Production in the Whole Shockley–Queisser Solar Cell 145
4.4 The Technical Efficiency Limit for Solar Converters 147
4.5 Very-high-efficiency Concepts 148
4.5.1 Multijunction Solar Cells 148
4.5.2 Thermophotovoltaic and Thermophotonic Converters 149
4.5.3 Multi-exciton Generation Solar Cells 151
4.5.4 Intermediate Band Solar Cell 155
4.5.5 Hot Electron Solar Cells 161
4.6 Conclusions 164
References 165

5 Solar Grade Silicon Feedstock
Bruno Ceccaroli and Otto Lohne

5.1 Introduction 169
5.2 Silicon 170
5.2.1 Physical Properties of Silicon Relevant to Photovoltaics 170
5.2.2 Chemical Properties Relevant to Photovoltaics 172
5.2.3 Health, Safety and Environmental Factors 172
5.2.4 History and Applications of Silicon 173
5.3 Production of Silicon Metal/Metallurgical Grade Silicon 177
5.3.1 The Carbothermic Reduction of Silica 177
5.3.2 Ladle Refining 179
5.3.3 Casting and Crushing 181
5.3.4 Purity of Commercial Silicon Metal 181
5.3.5 Economics 182
5.4 Production of Polysilicon/Silicon of Electronic and Photovoltaic Grade 183
5.4.1 The Siemens Process: Chlorosilanes and Hot Filament 184
5.4.2 The Union Carbide and Komatsu Process: Monosilane and Hot Filament 187
CONTENTS

5.4.3 The Ethyl Corporation Process: Silane and Fluidised Bed Reactor 189
5.4.4 Economics and Business 190
5.5 Current Silicon Feedstock to Solar Cells 191
5.6 Requirements of Silicon for Crystalline Solar Cells 194
5.6.1 Directional Solidification 194
5.6.2 Effect of Crystal Imperfections 197
5.6.3 Effect of Various Impurities 198
5.7 Routes to Solar Grade Silicon 205
5.7.1 Further Polysilicon Process Development and New Processes Involving Volatile Silicon Compounds 206
5.7.2 Upgrading Purity of the Metallurgical Silicon Route 209
5.7.3 Other Methods 213
5.7.4 Crystallisation 213
5.8 Conclusions 214
References 215

6 Bulk Crystal Growth and Wafering for PV 218
6.1 Introduction 218
6.2 Bulk Monocrystalline Material 219
6.2.1 Cz Growth of Single-crystal Silicon 220
6.3 Bulk Multicrystalline Silicon 224
6.3.1 Ingot Fabrication 224
6.3.2 Doping 226
6.3.3 Crystal Defects 227
6.3.4 Impurities 229
6.4 Wafering 233
6.4.1 Multi-wire Wafering Technique 233
6.4.2 Microscopic Process of Wafering 235
6.4.3 Wafer Quality and Saw Damage 237
6.4.4 Cost and Size Considerations 239
6.4.5 New Sawing Technologies 239
6.5 Silicon Ribbon and Foil Production 240
6.5.1 Process Description 242
6.5.2 Productivity Comparisons 249
6.5.3 Manufacturing Technology 250
6.5.4 Ribbon Material Properties and Solar Cells 251
6.5.5 Ribbon/Foil Technology: Future Directions 253
6.6 Numerical Simulations of Crystal Growth Techniques 255
6.6.1 Simulation Tools 255
6.6.2 Thermal Modelling of Silicon Crystallisation Techniques 255
6.6.3 Simulation of Bulk Silicon Crystallisation 257
6.6.4 Simulation of Silicon Ribbon Growth 259
6.7 Conclusions 260
References 261
CONTENTS

