Index

Page references followed by “Fig.” and “Table” indicate figures and tables, respectively.

Active filter, 12
Air gap, 14, 76, 78, 383, 470, 581, 587, 600, 605, 692, 805. (see also Transformers)
Ampere-second balance on capacitor, 155, 444, 459, 477, 494, 509
Atomic (particle) accelerator, 10–11, 729
Audio-susceptibility (see Transfer function, closed-loop input-to-output voltage), 401, 418, 453
Average canonical graphical model, CCM operation, 211, 213(Fig.), 216, 217, 418, 450, 451, 452(Fig.)
Average model of the PWM (see PWM, average model), 291–2
Average model of the switches DC resistances, 288–91
Average PWM switch model, CCM operation, 253–58, 255(Fig.)
average equations of the PWM switch, 255–8, 448
averaged DC and AC small-signal model, 258–63, 259(Fig.)
boost (of), 254, 256–7, 258, 260(Fig.), 262
buck (of), 254, 256–7, 259, 261(Fig.)
buck-boost (of), 254, 256, 257, 260, 262(Fig.), 263
Čuk converter (of), 438–56, 448(Fig.), 452(Fig.)
SEPIC (of), 470–503, 481(Fig.)
PWM switch, 253–87
switching cell (three-terminal), 253, 254, 257, 258, 260
Average PWM switch model, DCM operation, 263–78
three-terminal PWM switch model, 264(Fig.), 263–7, 267(Fig.), 269, 270(Fig.)
average time-domain model (of), 263, 266, 267(Fig.), 268
DC model of boost converter, 270, 271(Fig.)
DC model of buck converter, 279–80, 279(Fig.)
DC model of buck-boost converter, 284–5, 284(Fig.)
small-signal model of, 267–9, 270(Fig.)
boost converter, 271–3, 273(Fig.)
buck converter, 280–83, 281(Fig.)
buck-boost converter, 285, 286(Fig.)
Average resonant switch model, 292–339. (see also Quasi-resonant converter),
zero-current (ZC) resonant switch (of), 293–300, 297(Fig.), 301(Fig.)
zero-voltage (ZV) resonant switch (of), 300–305, 302(Fig.), 305(Fig.)
Ballast, 11, 36, 73, 120, 136, 137, 140(Fig.)
Battery,
charging, 7, 16
lithium-ion/lithium, 6, 9, 429, 748
rechargeable, 13
Bi-directional
converter, DC–DC converter, 13, 17, 146, 147(Fig.)
power flow, 8, 13, 111, 782, 827
Bode plot, 341, 342, 353(Fig.)
of low-pass filter, 24, 26(Fig.)
Boost converter,
AC small-signal open-loop transfer functions, CCM operation (of), 178
AC small-signal open-loop transfer functions, DCM operation (of), 225–6, 241–6, 273–9
average state-space equations, CCM operation, 174–6
Boost converter (continued)

average state-space equations without neglecting the inductor dynamics (DCM), 237–8, 239–40
averaged DC and AC small-signal PWM switch model (CCM), 258–9, 260(Fig.)
boundary between CCM and DCM operation k_{bound}, 223, 224, 224(Fig.), 225, 361(Table), 367, 408, 411, 413, 416
canonical averaged model, CCM operation, 211, 215–16, 418
conduction power loss of a diode, 29, 407
critical value of L for a CCM/DCM boundary operation, 413
DC voltage gain, CCM operation, 173, 177, 197
practical DC gain of boost converter, 358
DC voltage gain, DCM operation, 223–5, 241, 270–71
duty-cycle for load regulation, 179, 180, 273, 355, 358(Fig.), 402, 403, 407, 414(Fig.), 454
graphical averaged model, CCM operation, 191–211, 195(Fig.), 208(Fig.), 599(Fig.)
load characteristics, 413, 415(Fig.), 431
output voltage ripple, 178
power loss on the on-resistances of the transistor, inductor, and on diode, CCM operation, 407, 408
power loss on the on-resistance of the transistor, inductor, and on diode, DCM operation, 410
right-half plane zero, 180, 244, 418–19, 812
ripple in the inductor (input) current, 405
rms current through the output capacitor, 406, 688
small-signal model PWM switching cell–based, DCM operation, 271–3, 273(Fig.)
start-up, 417, 418
steady-state waveforms, CCM operation, 404(Fig.)
switch and diode currents, rms values, CCM operation, 403
tapped-inductor boost converter (see Tapped inductor, boost)
time-domain model PWM switching cell–based, DCM operation, 266, 267(Fig.)
three-level (see Three-level converter, boost)
true reduced-order average state-space equations, 220–22
waveforms at CCM/DCM boundary, 412(Fig.)
Bootstrap (bootstrapping) circuit, 45, 46, 690
Boundary between operation in CCM and DCM k_{bound} (see Boost, Buck, Buck-boost, boundary)
Boundary control, 375, 375(Fig.)
Breakdown voltage (see Diode, breakdown voltage, and MOSFET, breakdown voltage)

Buck converter,

AC small-signal open-loop transfer functions, CCM operation (of), 184–7
AC small-signal open-loop transfer functions, DCM operation (of), 232–5, 249–53, 281–3
average state-space equations, CCM operation, 182–3, 203
average state-space equations without neglecting the inductor dynamics (DCM), 229–32, 239
averaged dc and ac small-signal PWM switch model (CCM), 259, 261(Fig.)
boundary between CCM and DCM operation k_{bound}, 223, 224, 224(Fig.), 225, 361(Table), 367, 408, 411, 413, 416
canonical averaged model, CCM operation, 211, 215–16, 418
critical value of L for a CCM/DCM boundary operation, 413
DC voltage gain, CCM operation, 173, 177, 197
practical DC gain of boost converter, 358
DC voltage gain, DCM operation, 223–5, 241, 270–71
duty-cycle for load regulation, 179, 180, 273, 355, 358(Fig.), 402, 403, 407, 414(Fig.), 454
graphical averaged model, CCM operation, 191–211, 195(Fig.), 208(Fig.), 599(Fig.)
load characteristics, 413, 415(Fig.), 431
output voltage ripple, 178
power loss on the on-resistances of the transistor, inductor, and on diode, CCM operation, 407, 408
power loss on the on-resistance of the transistor, inductor, and on diode, DCM operation, 410
right-half plane zero, 180, 244, 418–19, 812
ripple in the inductor (input) current, 405
rms current through the output capacitor, 406, 688
small-signal model PWM switching cell–based, DCM operation, 271–3, 273(Fig.)
start-up, 417, 418
steady-state waveforms, CCM operation, 404(Fig.)
switch and diode currents, rms values, CCM operation, 403
tapped-inductor boost converter (see Tapped inductor, boost)
time-domain model PWM switching cell–based, DCM operation, 266, 267(Fig.)
three-level (see Three-level converter, boost)
true reduced-order average state-space equations, 220–22
waveforms at CCM/DCM boundary, 412(Fig.)
Bootstrap (bootstrapping) circuit, 45, 46, 690
Boundary between operation in CCM and DCM k_{bound} (see Boost, Buck, Buck-boost, boundary)
Boundary control, 375, 375(Fig.)
Breakdown voltage (see Diode, breakdown voltage, and MOSFET, breakdown voltage)
true reduced-order average state-space equations, 229–32

