Index

Note: Page numbers in italics refer to Figures; those in bold to Tables.

abalone aquaculture 641–42, 688–9
absorbance
colorimetry for total carbohydrates 49–50
measurement for chlorophyll estimation 41–2
see also optical density
absorption
coefficient (radiation intensity in reactors) 189, 209
of heavy metals, tolerance mechanisms 604, 604, 605
optical cross section calculation 92, 94
of photon energy, mathematical models 209–12
accelerated solvent extraction (ASE), lipids 55, 57
accessory pigments, function 25
acclimation see light acclimation
Accordion unit PBR design 237
acetyl-CoA carboxylase (ACCase) 524, 545–6, 558
acidification, ocean 694, 700
acidophilic microalgae, collection strategies 71–2
algae
bioprospecting for commercial potential 70
defining features 3
diversity in culture collections 81
education and training resources 89
range of nutritional types 123–4, 124
Algae Growth System (AGS) flexible film PBRs 239–41, 240
Algae Tunnel hybrid PBR system 243, 244
algaePARC (Wageningen) pilot facility 571, 572
algal blooms
frequency and dangers 482, 582, 582–3
in green water polyculture 617–18
from incubation of samples 38
management 674
natural, harvesting exploitation 227
vertical movement in water column 587
see also harmful algal blooms
alkaline cell lysis 282
Allen’s culture medium, composition 126, 128, 131
allergic reactions, inhibition by Spirulina 492
amino acids 468–71, 470, 508, 662–3, 676
ammonia, in wastewater 598
anemone, shellfish poisoning (ASP) 586
anoembol algae 5–6, 6, 16
anaerobic ponds (waste treatment) 597
animal feed
algae and conventional feeds compared 486–8
algae concentrates for aquaculture 634–5, 641, 665
algae diets for toxicity testing 484–5
colourant additives 480, 481, 684
enzyme and mineral additives 664–5
fishmeal benefits and demand 653–4, 654, 662
uses of Chlorella 334, 632–3
annual cycles see seasonal cycles
annular column photobioreactors 229–30, 230
antennae, light-harvesting
in cyanobacteria, response to light levels 96
energy transfer 26, 28
pigments 25, 26
small size and light acclimation 104, 567
truncation in C. reinhardtii mutants 421
anti-inflammatory activity 438, 484, 510–11
antibiotics
for culture purification 38
effects on Porphyridium growth 409, 410
resistance, selection markers 149, 657
transgenic antibacterial algae used as alternative 159, 665
anticancer activity
antitumour products 39, 437, 438, 484, 489
carcinogen sequestration, chlorophyllin 505
β-carotene, range of action 506
functional genomic investigation 515–16
microalgal cytotoxins 511, 511–12
antimicrobial peptides 659, 665
antisense RNA gene knockdown 154
antiviral agents 412, 437–8, 491–2, 508, 508
aquaculture
algae feed compared with fishmeal 54–5, 662, 666
clear water, microalgal requirements 618–22, 620
costs of algal mass cultivation systems 622, 623, 631
global production statistics 616, 616–17, 617

© 2013 John Wiley & Sons, Ltd. Published 2013 by Blackwell Publishing Ltd.

705
aquaculture (Continued)
green water culture techniques 616, 617–18, 635–6
integrated (sustainable) schemes 645
market value enhancement of produce 622–3
risk of algal bloom stimulation 589, 672
shellfish, toxin levels 588–9
species used in feed 626–9, 629, 673, 674
use of dry formulated feeds 621, 622, 623
use of microalgal biofuel residues 226, 257
Aquatic Species Program (US) 74
aqueous extraction processing (AEP) 290–1
areal productivity
and cell density 174
compared with alternative metrics 255, 313
and mixing 178
and optical path length 181, 181, 181–2
in reactor efficiency assessment 195–6, 196
Artemia (brine shrimp)
as by-product of Dunaliella culture 365
growing methods for aquaculture feed 644, 674
specific aquaculture uses 672
Arthrospira (Spirulina)
animal feed uses 486, 487–8
aquaculture uses 687–9
carotenoid spectrum 478, 479
ecology in African soda lakes 342–3
economic analysis of raceway pond production 321–4, 323–4
fatty acid composition 473, 474, 475
industrial mass culture production 346–54, 348, 353–4
morphology and ultrastructure 340–2, 341
physiology 343–6
product composition and quality 352, 352–3, 353
taxonomic status and research 339–40, 463
toxicology studies 484, 486
traditional food uses 461–2
vitamin B₁₂ bioavailability 475–6
Zarrouck’s culture medium 126, 128, 345, 349
ascorbic acid (vitamin C)
early commercial fermentation
production 137
enrichment in rotifers from algal feed 674
levels in algal species 680
asexual reproduction
autospore production cycle (Chlorella) 330