7 Crystalline Silicon Solar Cells and Modules 265
 Ignacio Tobías, Carlos del Cañizo and Jesús Alonso
 7.1 Introduction 265
 7.2 Crystalline Silicon as a Photovoltaic Material 266
 7.2.1 Bulk Properties 266
 7.2.2 Surfaces 267
 7.3 Crystalline Silicon Solar Cells 268
 7.3.1 Cell Structure 268
 7.3.2 Substrate 270
 7.3.3 The Front Surface 272
 7.3.4 The Back Surface 275
 7.3.5 Size Effects 276
 7.3.6 Cell Optics 276
 7.3.7 Performance Comparison 278
 7.4 Manufacturing Process 279
 7.4.1 Process Flow 279
 7.4.2 Screen-printing Technology 287
 7.4.3 Throughput and Yield 290
 7.5 Variations to the Basic Process 292
 7.5.1 Thin Wafers 292
 7.5.2 Back Surface Passivation 292
 7.5.3 Improvements to the Front Emitter 293
 7.5.4 Rapid Thermal Processes 293
 7.6 Other Industrial Approaches 294
 7.6.1 Silicon Ribbons 294
 7.6.2 Heterojunction with Intrinsic Thin Layer 295
 7.6.3 All-rear-contact Technologies 295
 7.6.4 The Silver Cell 296
 7.7 Crystalline Silicon Photovoltaic Modules 296
 7.7.1 Cell Matrix 297
 7.7.2 The Layers of the Module 297
 7.7.3 Lamination 299
 7.7.4 Post-lamination Steps 299
 7.7.5 Automation and Integration 300
 7.7.6 Special Modules 300
 7.8 Electrical and Optical Performance of Modules 301
 7.8.1 Electrical and Thermal Characteristics 301
 7.8.2 Fabrication Spread and Mismatch Losses 303
 7.8.3 Local Shading and Hot Spot Formation 303
 7.8.4 Optical Properties 304
 7.9 Field Performance of Modules 306
 7.9.1 Lifetime 306
 7.9.2 Qualification 307
 7.10 Conclusions 307
 References 308
8 High-efficiency III–V Multijunction Solar Cells 314
D. J. Friedman, J. M. Olson and Sarah Kurtz

8.1 Introduction 314
8.2 Applications 318
8.2.1 Space Solar Cells 318
8.2.2 Terrestrial Electricity Generation 318
8.3 Physics of III–V Multijunction and Single-junction Solar Cells 319
8.3.1 Wavelength Dependence of Photon Conversion Efficiency 319
8.3.2 Theoretical Limits to Multijunction Efficiencies 319
8.3.3 Spectrum Splitting 319
8.4 Cell Configuration 320
8.4.1 Four-terminal 320
8.4.2 Three-terminal 321
8.4.3 Two-terminal Series-connected (Current-matched) 321
8.5 Computation of Series-connected Device Performance 321
8.5.1 Overview 321
8.5.2 Top and Bottom Subcell QE and J\textsubscript{SC} 322
8.5.3 Multijunction J–V Curves 324
8.5.4 Current Matching and Top-cell Thinning 326
8.5.5 Current-matching Effect on Fill Factor and V\textsubscript{OC} 327
8.5.6 Efficiency vs Bandgap 327
8.5.7 Spectral Effects 329
8.5.8 AR Coating Effects 330
8.5.9 Concentration 331
8.5.10 Temperature Dependence 334
8.6 Materials Issues Related to GaInP/GaAs/Ge Solar Cells 337
8.6.1 Overview 337
8.6.2 MOCVD 338
8.6.3 GaInP Solar Cells 338
8.6.4 GaAs Cells 347
8.6.5 Ge Cells 348
8.6.6 Tunnel-junction Interconnects 349
8.6.7 Chemical Etchants 350
8.6.8 Materials Availability 351
8.7 Epilayer Characterization and Other Diagnostic Techniques 351
8.7.1 Characterization of Epilayers 351
8.7.2 Transmission-line Measurements 352
8.7.3 I–V Measurements of Multijunction Cells 353
8.7.4 Evaluation of Morphological Defects 353
8.7.5 Device Diagnosis 353
8.8 Reliability and Degradation 355
8.9 Future-generation Solar Cells 356
8.9.1 Lattice-mismatched GaInP/GaInAs/Ge Cell 356
8.9.2 Inverted Lattice-mismatched GaInP/GaInAs/GaInAs
(1.83, 1.34, 0.89 eV) Cell 357
8.9.3 Other Lattice-matched Approaches 357
8.9.4 Mechanical Stacks 358
8.9.5 Growth on Other Substrates 359
8.9.6 Spectrum Splitting 359
8.10 Summary 359
References 360