Buck-boost converter,
ac small-signal open-loop transfer functions, CCM operation (of), 188–91
ac small-signal open-loop transfer functions, DCM operation (of), 228–9, 246–9, 285–7
average state-space equations, CCM operation, 187–8
average state-space equations without neglecting the inductor dynamics (DCM), 238
averaged dc and ac small-signal PWM switch model (CCM), 260, 262–3, 262(Fig.)
boundary between CCM and DCM operation k_{bound}, 228–9
canonical averaged model, CCM operation, 211–12, 216–17
capacitor ripple current, 427, 435
dc voltage gain, CCM operation, 188
dc voltage gain, DCM operation, 217, 228, 246, 284–5, 285(Fig.)
duty-cycle variation for load regulation, 432(Fig.)
four-switches non-inverting, 429(Fig.)
graphical averaged model, CCM operation, 208(Fig.)
load characteristics, 432
maximum value of L that assures a DCM operation $L_{bound,max}$, 393
output voltage ripple, 427
power losses on $r_{DS(on)}$, diode $r_{D(on)}$ or V_F, and r_L, CCM operation, 424
power losses on $r_{DS(on)}$, diode $r_{D(on)}$ or V_F, and r_L, DCM operation, 433
power loss on the dc series resistance of the capacitor, 424
power supply for LED driver, 428(Fig.)
quadratic (see Quadratic converters)
right-half plane zero, 189, 248, 437
rms value of the capacitor current, 437
rms values of the currents through the main switch and diode, 424, 427
small-signal model PWM switching cell – based, DCM operation, 270(Fig.)
steady-state main waveforms, CCM operation, 423(Fig.)
steady-state main waveforms, DCM operation, 436(Fig.)
time-domain model PWM switching cell - based, DCM operation, 267(Fig.)
true reduced-order average state-space equations, 226, 228
two-switched buck-boost (see Two-switch buck-boost)

Burn-in process, 12

Capacitor, 68(Table), 69(Table)
blocking, 136, 634, 676, 794, 797. (see also Half-bridge, dc blocking capacitors. Three-level converter, full-bridge)
ceramic, 68, 69, 131, 384, 390, 401, 485, 488, 518, 520, 603, 606
electric field, 97
electrolytic, 65–8, 72, 73, 127, 356, 384, 390, 410, 565
equivalent series inductance ESL, 65, 67, 384, 416, 437, 550, 567
film capacitor, 67–70, 72, 356, 410, 601
polyester, 67, 71, 72, 410
polypropylene, 67, 70, 71
input electrolytic capacitor when operating across the USA range of line voltage, 565
lifetime(of), 67, 72, 80
multilayer, 68, 69, 74–6
rated voltage, 828
ripple current rating, 828
tantalum capacitor, 67, 68, 601, 606
temperature coefficient, 65, 67, 619

Cell,
fuel cell, 6, 7, 14, 81, 132, 357
photovoltaic cell, 4
solar cell (see photovoltaic cell)

Charge pump, 10, 519, 825. (see also Switched-capacitor, Voltage multiplier, Voltage step-up), 10, 519, 825

Cockcroft-Walton voltage tripler (see Voltage multiplier, tripler)

Conduction (power) loss, 8, 32, 78, 92, 94, 100, 109, 111, 119, 342, 344(Table), 531, 605, 648, 654, 706, 726, 728, 742, 793
power loss in the dc resistance of a transistor in conduction $r_{DS(on)}$(CCM), 47, 52, 56, 288, 344(Table), 357, 379, 381, 407, 424–5, 449, 564, 794, 796, 811
power loss on a diode in conduction (DCM operation), 291, 395
power loss on the diode in conduction (CCM operation), 291, 344(Table), 381, 395, 407, 424–5, 449, 564, 660
power loss on the parasitic resistance of the inductor, r_L, on the dc resistance of the switch in conduction, $r_{DS(on)}$, and on the equivalent resistance of a diode in conduction, $r_{D(on)}$(DCM operation), 291, 394, 414–15, 417, 433
Content of harmonics, 12, 690
harmonics spectrum, 134
Continuous conduction mode (CCM), 85, 140, 146, 150,
164, 169, 171, 173, 191, 211, 252–3, 288,
340, 369, 377, 382, 402, 421, 438, 471, 473,
479, 504, 505, 514, 534, 577, 598, 608, 636,
645, 660, 672, 783, 797
average state-space equations (see State-space
equations)
boundary between operation in CCM and DCM
k_{bound} (see Boost, Buck, Buck-boost, boundary)
canonical graphical averaged model (see Averaged
canonical graphical model)
graphical averaged model (see State-space equations)
RMS values $I_{S,rms}$ and $I_{D,rms}$ in a steady-state
cycle, 288

Control
boundary (see Boundary control)
crossover frequency (see Control, unity-gain
bandwidth)
current-mode, 90, 131, 346, 399, 419–20, 456, 485,
489, 565, 606, 619, 648, 676, 688, 693, 695,
709, 824
dead-time, 107, 109, 607, 611, 636, 659
gain margin, 401
optocoupler, 574, 606
phase margin, 341, 342, 351, 352, 354, 401–2, 419,
568, 687–8
phase-shift control, 676, 677, 680, 695, 714
unity-gain bandwidth, 401, 402, 488
voltage-mode, 90, 346, 399, 400, 402, 419–20, 520,
551, 566, 688, 694, 711

Controller
analogue, 78
current-mode controller, 456, 485, 489, 564, 606
digital, 9
dynamic range of the PWM IC controller, 601
cycle skipping, 601
hybrid, 28
voltage-mode control (for), 400(Fig.)
voltage-mode controller, 402, 520, 566

Converter
current-fed, 23, 470, 631, 693. (see also
Current-driven converter)
voltage-fed, 23, 532, 607(Fig.), 631. (see also
Voltage-driven converter)

Converters comparison
buck-type push-pull, half-bridge and full-bridge, 696(Table)
center-tapped and bridge type rectifier of full-bridge
converter, 696(Table)

Characteristics of Ćuk and SEPIC converters in
DCM, 690(Table)
Ćuk converter in DCVM - buck-boost converter in
DCM, 461(Table)
step-up dc gain of tapped-inductor and classical boost
converters, 814(Fig.)
switching-capacitor/inductor cells in basic
converters, 760(Table)
transfer functions of QR ZCS buck, boost and
buck-boost, 364(Table)
transfer functions of QR ZVS buck, boost and
buck-boost, 363(Table)
transfer functions of PWM buck, boost and
buck-boost, (CCM), 359(Table)
transfer functions of PWM buck, boost and
buck-boost, (DCM), 361(Table)
voltage and current stresses in Ćuk, SEPIC and Zeta
converters, 691(Table)

Coupled-inductor, 9, 72, 76, 78, 369, 468, 469, 470, 488,
517, 520, 581, 583, 587, 588, 598–603, 605,
606, 689, 690, 692, 693, 783. (see also
transformer)
air-gap (air gap), 470
core geometries, 600
efficiency of the magnetic element, 96, 97, 110, 111,
581, 601, 805, 828
gapped core, 581
interwinding parasitic capacitance, 601
leakage inductance energy, 593, 597–8, 603, 606, 657,
693–4, 824
active clamping (see Flyback, leakage inductance)
Dissipative RCD snubber (see Flyback, leakage
inductance)
power loss in the snubber resistance (see Flyback,
leakage inductance)
ringing due to the leakage inductance (see Flyback,
leakage inductance)
transformer tertiary winding solution (see Flyback,
leakage inductance)
two-transistor flyback converter (see Flyback,
leakage inductance)
magnetic reluctance, 78, 581
number of turns of the primary winding, 544, 566–7,
593, 605, 634, 817
parasitic resistance of the primary winding, 239–40,
290, 357, 589(Fig.)
permeability, 72, 76, 78, 581, 600
turns ratio, 76, 194, 468–9, 602
Ćuk converter,
averaged model, 448, 452(Fig.), 454(Fig.)
condition for operating at CCM/DCVM boundary, 461
condition for operation in DICM $k_{DICM, \text{Cuk}}$, 463, 466, 467