Index

BCA (bicinchoninic acid) protein assay 52
bead mills, for cell disruption 283
benthic microalgae
for abalone aquaculture 642
culture media 83
photobioreactor designs 246–7
BG-11 culture medium, composition 126, 128, 131, 375
Bigogno analysis method (lipids) 54
bio-rational collection–screening process 75–7, 76, 139
bioactivity
compounds from Nostoc species 437–8
lipid fatty acids 473, 475
research on novel red algal products 411–12
screening by bioassays 39, 513–14, 514
studies on animals and humans 484–6
biochemical composition see chemical composition analysis
biochemical oxygen demand (BOD) 597, 599, 645
biochemical products
diversity, from algal sources 11–12, 507–8, 512
extraction and purification methods 284–6, 288–93, 303
proteins and metabolic engineering 156–9, 157–8
screening of microalgae for 39, 72, 513–14, 514
shelf life 351
biocoils (helical photobioreactors) 234, 632
biodegradable plastics 524, 524–5
biodiesel
biorefinery plant, concept design 571–3, 573
collection of potential algal strains from seawater 71
compared with petroleum product 369, 599
desalinization 139–41, 142
market value and demand 566, 599–600
production processes 293–7, 294
biodiversity
extent and scope in algae 12
in microalgal culture collections 81
biofuels
advantages of using microalgae 418, 428, 462, 565–6
biochemical composition
metabolism 523–4
carbon feedstocks 140, 141
coproduction from production process 226, 504, 512