9 Space Solar Cells and Arrays 365
Sheila Bailey and Ryne Raffaelle
9.1 The History of Space Solar Cells 365
 9.1.1 Vanguard 1 to Deep Space 1 365
9.2 The Challenge for Space Solar Cells 369
 9.2.1 The Space Environment 371
 9.2.2 Thermal Environment 374
 9.2.3 Solar Cell Calibration and Measurement 376
9.3 Silicon Solar Cells 378
9.4 III–V Solar Cells 379
 9.4.1 Thin Film Solar Cells 381
9.5 Space Solar Arrays 384
 9.5.1 Body-mounted Arrays 385
 9.5.2 Rigid Panel Planar Arrays 386
 9.5.3 Flexible Fold-out Arrays 387
 9.5.4 Thin Film or Flexible Roll-out Arrays 389
 9.5.5 Concentrating Arrays 390
 9.5.6 High-temperature/Intensity Arrays 391
 9.5.7 Electrostatically Clean Arrays 392
 9.5.8 Mars Solar Arrays 393
 9.5.9 Power Management and Distribution (PMAD) 393
9.6 Future Cell and Array Possibilities 394
 9.6.1 Low-intensity Low-temperature (LILT) Cells 394
 9.6.2 Quantum Dot Solar Cells 394
 9.6.3 Integrated Power Systems 395
 9.6.4 High Specific Power Arrays 395
 9.6.5 High-radiation Environment Solar Arrays 396
9.7 Power System Figures of Merit 396
9.8 Summary 398
References 398

10 Photovoltaic Concentrators 402
Gabriel Sala and Ignacio Antón
10.1 What is the Aim of Photovoltaic Concentration
 and What Does it Do? 402
10.2 Objectives, Limitations and Opportunities 403
 10.2.1 Objectives and Strengths 403
 10.2.2 The Analysis of Costs of Photovoltaic Concentrators 405
10.3 Typical Concentrators: an Attempt at Classification 408
 10.3.1 Types, Components and Operation of a PV Concentrator 408
 10.3.2 Classification of Concentrators 410
 10.3.3 Concentration Systems with Spectral Change 411
10.4 Concentration Optics: Thermodynamic Limits 413
10.4.1 What is Required in Concentrator Optics? 413
10.4.2 A Typical Reflexive Concentrator 413
10.4.3 Ideal Concentration 415
10.4.4 Constructing an Ideal Concentrator 416
10.4.5 Optics of Practical Concentrators 417
10.4.6 Two-stage Optical Systems: Secondary Optics 420
10.5 Factors of Merit for Concentrators in Relation to the Optics 422
10.5.1 Optical Efficiency 422
10.5.2 Distribution or Profile of the Light on the Receptor 424
10.5.3 Angular Acceptance and Transfer Function 425
10.6 Photovoltaic Concentration Modules and Assemblies 427
10.6.1 Definitions 427
10.6.2 Functions and Characteristics of Concentration Modules 428
10.6.3 Electrical Connection of Cells in the Module 429
10.6.4 Thermal–Mechanical Effects Related to Cell Fixing 430
10.6.5 Description and Manufacturing Issues of Concentration Modules 432
10.6.6 Adoption of Secondary Optics 433
10.6.7 Modules with Reflexive Elements (Mirrors) 433
10.6.8 Description and Manufacturing Issues of Concentrators Based on Assemblies 434
10.7 Tracking for Concentrator Systems 436
10.7.1 Tracking Strategies for CPVs 436
10.7.2 Practical Implementation of Tracking Systems 438
10.7.3 Tracking Control System 439
10.7.4 Pointing Strategies 439
10.7.5 The Cost of Structure and Tracking Control 440
10.8 Measurements of Cells, Modules and Photovoltaic Systems in Concentration 440
10.8.1 Measurement of Concentration Cells 440
10.8.2 Measurement of Concentrator Elements and Modules 442
10.8.3 Absolute and Relative Measurements with Simulators 443
10.8.4 Optical Mismatch in CPV Modules and Systems 444
10.8.5 Testing CPV Modules and Systems Equipped with Multijunction Solar Cells 445
10.8.6 Multijunction Cells Inside Module Optics 446
10.8.7 The Production of PV Concentrators versus the Effective Available Radiation Accounting for Daylight Spectrum Variations 447
10.9 Summary 449
References 449