C_1 equation for DCVM operation, 461, 461(Table)
Čuk converter in DCVM operation as PFC, 462
Čuk converter in DICM operation as PFC, 468
Čuk converter with coupled-inductor, 468, 469(Fig.)
current-source current-load representation, 441(Fig.)
ergy transfer capacitor voltage and current in DCVM, 457(Fig.)
input capacitor voltage ripple, 445
input current ripple, 445, 447, 499, 657, 824, 828
isolated, 470, 568–74
integrated magnetic structure, 574(Fig.)
main characteristics of Čuk and SEPIC converters in DCM, 690(Table)
output inductor current ripple, 499, 508, 528
right-half plane zero, 489, 688
ripple current through C_1, 444
rms values of the transistor and diode currents, CCM operation, 446
steady-state main waveforms, CCM operation, 443(Fig.)
voltage and current stresses in Čuk, SEPIC and Zeta converters, 691(Table)
waveforms in DICM operation, 464(Fig.)
Čuk converter in DCVM - buck-boost converter in DCM, comparison, 461(Table)
Current-doubler rectifier CDR (see Rectifier, current-doubler)
Current-driven converter, 23, 470, 631, 693, 812, 815, 824, 829
Current-limit (protection), 420
Current ripple, 6, 144, 356, 384, 405, 408, 427, 445, 474, 499, 527, 751, 805, 828
input current ripple, 389, 408, 445, 447, 462, 499, 657, 751, 804–5, 824, 828–9
Current sink, 23, 114, 438, 441, 503, 532, 687, 688, 690
Current slew rate 354, 384, 811
Cycloconverter, 11, 15, 16

DC isolation, 10, 76, 369, 470, 530, 574, 600, 691–3
DC voltage conversion ratio M, 84, 85, 169–71, 197, 280, 296
boost in CCM (of) (see Boost, dc voltage gain CCM)
boost in DCM (of) (see Boost, dc voltage gain DCM)
buck in CCM (of) (see Buck, dc voltage gain CCM)
buck in DCM (of) (see Buck, voltage conversion ratio DCM)
buck-boost in CCM (of) (see Buck-boost, dc voltage gain CCM)
buck-boost in DCM (of) (see Buck-boost, DCM)
CDR (of), 711

Čuk converter in CCM (of), 444, 449, 450, 450(Fig.)
Čuk converter in DCVM (of), 460, 461(Table)
Čuk converter in DICM operation (of), 467
current-driven full-bridge (of), 674–5
current-driven half-bridge (of), 646–7
current-driven push-pull (of), 625, 627(Fig.), 629(Fig.)
flyback in CCM (of), 582
flyback in DCM (of), 584
forward in CCM (of), 543–4
forward in DCM (of), 549
full-bridge in CCM, voltage-driven (of), 660
dual-bridge (of), 823–4, 829

graphical representation of the function $f(D) = D(1 - D)$, 376(Fig.)
half-bridge in CCM, voltage-driven (of), 646
half-bridge in DCM, voltage-driven (of), 651
KY converter, first-order (of), 778
KY converter, second-order, first control strategy (of), 779
KY converter, second-order, second control strategy (of), 781
push-pull in CCM, voltage-driven (of), 615–16
push-pull in DCM, voltage-driven (of), 623–4
QRC (of) (see Quasi-resonant converter)
quadric buck (of), 744
quadric buck-boost (of), 744
SEPIC in CCM (of), 473
SEPIC in DCM (of), 496
Sheppard-Taylor converter in CCM (of), 785
Sheppard-Taylor converter in DCVM (of), 790
switched-capacitor cell Dw1 integrated into a buck converter (of), 765
switched-capacitor cell Up1 integrated into a boost converter (of), 769
switched-capacitor step-down cell (Dw1) integrated into a Čuk converter (of), 771–2
switched-capacitor step-up cell Up2 integrated into a Čuk converter (of), 775
switched-inductor cell Dw2 integrated into a buck converter (of), 767
switched-inductor cell Up3 integrated into a boost converter (of), 770
switched-inductor step-down cell (Dw2) integrated into a Čuk converter (of), 773
switched-inductor step-up cell Up3 integrated into a Čuk converter (of), 775–6
switched-inductor step-up cell Up3 integrated into a Sepic converter (of), 776
tapped-inductor boost converter (of), 805, 812–13, 829
tapped-inductor buck converter, diode-to-tap (of), 805–6, 809, 828
DC voltage conversion ratio M (continued)
- tapped-inductor buck converter, rail-to-tap (of), 805, 828
- tapped-inductor buck converter, switch-to-tap (of), 805, 810
- three-level boost converter $V_{in} > \frac{V_{out}}{2}$ (of), 802
- three-level boost converter $V_{in} < \frac{V_{out}}{2}$ (of), 802
- two-switch buck-boost converter in boost mode (of), 750
- Watkins-Johnson converter (of), 782
- Z-source buck-boost converter (of), 756
- Zeta in CCM (of), 506
- Zeta in DICM (of), 524–5

DC voltage gain (see DC voltage conversion ratio)
- Defense applications, 14–15
- Digital power amplifier, 9

Diode,
- anti-parallel (see MOSFET body diode)
- blocking voltage, 30–31, 38, 57
- body (see MOSFET, body diode)
- breakdown voltage, 31–2, 34, 38, 44–5, 52, 386, 794, 796, 828
- depletion layer, 28–31, 33–5
- fast, 40, 343, 345
- forward-biased, 29, 32, 35, 36, 288, 407, 424
- forward voltage, 29, 40, 46, 289, 488, 602, 632, 712, 713, 719, 729, 779, 780
- light-emitting (LED), 9, 11
- majority carrier, 31
- minority carrier, 29–31, 52, 95
- p-n junction, 4, 28–9, 31
- power loss on the diode in conduction (see Conduction loss)
- reverse-biased, 51
- reverse blocking voltage, 30
- reverse charged, 31
- reverse (leakage) current, 29, 32, 52, 54, 56, 65, 67, 635, 660, 710
- reverse recovery, 29–31, 41, 52, 76, 343, 417, 586, 648, 688
- reverse time, 2
- Schottky(barrier), 29, 31, 40, 46, 56, 386, 410, 487, 488, 519, 566, 603, 606, 690
- SiC Schottky, 29, 31
- silicon, 29, 31
- silicon-carbide (SiC), 1, 29, 41, 52

string of, 31
- turn-off characteristic, 29, 40
- ultrafast, 30, 606
- Zener, 31, 32(fig.), 44, 45
- Diode bridge, 120–22, 129–30, 648, 652, 659–61, 664, 666, 668, 672, 675, 680, 681, 695, 706, 711, 723, 824. (see also Rectifier, bridge full-wave)
- diode-bridge-capacitor rectifier, 122
- Diode capacitor network, circuit, 126
- Discontinuous conduction mode (DCM), 85–6, 164, 169, 217, 253, 263, 369, 456, 468, 600, 689–90, 785, 791, 827
- average state-space equations without neglecting the inductor current dynamics (see State-space equations)
- boundary between operation in CCM and DCM k_{bound} (see Boost, Buck-boost, boundary)
- CCM/DCVM boundary $k_{DCVM,Cuk,bound}$ of a Čuk converter (see Čuk converter)
- CCM/DICM boundary condition $k_{DICM,SEPIC}$ (see SEPIC, DICM operation)
- C_1 equation for DCVM operation (see Čuk converter), critical value of L for CCM/DCM boundary, boost converter (see Boost)
- design condition for DICM $k_{DICM,Zeta}$ (see Zeta, design condition for DICM)
- discontinuous capacitor voltage mode (DCVM), 456, 468, 690, 827
- discontinuous inductor current mode (DICM), 340, 456, 489, 689, 785
- formula for DCVM operation, Sheppard-Taylor converter (see Sheppard-Taylor converter)
- maximum value of L that assures a DCM operation, buck converter (see Buck)
- maximum value of L that assures a DCM operation, buck-boost (see Buck-boost)
- reduced-order state-space equations (see State-space equations)
- rms values of the switch current and diode current, 290
- true DCM in half-bridge (see Half-bridge converter, true DCM)
- value of L at CCM/DCM boundary, forward (see Forward, value of L at)
- value of L at CCM/DCM boundary, half-bridge (see Half-bridge, value of L at)
- value of L at CCM/DCM boundary, push-pull (see Push-pull, value of L at)
- value of $L_{ms,bound}$, flyback (see Flyback, value of $L_{ms,bound}$)
- Displacement factor, 125
- Distortion factor, 125
Drives
 - constant frequency, 13
 - variable-frequency, 13
 - motor-speed control, 15
Dual-bridge converter, 812, 815–16, 818, 823–4, 829
current-driven dual-bridge converter with center-tapped inductor, 812–24
input current ripple, 824
input voltage variation, limitation, 824
regulation of the output voltage, method of, 817
switching diagram, 816(Fig.), 817
voltages across switches, 817
Duty-cycle, 20, 90, 91, 186, 454, 652
duty-cycle controlled, 91. (see also PWM)
Duty-ratio (see Duty-cycle)