BAH (bioactive hydrogel) 87–9
bioactive agents in algal-based systems 293
biofilm formation 36
bioflavonoids (flavonoids) 147
biofuel
biodegradable plastics 524, 524–5
biodiesel
bioactive agents in algal-based systems 293
biofilm formation 36
bioflavonoids (flavonoids) 147
biofuel
microalgal, economic viability 226, 298, 303, 369, 566
octane/cetane rating 522–3, 523
research and development needed 566–74
research on potential of Chlorella 334–5
see also biodiesel
biogenic toxins 482–3
biolistic (particle bombardment)
transformation 149–50, 151, 394, 536
Biological Algae Growth System (BAGS) hybrid PBR 242
biological value (BV), proteins 467–8, 469
biomass
for biosorption of heavy metals 606–7
energy content 33
fractionation, in biorefinery 571–3
loss at night 198–9
measurement of production 31, 39–43, 45–7, 313–16
nonliving algae as products 606, 635, 685
produced from fermentation 135, 136
production costs, biodiesel case study 297, 297–8, 298–9
xicological testing in animals 484–5
see also productivity
bioprospecting
multivariate approaches 73–7, 76
univariate strategies 70–3
biorefineries 571–3, 573
bioremediation
algal proteins, scope for metabolic engineering 156, 157
applications for Chlorella cultures 335
capacity of microalgae for 131, 605–7
plant-based, algal, and mechanical systems 595–6
see also wastewater treatment
biosensors, microalgal 603
biotechnology see genetic engineering
biphasic culture media 83
bivalves see molluscs
Blackman model, light response curve 92, 93, 98, 98
Bligh–Dyer analysis method (lipids) 54, 288, 291
blue-green algae see cyanobacteria
BODIPY (neutral lipids dye) 65
Bold’s Basal culture medium composition 126, 128, 131
use and modification for Haematococcus culture 396, 397
Botryococcus braunii
culture media 374–5, 375
effects of culture conditions 375–8, 377
hydrocarbon biosynthetic pathways 521
race A 372, 373
race B 372–4, 374
mass culture approaches 378–80, 380
natural occurrence and hydrocarbon production 369–70, 370
oil production, business evaluation 380–4, 381, 382, 383
phyllogeny and taxonomy 370–2, 371
Bradford assay methods (protein) 52–3
breeding, challenges in microalgae 159–60, 655
brevetoxins 507, 509, 509–10, 586
broth media 82–3
Brownian motion 207
buffer systems 125–6, 345
business analysis see techno-economic analysis
calcium alginate beads 48–9
Calvin–Benson cycle 29, 29–30, 378
canthaxanthin 684
capital costs (CAPEX)
biodiesel case study 298, 299, 301
in techno-economic analysis 317, 318, 319–20, 321
carbohydrates
accumulation under nitrogen depletion 116
algal storage product types 10, 11–12, 551–2
amount related to cell density 177
digestibility 471, 487, 662
production in high light conditions 115
quantitative measurement 49–51
see also polysaccharides
carbon dioxide see CO2
carbon fixation
Chlorella as model organism for study 462
collection of suitable strains 73–4
measurement techniques 31
and pH rise 125–6
reaction pathways 29, 29–30, 522, 522
removal of ability (transgenic mitigation) 661
sequestration by marine algae 693, 698
Carbon Recycling Facility (CRF) film membrane PBR 247
CARET (β-carotene and retinol efficacy trial), lung cancer 491
β-carotene
as astaxanthin precursor 391
commercial producers and market value 365
Dunaliella as commercial source 359, 364, 478
health benefit assessment 364–5, 479, 491, 506
isomers in natural and synthetic products 361, 364, 480
toxicity testing 485
carotenogenesis
biosynthetic pathways 391–3, 392
carcinogenic effects of environmental conditions 118, 361, 361, 362
genetic regulation 393–4
ultrastructure changes in H. pluvialis 390, 390–1
carotenoids
accumulation and storage in Dunaliella 360, 361, 478
algal components and products 478–81, 479, 506
chemical structure and roles 24, 25, 478, 506
composition analysis, aquaculture algae 681, 681–85, 682
composition used for Nostoc classification 436
diversity in heterokont clades 15
high-production strains, collection and screening 71, 481
market value 507, 683
products from Chlorella spp. 334
carp, freshwater aquaculture 688
cascade culture systems 228, 228–9
cell concentration (density)
cell number counting methods 39–40
control in aquaculture hatcheries 638, 643
carbon dioxide, environmental 360
and control of biochemical composition 118–19
effect on light penetration depth 176, 177
effects on cell ultrastructure and composition 177
mutual shading and light–dark cycles 173, 207
optimum (OCD), for maximal yield 173–6, 175, 199, 208–9
quorum sensing (sudden culture decline) 658
related to average radiation intensity 189–90
cell recycled culture system 48
cell walls
in Arthospira (Spirulina) 341
doors, fine structure 7–8, 8
disruption methods, for chemical extraction 50, 58, 466
diversity in algae 11
heavy metal exclusion mechanisms 604, 604
polysaccharides
digestibility 662, 664
in Nostoc 437–8
in red microalgae 407–8, 408–9
secondary development in for H. pluvialis 390, 390–1, 394
thickness and ease of extraction 571