11 Crystalline Silicon Thin-Film Solar Cells via High-temperature and Intermediate-temperature Approaches 452
Armin G. Aberle and Per I. Widenborg
11.1 Introduction 452
11.1.1 Motivation for Thin c-Si Solar Cells 452
11.1.2 Classification of c-Si Thin-Film PV Technologies and Materials 453
11.1.3 Silicon Deposition Methods 455
11.1.4 Seeded versus Non-seeded Silicon Film Growth 456

11.2 Modelling 456
11.2.1 Impact of Diffusion Length in Absorber Region on Cell Efficiency 456
11.2.2 Impact of Surface Recombination 458
11.2.3 Impact of Light Trapping 461

11.3 Crystalline Silicon Thin-Film Solar Cells on Native and High-\textit{T} Foreign Supporting Materials 462
11.3.1 Native Supporting Materials 462
11.3.2 High-\textit{T} Foreign Supporting Materials 465

11.4 Crystalline Silicon Thin-Film Solar Cells on Intermediate-\textit{T} Foreign Supporting Materials 467
11.4.1 Solar Cells on Metal 468
11.4.2 Solar Cells on Glass 469

11.5 Conclusions 480
Acknowledgements 481
References 481

12 Amorphous Silicon-based Solar Cells 487
Eric A. Schiff, Steven Hegedus and Xunming Deng

12.1 Overview 487
12.1.1 Amorphous Silicon: The First Dopeable Amorphous Semiconductor 487
12.1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 490
12.1.3 Staebler–Wronski Effect 491
12.1.4 Synopsis 493

12.2 Atomic and Electronic Structure of Hydrogenated Amorphous Silicon 493
12.2.1 Atomic Structure 493
12.2.2 Defects and Metastability 494
12.2.3 Electronic Density-of-States 495
12.2.4 Band Tails, Band Edges, and Bandgaps 496
12.2.5 Defects and Gap States 497
12.2.6 Doping 497
12.2.7 Alloying and Optical Properties 498
12.2.8 Briefing: Nanocrystalline Silicon 499

12.3 Depositing Amorphous Silicon 500
12.3.1 Survey of Deposition Techniques 500
12.3.2 RF Plasma-Enhanced Chemical Vapor Deposition (RF-PECVD) at 13.56 MHz 500
12.3.3 PECVD at Different Frequencies 503
12.3.4 Hot-wire Chemical Vapor Deposition 506
12.3.5 Other Deposition Methods 506
12.3.6 Hydrogen Dilution 506
12.3.7 High-rate Deposition of Nanocrystalline Si (nc-Si) 508
12.3.8 Alloys and Doping 509

12.4 Understanding a-Si \textit{pin} Cells 510
12.4.1 Electronic Structure of a \textit{pin} Device 510
12.4.2 Voltage Depends Weakly on Absorber-layer Thickness 511
12.4.3 What is the Useful Thickness for Power Generation? 513
12.4.4 Doped Layers and Interfaces 515
12.4.5 Light-soaking Effects 516
12.4.6 Alloy and Nanocrystalline Cells 516
12.4.7 Optical Design of a-Si:H and nc-Si:H Solar Cells 517
12.5 Multijunction Solar Cells 519
12.5.1 Advantages of Multijunction Solar Cells 519
12.5.2 Using Alloys to Vary the Band Gap 522
12.5.3 a-Si/a-SiGe Tandem and a-Si/a-SiGe/a-SiGe Triple-junction Solar Cells 523
12.5.4 Nanocrystalline Silicon (nc-Si) Solar Cells 527
12.5.5 Micromorph and Other nc-Si-Based Multijunction Cells 529
12.6 Module Manufacturing 530
12.6.1 Continuous Roll-to-roll Manufacturing on Stainless Steel Substrates 531
12.6.2 a-Si Module Production on Glass Superstrates 532
12.6.3 Manufacturing Cost, Safety, and Other Issues 532
12.6.4 Module Performance and Reliability 533
12.7 Conclusions and Future Projections 534
12.7.1 Advantages of a-Si-Based Photovoltaics 534
12.7.2 Status and Competitiveness of a-Si Photovoltaics 534
12.7.3 Critical Issues for Further Enhancement and Future Potential 535
Acknowledgements 536
References 536