“Economy” power supply, 736–42
Efficiency,
 - way of accounting for the efficiency, 396
Electrical vehicle, 67
Electromagnetic interference (EMI), 2, 8, 10, 11, 24, 27, 95, 97, 100, 122, 124, 150, 342, 517, 520, 563, 601
 - conducted EMI, 24, 27
 - radiated EMI, 24, 27, 601
Electronic display, 8
 - liquid crystal display (LCD), 8
 - plasma display (PDP), 8
Energy/Source of energy
 - alternative, 4–6, 694
 - renewable, 4–5
 - storage, 1, 4, 5, 9–11, 13, 14, 30, 76, 80, 81, 95, 132, 220, 351, 418, 553, 558, 581, 586, 587, 588, 590, 591, 598, 603, 660, 692, 705, 826
Energy conversion
 - controlled, 1, 15
 - electronic circuits, 4, 8, 15–17
 - renewable, 4–5
Energy recycling device (ERD), 12

Fault tolerance, 6
Fibonacci capacitors-switches multiplier (see Voltage multiplier)
Fibonacci series, 730
Filter
 - cut-off frequency, 132, 135
 - input, 24, 28, 73, 340, 342–3, 386–90, 399, 425, 450, 454, 462, 532, 603, 687, 688, 765
 - low-pass, 26, 132, 135, 178, 203, 211, 451, 689
Flyback converter
 - average magnetizing current, 583
 - average state-space equations, CCM, 598
dc voltage gain, CCM (see DC voltage gain, flyback)
dc voltage gain in DCM (see DC voltage gain, flyback)
design trade-off, 586, 587
energy stored in the leakage inductance, 588, 706
energy stored in the magnetizing inductance, 587, 603, 692
equivalent input impedance, DCM, 599
graphical averaged model, CCM operation, 599(Fig.)
leakage inductance - induced voltage spike, 589(Fig.)
 - active clamping, 598
 - voltage across the main switch, 598
dissipative RCD snubber, 589
average voltage across the snubber capacitor, 590
power loss in the snubber resistance, 592
transistor voltage stress, 592, 597
ringing due to the leakage inductance, 590
transformer tertiary winding solution, 593
two-transistor flyback converter, 593–4
 - voltages across S_a and S_b, 593
maximum current through the magnetizing inductance, 587
ripple of the magnetizing current, 583
steady-state waveforms, CCM operation, 579–80(Fig.)
transistor and diode voltage stress, 582
value of $L_{m,bound}$, 583
dc voltage gain, CCM (see DC voltage conversion ratio, forward)
 - maximum duty-ratio, 543
input-to-output voltage conversion ratio, DCM
 (see DC voltage conversion ratio, forward)
magnetizing and leakage inductance energy, 553
maximum output inductor current
 - for CCM operation, 550
 - for DCM operation, 550
multiple output, 551
reset of the magnetizing inductance, 543
reset schemes, 553
 - clamping circuits, 553, 564, 691
 - active clamping circuits, 554, 691
 - maximum voltage stress on the switches, 558
 - non-dissipative resonant, 559–60, 691
magnetizing current and voltage diagrams, 560–2(Fig.)
Forward converter (continued)

maximum voltage to which the transistor is subjected, 559
RCD type of clamping circuit, 553, 564
tertiary transformer winding, 551, 553, 559, 563, 566
number of turns of the reset winding, 541
reset transformer winding and synchronous rectification, 564
two-transistor forward converter, 563–4
voltage stress on each MOSFET, 542, 544, 550–51, 553, 558, 564–5, 567, 573, 692

Forward voltage (see Diode, forward)

4 × 8 power supply, 736–42
Fourier analysis of the square wave, 24

Frequency
corner (see Filter, cut-off frequency)
crossover (see Control, crossover frequency)
fundamental, 24, 135
spectrum, 24, 132

Full-bridge converter, 657–87
accurate input-to-load voltage relationship, CCM, voltage-driven, 646, 675
average value of the voltage across the magnetizing inductance, 676
current-driven, 680–87, 701, 812, 815, 824, 829
input-to-output voltage conversion ratio
(see DC voltage conversion ratio)
ripple in the inductor (input) current, 685, 687
rms values of the switches currents, 680
switching diagram, 681–2(Fig.)
current through the primary-side switches, 664
currents through the rectifier diodes, 667, 672
ripple in the magnetizing current, 670
ripple in the output inductor current, 665
rms value of the current through the transistors, 675
steady-state main waveforms, CCM, 673–4(Fig.)
switching diagram, phase-shift controlled converter, 676, 677(Fig.)
voltage across diode, center-tapped rectifier, 658, 660–61, 663–6, 668, 670–72, 675, 680
voltage across diodes, diode bridge rectifier, 660–61, 664, 666, 668, 672, 675, 680–81
voltage-driven, 687
voltage stress across the primary-side switch, 664

Gain margin (see Control, gain margin)
GaN (switch) technology, 52
GaN transistor (MOSFET), 51, 52
GaN HEMT (see High-electron–mobility-transistor)
Gate drive power loss, 56
Greinacher voltage doubler (see Rectifier, voltage doubler)

Grid
electric grid, 5
gird-interactive inverter technology, 12
microgrid, 4, 5
smart grid, 5
Ground loop currents, 530

Half-bridge converter, 634–57
accurate input-to-load voltage relationship, 646
current-driven half-bridge, 652–7
input current ripple, 657
leakage inductance energy, 657
rms current in each one of the transistors, 657
switching diagram, 652, 653(Fig.)
voltage conversion ratio, 657
current through the primary-side switch, 640
dc blocking capacitors, 634
load current through the center-tapped secondary winding, 648
maximum value of the duty-cycle (choice of), 646
oscillations between the leakage inductance and rectifier diode parasitic capacitance, 648
ripple in the magnetizing current, 643
ripple in the output inductor current, 642
rms current through any of the primary-side switches, 647
steady-state waveforms, CCM, 637–8(Fig.)
steady-state waveforms, DCM, 650(Fig.)
utilization of the transformer core, 635, 659 (see also Transformer)
true DCM, 651
value of L at CCM/DCM boundary, 652
voltage-driven half-bridge, 694
voltage stress across the primary-side switch, 640

Harmonics spectrum (see Content of harmonics, harmonics spectrum)

Heat sink, 56, 341, 346, 410
thermal design, 56

High-electron-mobility-transistor (HEMT), 52
GaN HEMT, 52
Hold-up time requirement, 550, 692
Hydrophone, 14
IGBT, 62–4 (Table)
tailing, 50, 51. (see also Tail current)

Inductor,
magnetic field, 11, 18, 72, 73, 78, 83, 84, 96, 97, 531, 748
magnetic permeability, 72
monolithic (chip) inductor, 74, 96
saturation current, 488, 517, 520, 550
volt-second balance, 84, 85, 155, 222, 230, 235–6, 413, 442, 463, 490, 505–6, 523, 531, 543, 549, 552, 558, 566, 572, 582, 584, 615–16, 619, 623–4, 631–3, 645, 651, 672, 693, 711, 743, 746, 749, 754, 765, 767, 772, 775, 779–80, 782, 785, 801–2, 808, 810–11, 823. (see also Volt-second balance, definition)
winding (series, parasitic) resistance \(r_L \), 73–4, 77–8, 531, 588

Industrial applications, 15, 369, 691
Input power factor, 2, 125. (see also Power quality)
International standard IEC60950, 530
Inverter, 7–9, 11–12, 15, 28, 34, 119, 132–3, 135–6, 139, 155, 355