Index
Index

harvesting and drying 333–4
history of commercial cultivation 136, 331, 454
nutritional quality for rotifer feeding 632–3, 677
potential products and applications 329, 334–6
Sorokin–Krauss culture medium 126, 128 species characteristics 330
Chlorella growth factor (CGF) 334 chlorophyll, antibiotic activity 183, 489 Chlorophyceae, taxonomy 370–1 chlorophyll fluorescence technique parameters calculated from measurements 33, 93–4 photochemical principles 31–2, 32 for in situ culture performance monitoring 198 used to monitor photoinhibition 99–100, 102 chlorophyllin 505–6, 506 chlorophylls amount, related to cell density 177 and astaxanthin synthesis 391 chemical structure and roles 23–5, 24, 505, 506 health effects of consumption 477–8, 505–6 interference in protein analysis 52, 53 quantity determination 41–2 chloroplasts envelope, formation of lipid bodies 554, 554–5, 555 fatty acid elongation in 372, 546 for recombinant protein production 533 ultrastructure 8–10, 9 see also thylakoids cholesterol reduction, bioactive algal products 437, 438, 473, 490, 493 chromatography elution methods for product extraction 292, 292–3 lipids analysis methods 55–8, 57, 60–2 as step in new product discovery 513, 514 chytrids (fungal contaminants) 201, 399–400 ciguatera fish poisoning (CFP) 587 circulation pumps 448 clams, aquaculture 640–41, 686 climate stabilization 694 CO₂ (carbon dioxide) atmospheric increase, anthropogenic 692 effect on cell wall growth, red algae 408 emissions EU greenhouse gas targets 565 industrial scrubbing systems 70–1, 73–4, 335, 694 life cycle assessment, production plants 382, 384 flow feed equipment 448 solubility limitation in high-salinity brines 360–1 supercritical, in extraction of products 291–2, 293 supply control in closed PBR design 457–9 supply for aquatic algal production 125–6, 439, 568 coagulation 268–9, 276–7 see also flocculation cocoid algae 5–6, 6 Codex Alimentarius Commission (CAC) 353, 495 codon usage, transgenic algae 154–5, 536–7, 537 collection techniques broad-based strategies 70–1 habitat-specific 71–2, 74 sources of microalgae 37, 72–3 strategies for strains with multiple traits 73–7 collections (microalgal species/strains) 80–1, 88–9, 125, 462, 584 colonial algae cell counting 39 growth forms 4, 5–6, 6–7 Nostoc macrocolonies 434, 435, 436 column chromatography, lipids analysis/purification 56–8, 57, 293 commercial applications goods and services from culture collections 80–1, 584 history of fermentation technologies 136–7 range of successful microalga technologies 69, 225–6 producers for aquaculture feed supply 633–4, 633, 634 using fermentation 137–9, 138 world Spirulina production 346–7 trends in technological development 456 contamination avoidance in culture collections 86 control in PBR hydrogen production 428 of environment by transgenics 496 fungal parasites 399–400, 659 invading species, competition for limiting nutrients 130 monitoring and control in outdoor culture 200–1, 350, 635 resistance by transgene engineering 658–60 continuous flow culture systems methods 45, 45–8, 293–6 for rotifer production 644 convective hot air drying 280 conversion factors, units 313, 314–15, 316 copper toxicity, alleviation in fish 688

cells

cycles in favourable and stress conditions 389–90
disruption methods 281–4, 282, 303, 573 division 11
mammalian, serum-free culture 492, 532 motion, in reactor turbulent flow 187–8 random motion 207–8, 209, 220 structure in microalgae 8–11, 9
washing technique 38
centrifugal recovery from culture media 274–6, 277–8, 287

celating agents

in algal dells, for heavy metals 604 in animal feed additives 664 in culture media 127
chemical cell disruption methods 282, 466
chemical composition analysis algal species used in aquaculture 674, 675 amino acids 468–71, 470, 476 ash and moisture content 41, 463 carbohydrates 49–51, 471 chlorophyll estimation 41–2 comparison of algal taxonomic groups 677, 679
total organic carbon (TOC) 42, 114 toxins 482–3
vitamins 475–7, 476, 680–81
chemical score (CS), proteins 469 chemostat culture systems 47, 399
chitosan (flocculation agent) 270, 270, 271
Chlamydomonas reinhardtii chloroplasts, recombinant protein production 533

cultivation in photobioreactors 422–6, 425

culture contamination risks 428

effects of sulfur deprivation 422, 423 hydrogen photoproduction 417–18, 419
mutant strains 419, 421
nuclear transformation stability 657
chlororachniophytes 14, 16
Chlorella

animal/human testing for bioactivity 484, 485, 490
auto trophic mass cultivation 331, 333 carotenoid spectrum 478, 479
composition and physiology 330–1, 332
contamination of Spirulina cultures 200 fermentation production systems 137, 139–41, 331, 333