13 Cu(InGa)Se₂ Solar Cells 546
William N. Shafarman, Susanne Siebentritt and Lars Stolt
13.1 Introduction 546
13.2 Material Properties 549
13.2.1 Structure and Composition 549
13.2.2 Optical Properties and Electronic Structure 552
13.2.3 Electronic Properties 554
13.2.4 The Surface and Grain Boundaries 555
13.2.5 Substrate Effects 557
13.3 Deposition Methods 557
13.3.1 Substrates and Sodium Addition 558
13.3.2 Back Contact 559
13.3.3 Coevaporation of Cu(InGa)Se₂ 559
13.3.4 Precursor Reaction Processes 562
13.3.5 Other Deposition Approaches 564
13.4 Junction and Device Formation 564
13.4.1 Chemical BathDeposition 565
13.4.2 Interface Effects 566
13.4.3 Other Deposition Methods 567
13.4.4 Alternative Buffer Layers 567
13.4.5 Transparent Contacts 569
13.4.6 High-resistance Window Layers 570
13.4.7 Device Completion 571
13.5 Device Operation 571
13.5.1 Light-generated Current 572
13.5.2 Recombination 575
13.5.3 The Cu(InGa)Se₂/CdS Interface 579
13.5.4 Wide and Graded Bandgap Devices 580
13.6 Manufacturing Issues 583
13.6.1 Processes and Equipment 583
13.6.2 Module Fabrication 585
13.6.3 Module Performance and Stability 587
13.6.4 Production Costs 588
13.6.5 Environmental Concerns 589
13.7 The Cu(InGa)Se₂ Outlook 591
References 592

14 Cadmium Telluride Solar Cells 600
Brian E. McCandless and James R. Sites
14.1 Introduction 600
14.2 Historical Development 601
14.3 CdTe Properties 604
14.4 CdTe Film Deposition 609
14.4.1 Condensation/Reaction of Cd and Te₂ Vapors on a Surface 611
14.4.2 Galvanic Reduction of Cd and Te Ions at a Surface 612
14.4.3 Precursor Reaction at a Surface 613
14.5 CdTe Thin Film Solar Cells 614
14.5.1 Window Layers 615
14.5.2 CdTe Absorber Layer and CdCl₂ Treatment 615
14.5.3 CdS/CdTe Intermixing 619
14.5.4 Back Contact 622
14.5.5 Cell Characterization and Analysis 624
14.6 CdTe Modules 630
14.7 Future of CdTe-based Solar Cells 632
Acknowledgements 635
References 635

15 Dye-sensitized Solar Cells 642
Kohjiro Hara and Shogo Mori
15.1 Introduction 642
15.2 Operating Mechanism of DSSC 643
15.3 Materials 646
15.3.1 TCO Electrode 646
15.3.2 Nanocrystalline TiO₂ Photoelectrode 646
15.3.3 Ru-complex Photosensitizer 647
15.3.4 Redox Electrolyte 649
15.3.5 Counter-electrode 649
15.3.6 Sealing Materials 650
15.4 Performance of Highly Efficient DSSCs 650
15.5 Electron-transfer Processes 651
15.5.1 Electron Injection from Dye to Metal Oxide 651
15.5.2 Electron Transport in Nanoporous Electrode 653
CONTENTS

15.5.3 Kinetic Competition of the Reduction of Dye Cation 654
15.5.4 Charge Recombination between Electron and I$_3^-$ Ion 654
15.6 New Materials 655
15.6.1 Photosensitizers 655
15.6.2 Semiconductor Materials 661
15.6.3 Electrolytes 662
15.7 Stability 664
15.7.1 Stability of Materials 664
15.7.2 Long-term Stability of Solar Cell Performance 665
15.8 Approach to Commercialization 665
15.8.1 Fabrication of Large-area DSSC Modules 665
15.8.2 Flexible DSSC 666
15.8.3 Other Subjects for Commercialization 668
15.9 Summary and Prospects 668
Acknowledgements 669
References 670