Junction capacitance (see parasitic capacitance, junction)

KY converter, 776–82, 827
first-order KY converter, 776–8
direct line-to-load energy path, 776
second-order KY converter, 778–82
switches voltage stress in first control strategy, 779
switches voltage stress in second control strategy, 781

Load sharing, 3, 420

Maximum power point (MPP) tracking, 4, 5, 10, 502
Mobile electronic device (see Portable electronic device)
Modulation index, 134
MOSFET, 58–61 (Table)
active (saturation) mode, 39
body (anti-parallel) diode, 597, 598
bootstrap circuit (see Bootstrap circuit)
breakdown voltage \(V_{BV} \), 38, 44, 45, 47, 52, 53, 386, 796
cut-off mode, 39–40, 44, 51
drain-source resistance \(r_{DS(on)} \), 39
enhancement type, 39
floating gate, 141
gate drain capacitance (see MOSFET, Miller capacitance)
gate source capacitance (see Parasitic capacitance, gate source capacitance)
lateral MOSFET, 47
Miller capacitance, 40, 47
negative temperature coefficient, 619
ohmic (linear) mode, 39–40
temperature-resistance coefficient, 44
totem-pair of bipolar transistors, 45, 132. (see also Switch, totem-pole)
vertical structure, 38
voltage rating \(V_{BV} \) (see breakdown voltage)

Nano satellite, 10
Non-inverting buck-boost converter (see Buck-boost, four-switches)
Non-minimum phase function, 180, 190, 470, 483

Off-line supply, 530
front end, 530
Off-state leakage power loss, 54–6
Operational transconductance amplifier (OTA), 400
Output overvoltage protection (see Protection functions, overvoltage)

gate-drain capacitance, 154
gate-source capacitance, 153
junction capacitance, 35–6, 38, 40, 56
Parasitic inductance, 3, 31, 102, 606
Parasitic resistance (see Resistance, parasitic)
Phase margin (see Control, phase margin)
Portable electronic device, equipment, 5, 9
Power factor corrector (PFC), 126–7, 131, 693
Čuk converter in DCVM operation (see Čuk converter)
Čuk converter in DICM operation (see Čuk converter)
SEPIC in DICM operation (see SEPIC)
valley-fill PFC, 127, 128
Power loss, 17, 29, 35–6, 46–7, 52, 54, 56, 73, 78, 80, 94, 153, 288–91, 341, 343, 346, 379, 381–2, 394–6, 407, 424, 592, 619, 634, 648, 687
conduction loss (see Conduction power loss)
gate drive loss (see Gate drive power loss)
leakage loss (see Off-state leakage power loss)
switching loss (see Switching, loss)
Power processing, 13, 17, 24, 28, 80, 129
Power quality, 2, 4, 12, 14, 132
Power system conditioning, 12
Printed circuit board (PCB), 9, 14, 79, 97, 341, 346, 384, 600, 811
Protection functions, 565
 current limiting, 565
 overload protection, 565
 overvoltage protection, 565
 soft start, 565
Pulse-width modulator (PWM), 90, 162
 average model of PWM, 291–2
 bipolar, 135–6
 unipolar, 135–6
 average magnetizing current, 617, 619
 current-driven push-pull, 625, 627, 629
 diode voltage stress, CCM, 628
 switching diagram, in CCM operation, 629(Fig.), 636
 voltage gain, CCM (see DC voltage gain, current-driven push-pull)
 currents through the primary-side switches, 619
 dc voltage gain, CCM (see DC voltage conversion ratio, push-pull)
 ripple in the magnetizing current, 618, 670
 steady-state waveforms in CCM, 611–12(Fig.)
 steady-state waveforms in DCM, 622(Fig.)
 switch maximum rms current, 634
 value of L at CCM/DCM boundary, 625
 voltage conversion ratio, DCM (see DC voltage conversion ratio, push-pull)
 voltage-driven push-pull, 631, 701
 voltage stress on the transistors, 616, 646
 winding power losses, 619

Quadratic converter, 742–8
 quadratic buck, 743–6
 stress the transistor is submitted to, 744
 quadratic buck-boost, 746, 747, 826
 voltage stresses on the switches, 747
 passive buck stage with an active buck-boost converter, 746

Quasi-resonant converter (QRC), 110–19
 full-wave mode operation, 111
 half-wave mode operation, 116(Fig.)
 open-loop small-signal transfer functions (see Transfer function, small-signal)
 zero-current (ZC) resonant switch, 293–300
dc model (of), 297(Fig.)
dc model of ZCS QR boost converter, 311(Fig.)
dc model of ZCS QR buck converter, 306(Fig.)
dc model of ZCS QR buck-boost converter, 318(Fig.)
dc voltage conversion ratio (dc voltage gain), 306, 311, 314–15, 318–19, 322, 326, 329, 332, 335, 337–9
 small-signal model (of), 301(Fig.)
zero-voltage (ZV) resonant switch, 300–305
dc model (of), 302(Fig.)
dc model of ZVS QR boost converter, 332(Fig.)
dc model of ZVS QR buck converter, 325(Fig.)
dc model of ZVS QR buck-boost converter, 337(Fig.)
 small-signal model (of), 305(Fig.)

Rectifier,
 bridge full-wave (full-wave bridge), 608
 center-tapped, 652, 658(Fig.), 660–61, 663–6, 668, 670–2, 680, 694, 695. (see also Transformer, center-tapped winding)
 center-tapped and bridge type rectifier, comparison, 696(Table)
 current-doubler rectifier (CDR), 705–6, 706(Fig.), 711, 713–14, 714(Fig.), 719, 824
 common-anode configuration, 713–14, 714(Fig.)
 common cathode configuration, 713
 distribution of the heat dissipation, 711, 824
 interleaved (operation of the output inductors), 712
 ripple cancellation factor, 712
 ripple in the inductor current, 709, 711, 719
 ripple in the output current, 711–12, 825
 ripple in the reflected-to-primary inductor current, 719
 switches current stress, 719
 voltage and current waveforms (of), 706, 708(Fig.)
 with synchronous rectifiers, 714–15, 717–8, 720, 825
 with synchronous rectifiers, gate signals from the output inductors, 717, 718(Fig.)
current-multiplier, 719–20, 721(Fig.), 825
current-tripler, 719–20, 825, 828
synchronous rectification (see Synchronous rectifier)
purposed synchronous-drive secondary windings of the transformer, 565
voltage doubler rectifier, 721, 722
 4 × 8 power supply (see 4 × 8 power supply)
 full-wave bridge, 721
Greinacher voltage doubler, 723, 724, 727. (see also Voltage multiplier, Greinacher)
quadrupler (see Voltage multiplier, quadrupler)

ripple in the load voltage, 722, 723

voltage doubler with one capacitor, 729–30

voltage multiplier rectifier (see Voltage multiplier)

Resistance, resistor

current sensing resistor, 600

on-state resistance (see Resistance, parasitic)

average model (see Average model of the switches dc resistances)

power loss in the dc resistance of a transistor in conduction, 288

above resonance operation, 110

below resonance operation, 110

lagging power factor mode, 110

leading power factor mode, 110

resonant tank, 101–3, 110

average model (see Average resonant switch model)

Reverse blocking voltage (see Diode, reverse)

Reverse current (see Diode, reverse)

Reverse recovery time, 3, 30, 31, 343. (see also Diode)

Schottky diode (see Diode, Schottky)

SEPIC,

ampere-second balance on capacitor C_1, DCIM, 492(Fig.), 494

average current through the diode, CCM, 479

average diode current, DICM, 495

average inductor currents, DICM, 493, 495

averaged dc and small-signal model, CCM, 480, 481(Fig.)

dc voltage conversion ratio, DCIM (see DC voltage conversion ratio, SEPIC)

dc voltage gain, CCM (see DC voltage conversion ratio, SEPIC)

dc voltage gain versus duty-cycle, 497(Fig.)

DICM operation condition $k_{DICM,SEPIC}$, 496, 497(Fig.)

energy transferring inductor current ripple, CCM, 475

equivalent input resistance, DICM, 496, 502

input inductor current ripple, CCM, 474

isolated, 503

main characteristics of Čuk and SEPIC converters in DCM, 690(Table)

maximum power point tracking, DICM, 502

non-minimal phase response, 473

power factor preregulator, DICM, 502

ripple in the capacitor voltage, ΔV_{C_1}, CCM, 477, 497

ripple in the current through C_1, CCM, 475

rms current through C_1, CCM, 475

rms value of the switch current, CCM, 478

steady-state waveforms, CCM, 475, 476(Fig.)

steady-state waveforms, DICM, 489, 492(Fig.)

voltage and current stresses in Čuk, SEPIC and Zeta converters, 691(Table)

Sheppard-Taylor converter, 783–93

closed-form design formula for DCVM operation, 791

fast switching part, DCVM, 788

isolated version, 791–3

application in PFC, 791

comparison with Čuk converter in PFC, 785, 793

discontinuous input inductor current mode, 791

notation k_{DCVM}, 790

sensibility at changes in the duty-cycle, CCM, 785

switching diagram in DCVM operation, 785, 787(Fig.)

Shoot-through, 107, 607, 636, 659, 693, 694. (see also Switch, cross-conduction)

Short-circuit protection, 28

Snubber, 17, 30, 32, 67, 73, 94–6, 102, 119, 151, 342, 531, 589–93, 597, 603, 606, 648, 680, 693, 698, 699, 706, 797, 811, 824, 828–9

zero-current switching (ZCS), 93–4, 305

zero-voltage switching (ZVS), 94, 706, 796

Space exploration, 12

Spacecraft, 13, 15

Square-wave converter, 92, 95

State-space equation (continued)
boost in CCM (of), 174–6, 181
buck in CCM (of), 182–3, 191
buck-boost in CCM (of), 187–8, 207
canonical averaged model, 211, 213(Fig.), 214–15, 418, 450, 451, 452(Fig.)
boost in CCM (of), 211, 215–16
buck in CCM (of), 211, 216
buck-boost in CCM (of), 211–12, 216–17
Čuk converter in CCM (of), 451–3
dc + ac transformer, 193–5, 203–4, 211, 451, 598
full-order averaged model, DCM operation, 237–53
average equations without neglecting the inductor current dynamics, 237–9
boost in DCM (of), 237–8
buck in DCM (of), 239
buck-boost in DCM (of), 238
graphical averaged model, 191–211, 599
boost in CCM (of), 191–203, 195(Fig.)
buck in CCM (of), 203–7, 204(Fig.)
buck-boost in CCM (of), 207–11, 208(Fig.)
flyback in CCM (of), 598, 599(Fig.)
perturbation (see disturbance)
reduced-order average model, DCM operation, 217–37
averaged charging current (of the capacitor), 220, 221, 223, 226, 229, 230
averaged inductor current, 220, 221, 223, 229, 235
true reduced-order average state-space equations, 221
boost in DCM (of), 221–6
buck in DCM (of), 229–35
buck-boost in DCM (of), 226–9
signal linearization (see small-signal approximation)
small ripple approximation, 164–9
small-signal approximation, 171–2
state-space matrix, 165, 170–72, 175, 178, 182, 187, 221
state-space variable, 163, 166–7, 169, 237, 239, 241, 451
time-linearization (see small ripple approximation)
Steady-state cycle (definition of), 83–4
Synchronous rectifier, 18, 46, 47, 148, 566–8, 680, 692, 694–6, 714–15, 717, 735, 781, 805, 811, 825. (see also Synchronous switch)
asymmetrical operation, 717, 717(Fig.) (see also Rectifier, CDR, with synchronous rectifiers)
knee voltage, 46
pre-bias condition, 648, 694–5
pre-bias soft-start, 694–5. (see also Protection functions)
start-up oscillations, 648
Synchronous switch, 18, 429, 438, 441, 519, 688, 690
System-on-chip (SoC), 9
Switch
controllable, 28, 34–5, 56
cross-conduction, 636, 659, 694–5. (see also Control, dead time)
half-cycle symmetry, 635, 659, 693, 695, 823
high-side, 45, 520, 597
non-overlapping operation, 636, 659. (see also Switch, cross-conduction)
semicontrollable, 28, 32–4. (see also Thyristor)
switched pairs, 659
totem-pole (configuration), 635, 657
uncontrollable, 28. (see also Diode)
upper-trail (see high-side)
series-parallel configuration (see Voltage divider)
switched-capacitor cell, 758, 760, 763, 767–8, 773, 827
cell Dw1 integrated into a buck converter, 760, 762, 763–4(Fig.)
dc voltage ratio (see DC voltage conversion ratio, switched-capacitor)
voltage stresses on the switches 765, 824, 827
cell Dw1 integrated into a Čuk converter, 770, 771(Fig.)
ripple in the transfer capacitor current, 772
cell Up1 integrated into a Čuk converter, 770, 771(Fig.)
dc voltage ratio (see DC voltage conversion ratio, switched-capacitor)
diodes voltage stress, 767
cell Up2 integrated into a Čuk converter, 773, 773–4(Fig.)
currents through the diodes, 775
Switched-inductor (SL), 757–8, 760–61, 765, 767, 770, 773, 775–6, 783, 826
switched-inductor cell, 757–8, 760–61, 765, 767, 770, 773, 776, 826
cell Dw2 integrated into a buck converter, 760, 765–6(Fig.)
dc voltage ratio (see DC voltage conversion ratio, switched-inductor)
voltage stresses across the diodes, 767
cell Dw2 integrated into a Čuk converter, 772, 773
cell Up3 integrated into a boost converter, 770(Fig.)
cell Up3 integrated into a Ćuk converter, 775(Fig.)
cell Up3 integrated into a Sepic converter, 776(Fig.)

Switching

switching frequency controlled, 94, 297
harmonics, 28, 135. (see also Content of harmonics)
loss, 3, 8, 30–31, 34, 52, 92, 94, 102, 119, 135–6, 150–52, 154, 343, 379, 417, 447, 519, 558, 601, 688, 824
turn-on power loss, 54, 153
turn-off power loss, 54, 153

stage,
active stage, 705–7, 710, 715, 717–18, 796. (see also Switching, stage, energy transfer)
boost converter in CCM (of), 21(Fig.), 174(Fig.)
boost converter in DCM (of), 219–20(Fig.), 411(Fig.)
buck converter in CCM (of), 22(Fig.), 183(Fig.)
buck converter in DCM (of), 230–31(Fig.)
buck-boost converter in CCM (of), 19(Fig.), 82(Fig.), 188(Fig.), 421(Fig.)
buck-boost converter in DCM (of), 227(Fig.), 430(Fig.)
capacitor-diode voltage divider inserted in buck converter (of), 737–8(Fig.)
CDR (of), 705–7, 707–8(Fig.), 711–13, 715, 717, 719, 825
CDR with synchronous rectifiers (of), 715(Fig.)
CDR with synchronous rectifiers in asymmetrical operation (of), 717(Fig.)
Ćuk converter in CCM (of), 438–47, 442(Fig.)
Ćuk converter in DCVM (of), 458(Fig.), 459, 462, 489, 490
Ćuk converter in DICM operation (of), 463, 465(Fig.), 467
current-driven full-bridge converter (of), 680–87, 683–5(Fig.)
current-driven half-bridge (of), 652–7, 655–6(Fig.), 694, 701
current-driven push-pull (of) 625, 625(Fig.), 627(Fig.), 629(Fig.)
ergy line-to-load transfer stage (see Switching, stage, energy-transfer)