16 Sunlight Energy Conversion Via Organics 675
Sam-Shajing Sun and Hugh O’Neill

16.1 Principles of Organic and Polymeric Photovoltaics 675
16.1.1 Introduction 675
16.1.2 Organic versus Inorganic Optoelectronics Processes 676
16.1.3 Organic/Polymeric Photovoltaic Processes 679
16.2 Evolution and Types of Organic and Polymeric Solar Cells 682
16.2.1 Single-layer Organic Solar Cells (Schottky Cells) 682
16.2.2 Double-layer Donor/Acceptor Heterojunction Organic Solar Cells (Tang Cells) 684
16.2.3 Bulk Heterojunction Organic Solar Cells 687
16.2.4 N-type Nanoparticles/Nanorods with p-type Polymer Blend Hybrid Solar Cells 688
16.2.5 Bicontinuous Ordered Nanostructure (BONS) Organic Solar Cells 688
16.2.6 Tandem Structured Organic Solar Cells 689
16.2.7 “Ideal” High-efficiency Organic Solar Cells 692
16.3 Organic and Polymeric Solar Cell Fabrication and Characterization 692
16.3.1 Organic and Polymeric Solar Cell Fabrication and Stability 692
16.3.2 Status and Challenges of OPV Manufacturing 694
16.4 Natural Photosynthetic Sunlight Energy Conversion Systems 695
16.4.1 Photosynthetic Pigments 696
16.4.2 Antenna Complexes 696
16.4.3 Photosynthetic Reaction Centers 698
16.5 Artificial Photosynthetic Systems 699
16.5.1 Antenna Systems 700
16.5.2 Cyclic Porphyrin Arrays 700
16.5.3 Dendrimers 701
16.5.4 Self-assembled Systems 703
16.6 Artificial Reaction Centers 704
16.6.1 Bacterial Reaction Center 704
CONTENTS

17.7.3 Physical and Structural Characterization 774
17.7.4 Chemical and Surface Characterization 775
17.8 TCO Stability 777
17.9 Recent Developments and Prospects 780
17.9.1 Evolution of Commercial TCO-coated Glass 780
17.9.2 Quest for High Carrier Mobility 782
17.9.3 Enhancement of Scattering and Useful Absorption 784
17.9.4 Doped TiO₂ and Other Wide-gap Oxides 784
17.9.5 Other Types of Transparent Conductor 785
17.9.6 Amorphous TCOs 786
References 788

18 Measurement and Characterization of Solar Cells and Modules 797
Keith Emery
18.1 Introduction 797
18.2 Rating PV Performance 797
18.2.1 Standard Reporting Conditions 798
18.2.2 Alternative Peak Power Ratings 802
18.2.3 Energy-based Performance Rating Methods 803
18.2.4 Translation Equations to Reference Conditions 805
18.3 Current–Voltage Measurements 807
18.3.1 Measurement of Irradiance 807
18.3.2 Simulator-based I–V Measurements: Theory 808
18.3.3 Primary Reference Cell Calibration Methods 809
18.3.4 Uncertainty Estimates in Reference Cell Calibration Procedures 812
18.3.5 Intercomparison of Reference Cell Calibration Procedures 814
18.3.6 Multijunction Cell Measurement Procedures 815
18.3.7 Cell and Module I–V Systems 817
18.3.8 Concentrator Measurement Issues 822
18.3.9 Solar Simulators 823
18.4 Spectral Responsivity Measurements 824
18.4.1 Filter-based Systems 825
18.4.2 Grating-based Systems 827
18.4.3 Spectral Responsivity Measurement Uncertainty 828
18.5 Module Qualification and Certification 831
18.6 Summary 833
Acknowledgements 834
References 834

19 PV Systems 841
Charles M. Whitaker, Timothy U. Townsend, Anat Razon, Raymond M. Hudson
and Xavier Vallvé
19.1 Introduction: There is gold at the end of the rainbow 841
19.1.1 Historical Context 841
19.1.2 Contemporary Situation 842
20 Electrochemical Storage for Photovoltaics

Dirk Uwe Sauer

20.1 Introduction 896
20.2 General Concept of Electrochemical Batteries 898
 20.2.1 Fundamentals of Electrochemical Cells 898
 20.2.2 Batteries with Internal and External Storage 903
 20.2.3 Commonly Used Technical Terms and Definitions 905
 20.2.4 Definitions of Capacity and State of Charge 907
20.3 Typical Operation Conditions of Batteries in PV Applications 908
 20.3.1 An Example of an Energy Flow Analysis 908
 20.3.2 Classification of Battery Operating Conditions in PV Systems 909
20.4 Secondary Electrochemical Accumulators with Internal Storage 913
 20.4.1 Overview 913
 20.4.2 NiCd Batteries 914
 20.4.3 Nickel–Metal Hydride (NiMH) Batteries 916
 20.4.4 Rechargeable Alkali Manganese (RAM) Batteries 917
 20.4.5 Lithium–Ion and Lithium–Polymer Batteries 917
 20.4.6 Double-layer Capacitors 919
 20.4.7 The Lead–Acid Battery 921
20.5 Secondary Electrochemical Battery Systems with External Storage 941
 20.5.1 Redox-flow Batteries 942
 20.5.2 Hydrogen/Oxygen Storage Systems 944
20.6 Investment and Lifetime Cost Considerations 948
20.7 Conclusion 950
References 951