energy-transfer (stage, also topology, interval, phase), 705, 795, 817
flyback converter in CCM (of), 577(Fig.), 577–83, 599
flyback converter in DCM (of), 585–6(Fig.), 586, 587, 599
forward converter in CCM (of), 536–7(Fig.), 534–8, 539(Fig.)
forward converter in DCM (of), 545–9, 546–7(Fig.)
forward with active voltage clamped reset (of), 555–7(Fig.)
forward with passive non-dissipative resonant reset scheme (of), 560–2(Fig.)
4 × 8 power supply (of), 736–42, 741–2(Fig.)
freewheeling (stage, also topology, interval, phase), 118, 730, 795
full-bridge converter, voltage-driven (of), 661–2(Fig.), 666–9(Fig.), 687
half-bridge in CCM, voltage-driven (of), 636–45, 639–41(Fig.)
half-bridge in DCM, voltage-driven (of), 648–52, 649(Fig.)
isolated Ćuk converter (of), 568–74, 571(Fig.)
KY converter of first order, 776–8, 777(Fig.)
KY converter of second-order, first control strategy, 778–9, 779(Fig.)
KY converter of second-order, second control strategy, 781, 781(Fig.)
phase-shift full-bridge converter (of), 678–9(Fig.)
powering stage (see Switching, stage, active)
push-pull in CCM, voltage-driven (of), 608–16, 609–10(Fig.)
push-pull in DCM, voltage-driven (of), 619–25, 621(Fig.)
quadaric buck converter (of), 743–6, 745(Fig.)
quadaric buck-boost converter (of), 746–8, 747–8(Fig.)
QRC ZCS buck converter (of), 110–19, 116–17(Fig.)
SC converter (of), 10, 96, 98, 100, 101, 102–4(Fig.)
SEPIC in CCM, 471–3, 472(Fig.)
SEPIC in DICM, 490–91(Fig.), 500–503
series loaded resonant converter (of), 103, 106–8(Fig.)
Sheppard-Taylor converter, CCM (of), 783–5, 784(Fig.)
Sheppard-Taylor converter, DCVM (of), 785–91, 786–7(Fig.)
Sheppard-Taylor converter, isolated, DICM (of), 791–3, 792–3(Fig.)
switched-capacitor cell Dw1 into a buck converter (of), 760–7, 763–4(Fig.)
Switching (continued)
switched-capacitor cell Dw1 into a Čuk converter (of), 771–2(Fig.)
switched-capacitor cell Up1 into a boost converter (of), 767–70, 768–9(Fig.)
switched-capacitor cell Up2 into a Čuk converter (of), 773–4(Fig.)
tapped-inductor cell Dw2 into a buck converter (of), 765–6(Fig.)
tapped-inductor boost converter (of), 812–24, 812–13(Fig.)
tapped-inductor buck converter, diode-to-tap, (of), 805–10, 807(Fig.)
three-level boost converter, $V_{in} < \frac{V_{out}}{2}$ (of), 800–1(Fig.)
three-level boost converter, $V_{in} > \frac{V_{out}}{2}$ (of), 803–4(Fig.)
two-switch buck-boost converter in boost mode (of), 750–51(Fig.)
two-transistor flyback, 593–7, 594–6(Fig.)
$V_{in}/2$ primary-side switches voltage stress converter (of), 794–7, 795–6(Fig.)
voltage doubler, full-wave (of), 721–3, 722(Fig.)
voltage doubler, Greinacher (of), 723–7, 724(Fig.)
voltage doubler with a single capacitor (of), 730–2(Fig.)
voltage multiplier, four-cells Fibonacci (of), 732, 733, 735(Fig.)
voltage multiplier, two-cells Fibonacci (of), 734(Fig.)
voltage quadrupler, Greinacher (of), 725–6(Fig.)
voltage step-down SC and SL cells (of), 759–60(Fig.)
voltage step-up SC and SL cells (of), 762–3(Fig.)
voltage tripler, Cockcroft-Walton (of), 10, 727–9, 728(Fig.)
Z-source buck-boost converter (of), 753–7, 755–6(Fig.)
Zeta in CCM, 504–15, 505(Fig.)
Zeta in DICM, 521(Fig.)
topology (see Switching stage)
Switching-mode power supply, 47, 162

Tail current, 48, 92, 95 (see also IGBT tailing)

Tapped-inductor converter,
current-driven dual-bridge converter with center-tapped inductor (see Dual-bridge converter)
diode-to-tap tapped-inductor buck converter,
dc voltage gain versus duty-cycle D and turns-ratio n, 809(Fig.)

voltage across the bottom switch, 808
voltage on the top switch, 808
rail-to-tap tapped-inductor buck converter, 805, 806(Fig.), 810–11 (see also Watkins-Johnson converter)
case $nD > 1$, 811
case $nD < 1$, 811
switch-to-tap buck converter, 805
tapped-inductor, 805–12, 817, 819, 822, 828–30 (see also Coupled-inductor, Transformer)
active switch-to-tap connection, 805, 806(Fig.), 828
diode-to-tap connection, 805–10, 806–807(Fig.), 809(Fig.), 828
inductances of the two legs, 805
outer tap, 805
rail-to-tap connection, 805, 806(Fig.), 810–11
turns ratio n, 805, 809 (Fig.), 824
tapped-inductor boost converter, 805, 812, 813(Fig.), 829
voltage stress on the switch, 812

Telecom industry input voltage range, 566
Thermopile, 5

Three-level converter, 796–7, 828
converter with $V_{in}/3$ voltage stress on the primary-side switches, 797–8, 828
voltage across the transistor in off-state, 797
full-bridge – type converter with $V_{in}/2$ primary-side switches voltage stress, 794–7, 795(Fig.)
blocking capacitor, 797
current through the switches, 796
maximum voltage the switches in off-state are submitted to, 796
three-level boost converter, 799–800, 802–5, 828
maximum ripple in the input current, 804
switches voltage stress, 802–3
switching diagram for the case $V_{in} > \frac{V_{out}}{2}$, 802, 803–4(Fig.)
switching diagram in the case $V_{in} < \frac{V_{out}}{2}$, 800–801(Fig.)

Thrust, thruster, 13
Thyristor, 1, 12, 28, 32–4, 57, 67, 695
forward-biased, 32
forward blocking, 32
forward breakdown voltage, 32
gate-to-turn-off (GTO), 32, 34
gate triggering, 32
holding current, 33, 34
latching current, 33
off-state (leakage) current, 32
reverse breakdown voltage, 34
reverse conducting thyristor (RCT), 32
SiC thyristor, 34
triode for alternating current (TRIAC), 32
Transfer function (ac open-loop),
control (duty-cycle) – to- inductor current $G_{id}(s)$, 173
boost in CCM (of), 18, 201
buck in CCM (of), 186
buck-boost in CCM (of), 191
second-order, boost in DCM (of), 243, 276–7, 361
second order, buck in DCM (of), 250, 282
second-order, buck-boost in DCM (of), 248, 287, 361
control (duty cycle) – to- load (output) voltage $G_{vd}(s)$, 173
boost in CCM (of), 179, 198
buck in CCM (of), 185
buck-boost in CCM (of), 189
Čuk converter in CCM (of), 453
second-order, boost in DCM (of), 243, 273–4
second order, buck in DCM (of), 250, 281
second-order, buck-boost in DCM (of), 247, 285–6
SEPIC in CCM (of), 482–3
SEPIC in DICM (of), 500–51
Zeta in CCM, (of), 515
equivalent input impedance,
boost in CCM (of), 181
buck in CCM (of), 186, 283
buck-boost in CCM (of), 190
flyback in DCM (of), 599
second-order, boost in DCM (of), 244
second order, buck in DCM (of), 251, 283
second-order, buck-boost in DCM (of), 248, 287
SEPIC in DICM, (of), 501
equivalent output impedance,
boost in CCM (of), 201
buck in CCM (of), 206
buck-boost in CCM (of), 207
second-order, boost in DCM (of), 244–6, 278
second order, buck in DCM (of), 283
second-order, buck-boost in DCM (of), 287
SEPIC in DICM (of), 502
line (input voltage)-to-inductor current $G_{ig}(s)$, 172
boost in CCM (of), 181, 199
buck in CCM (of), 186
buck-boost in CCM (of), 190
second-order, boost in DCM (of), 243, 277
second order, buck in DCM (of), 250, 282
second-order, buck-boost in DCM (of), 247, 287
line (input voltage) - to- load (output) voltage $G_{ig}(s)$, 171, 173
boost in CCM (of), 178, 198
buck in CCM (of), 184
buck-boost in CCM (of), 189
Čuk converter in CCM (of), 453
second-order, boost in DCM (of), 243, 274–6
second order, buck in DCM (of), 250, 282
second-order, buck-boost in DCM (of), 247, 286
SEPIC in CCM (of), 483
SEPIC in DICM (of), 501
Zeta in CCM, (of), 515
small-signal input-to-output voltage $G_{vg}(s)$,
ZCS QR boost converter (of), 313–14
ZCS QR buck converter (of), 308
ZCS QR buck-boost converter (of), 321
ZVS QR boost converter (of), 334
ZVS QR buck converter (of), 328–9
ZVS QR buck-boost converter (of), 339
small-signal normalized switching frequency
(control) -to- load voltage $G_{vf}(s)$
ZCS QR boost converter (of), 317
ZCS QR buck converter (of), 310
ZCS QR buck-boost converter (of), 325
ZVS QR boost converter (of), 337
ZVS QR buck converter (of), 331
ZVS QR buck-boost converter (of), 339
Transfer function, closed-loop small-signal input-to-output voltage, 401
crossover frequency (see Control, crossover frequency)
gain margin (see Control, gain margin)
phase margin (see Control, phase margin)
unity-gain bandwidth (see Control, unity-gain bandwidth)
Transformer,
air-gap (see Coupled-inductor air gap)
area-product, 565, 605
bifilar winding, 78, 532
center-tapped (tap) transformer,
center-tapped (secondary) winding, 607, 619, 636, 648, 660, 736, 738
core (hysteresis) power loss, 78
core reset, 532–3, 551–64
coupling coefficient, 77, 468
cross-sectional area (of the core), 65, 565
delta configuration (of the windings), 719
equivalent model, 532(Fig.)
flux density (in the core), 78, 79, 600
gapped core, (see Coupled-inductor, gapped core)
leakage inductance, 78, 80, 102, 120, 468, 469, 531, 542, 553, 554, 564, 567, 572, 573, 587–98, 648, 680, 687, 694, 705, 716
magnetizing inductance, 468, 503, 529, 531, 532, 534, 535, 538, 541, 543, 544, 552, 553, 554, 557, 559, 572, 645, 651, 652, 660, 676
multiple secondary windings, 573, 692
mutual inductance, 76, 78, 468, 469, 517
Transformer (continued)
nanocrystalline magnetic materials, 79
reset schemes (see Forward, reset)
clamping circuits (see Forward, reset)
active clamping circuits (see Forward, reset)
non-dissipative resonant (see Forward, reset)
RCD type of clamping circuit (see Forward, reset),
tertiary transformer winding (see Forward, reset)
two-transistor forward converter (see Forward, two-transistors)
reset winding, 542, 544, 567
saturation (of), 96, 532, 676, 692, 729, 733, 734, 742, 825
three-phase, 719
turns ratio, 616, 631, 646, 657, 687, 712, 713, 824
ungapped toroid core, 572
utilization of the transformer core, 607, 635, 659, 695
Transistor (see Switch, controllable, see also MOSFET, IGBT)
bipolar junction transistor (BJT), 35–8
junction capacitances, 35–6, 38, 40, 56
Darlington structure, 36–7
secondary breakdown, 38, 44
thermal run-away (see Transistor, secondary breakdown)
Two-switch buck-boost converter, 748–57
boost_interleaved_buck converter,
in boost mode, 750 (Fig.)
in buck mode, 752 (Fig.)
buck_interleaved_boost converter, 752
minimal indirect line-to-load energy transfer, 749
Z-source buck-boost converter (see Z-source buck-boost converter)
Two-transistor flyback converter (see Flyback, two-transistor)
Two-transistor forward converter (see Forward, two-transistors)

Ultracapacitor, 6, 80–81, 147, 355
Uninterruptible power supply, 1
Unity-gain bandwidth (see Control, unity-gain bandwidth)
Universal (input) power supply, 530. (see also Universal line voltage range)
Universal line voltage range, 748
USA line voltage, 564

Variable-speed constant frequency system, 11
Volt-second balance (definition of), 85. (see also Inductor, volt-second balance)
Voltage, bipolar, 706, 721
Voltage-balancing circuit, 794, 828
Voltage clamping (see Snubber, voltage clamping)
Voltage divider, 346, 419, 456, 485, 487–8, 735–7. (see also Switched-capacitor)
capacitor-diode voltage divider, 737 (Fig.)
series-parallel configuration, 729, 734, 736
Voltage doubler (see Rectifier, voltage doubler)
Voltage-driven converter, 23, 532, 631
Voltage multiplier, 10, 72, 721, 723, 729, 730, 733–5, 825. (see also Charge pump, Switched-capacitor, Voltage step-up)
Cockcroft-Walton voltage multiplier, 10, 729 (Fig.)
Fibonacci capacitors-switches multiplier, 730
four-cells Fibonacci multiplier, 732–3
ideal voltage ratio, 734
two-cells Fibonacci voltage multiplier, 730–31
Greinacher multiplier, 723
Greinacher quadrupler, 724–5
current through each diode, 727
diodes maximum voltage stress, 727
voltage tripler, Cockcroft-Walton, 727–8, 829
voltage tripler, Greinacher voltage-doubler and a single-stage rectifier, 723–5, 727
Voltage regulator module (VRM), 47, 805–11
current slew rate, 811
multiple parallel units of synchronous buck converters, 811
tapped-inductor synchronous buck converters, 811. (see also Tapped-inductor converter, Synchronous switch)
Voltage restorer, 12
Voltage sag, 12
Voltage sink, 20, 420, 470, 687–9
Voltage step-down, 8, 687, 757–9, 783
Voltage step-up, 5, 10, 531, 687, 694, 758, 761–2, 778
Watkins-Johnson converter,
bidirectional flow of energy, 782, 827. (see also Bi-directional converter)
bipolar output voltage, 783, 827
rail-to-tap tapped-inductor buck converter (see Tapped-inductor buck converter)
Z-source buck-boost converter,
direct line-to-load path, 757, 826
switching diagram, 753 (Fig.)
voltage stress on the switches, 150, 356, 757 (Table)
Z-source network, 753–4, 757, 826
Zener diode (see Diode, Zener)
Zero-current switching (ZCS) (see Soft-switching, ZCS)
Zero-voltage switching (ZVS) (see Soft-switching, ZVS)
Zeta converter,
 average current through the diode, CCM, 513
 average current through the switch, CCM, 513
 average inductor currents, DICM, 523
 average input inductor current, CCM, 516
 average output inductor current, CCM, 508
 average switch current, DICM, 524
 change (ripple) in the capacitor voltage ΔV_{C1}, DICM, 525–7
dc voltage conversion gain, DICM (see DC voltage conversion ratio, Zeta)
dc voltage conversion gain for different D and $\sqrt{k_{DICM,Zeta}}$, 526(Fig.)
dc voltage gain, CCM (see DC voltage conversion ratio, Zeta)
design condition for a DICM operation $k_{DICM,Zeta}$, 524
dual SEPIC, 503
energy-transfer capacitor C_1 ripple current through, 513
inductor current ripples, DICM, 527–8
isolated, 529
output inductor current ripple, CCM, 508
ratio between the average inductor currents, CCM, 509
ripple in the capacitor voltage v_{C1}, ΔV_{C1}, 514
ripple in the voltage across the output capacitor, DICM, 527
ripple of the current through the energy-transferring (input) inductor, CCM, 507
steady-state waveforms, CCM, 509
steady-state waveforms, DICM, 520
switch rms current, CCM, 513
voltage and current stresses in Ćuk, SEPIC and Zeta converters, 691(Table)