21 Power Conditioning for Photovoltaic Power Systems

Heribert Schmidt, Bruno Burger and Jürgen Schmid

21.1 Charge Controllers and Monitoring Systems for Batteries in PV Power Systems 955
 21.1.1 Charge Controllers 955
 21.1.2 Charge Equaliser for Long Battery Strings 967
21.2 Inverters 969
 21.2.1 General Characteristics of Inverters 969
 21.2.2 Inverters for Grid-connected Systems 970
 21.2.3 Inverters for Stand-alone Systems 973
 21.2.4 Basic Design Approaches for PV Inverters 975
 21.2.5 Modelling of Inverters, European and CEC Efficiency 978
 21.2.6 Interaction of Inverters and PV Modules 980
References 983

22 Energy Collected and Delivered by PV Modules

Eduardo Lorenzo

22.1 Introduction 984
22.2 Movement between Sun and Earth 985
22.3 Solar Radiation Components 991
22.4 Solar Radiation Data and Uncertainty 993
 22.4.1 Clearcness Index 997
24 Photovoltaics and Development

Jorge M. Huacuz, Jaime Agredano and Lalith Gunaratne

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Electricity and Development</td>
<td>1078</td>
</tr>
<tr>
<td>24.1.1 Energy and Early Humans</td>
<td>1078</td>
</tr>
<tr>
<td>24.1.2 “Let There Be Electricity”</td>
<td>1079</td>
</tr>
<tr>
<td>24.1.3 One-third of Humanity Still in Darkness</td>
<td>1079</td>
</tr>
<tr>
<td>24.1.4 The Centralized Electrical System</td>
<td>1080</td>
</tr>
<tr>
<td>24.1.5 Rural Electrification</td>
<td>1080</td>
</tr>
<tr>
<td>24.1.6 The Rural Energy Scene</td>
<td>1081</td>
</tr>
<tr>
<td>24.2 Breaking the Chains of Underdevelopment</td>
<td>1081</td>
</tr>
<tr>
<td>24.2.1 Electricity Applications in the Rural Setting</td>
<td>1081</td>
</tr>
<tr>
<td>24.2.2 Basic Sources of Electricity</td>
<td>1082</td>
</tr>
<tr>
<td>24.3 The PV Alternative</td>
<td>1083</td>
</tr>
<tr>
<td>24.3.1 PV Systems for Rural Applications</td>
<td>1083</td>
</tr>
<tr>
<td>24.3.2 Barriers to PV Implementation</td>
<td>1084</td>
</tr>
<tr>
<td>24.3.3 Technical Barriers</td>
<td>1087</td>
</tr>
<tr>
<td>24.3.4 Nontechnical Issues</td>
<td>1090</td>
</tr>
<tr>
<td>24.3.5 Trained Human Resources</td>
<td>1094</td>
</tr>
<tr>
<td>24.4 Examples of PV Rural Electrification</td>
<td>1095</td>
</tr>
<tr>
<td>24.4.1 Argentina</td>
<td>1095</td>
</tr>
<tr>
<td>24.4.2 Bolivia</td>
<td>1096</td>
</tr>
<tr>
<td>24.4.3 Brazil</td>
<td>1097</td>
</tr>
<tr>
<td>24.4.4 Mexico</td>
<td>1098</td>
</tr>
<tr>
<td>24.4.5 Sri Lanka</td>
<td>1099</td>
</tr>
<tr>
<td>24.4.6 Water Pumping in the Sahel</td>
<td>1100</td>
</tr>
<tr>
<td>24.5 Toward a New Paradigm for Rural Electrification</td>
<td>1101</td>
</tr>
<tr>
<td>References</td>
<td>1103</td>
</tr>
</tbody>
</table>

Index

1106