March 12, 2013 15:57 246mm×189mm
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Cost-effectiveness see economic considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crabs, aquaculture 637</td>
</tr>
<tr>
<td></td>
<td>Crop protection see contamination</td>
</tr>
<tr>
<td></td>
<td>Crustaceans see crabs, aquaculture; shrimps</td>
</tr>
<tr>
<td></td>
<td>Cryopreservation 86–7</td>
</tr>
<tr>
<td></td>
<td>Cryptococconium fermentation, for DHA 137–8, 138, 141–2</td>
</tr>
<tr>
<td></td>
<td>Cryptophytes 15–16</td>
</tr>
<tr>
<td></td>
<td>Cultures, microalgal conditions and containers for culture collections 83–4, 85</td>
</tr>
<tr>
<td></td>
<td>Cultivation systems 43–9, 252–4</td>
</tr>
<tr>
<td></td>
<td>Isolation and purification 37–8</td>
</tr>
<tr>
<td></td>
<td>Media types and components 82–3, 124–5, 126, 128 see also maintenance of cultures; mass culture</td>
</tr>
</tbody>
</table>

Note: The text has been reformatted and structured to enhance readability, making it easier to understand and navigate. The content has been maintained, preserving the meaning and context of the original document.
economic considerations (Continued)
in reactor efficiency assessment 197, 256–7, 459
and trophic independence, in aquaculture 623
see also techno-economic analysis
effluent, industrial, as growth medium 379
Elbingera (Germany) industrial facility 455, 456
electrocoagulation 276, 276–7
electromagnetic radiation, spectrum 22–3, 23
electron transport rate (ETR), calculation 94
electroproportion, for genetic transformation 150, 150, 151, 536
endoplasmic reticulum 10, 390, 546–7, 553–4
endosymbiosis, events in algal evolution 12, 13, 14, 16
energy requirements
European strategic plans 565
input/output balance in biofuels operations 567–8, 574
for metabolic maintenance 43, 46, 46
world demand and resources 417, 462–3, 504
enrichment
methods and media 37–8, 72
sequential/simultaneous, for multiple characteristics 73–5
ensemble-averaged kinetics photosynthetic models 210–12
entrainment, for immobilized cultures 48–9
environmental conditions
changes and stress responses 90, 107
cycles, for outdoor algal cultures 91
effects on growth of Haematococcus pluvialis 396
effects on microalgal chemical composition 114–16, 361
required for Arthrospira (Spirulina) culture 347
synergistic effects of multiple factors 97–106, 118, 131
enzyme supplements, animal feed 664–5
EPA (eicosapentaenoic acid) 473
equipment costs
dependence on scale of activity 453, 453 as element of CAPEX in analysis 317, 318
microalgal biodiesel production 298, 300, 300
ESI (electrospray ionization)–MS 58, 59, 60
essential amino acid index (EAA) 469, 471
ethanol, microalgal production systems 242–4, 243
euglenoids 16
eukaryotic algae
evolutionary origins 13
genetic diversity in collections 81
lipid bodies 553–6, 554
phylogenetic super groups 13–14
eutrophication
anthropogenic causes 582
control by integrated aquaculture systems 645
definition 581
ecosystem impacts 584, 589–90
risk minimization, ocean nourishment 700
evolution
development of major algal groups 13–16
earliest origins of algae 12–13
of physiological processes 21
speed, in microorganisms 81
expanded bed adsorption 292
exponential growth phase 43–4, 44, 631
extraction see isolation
extrermophilic microalgal collection 71–2
tolerance of hypersaline habitats 359, 360–1
exudates (excreted organic compounds) 124, 183–4, 604
eyespots (stigmata) 11
f/2 medium, aquaculture hatchery algae 630–31
factor cancel method (FCM) 313, 316
facultative ponds (waste treatment) 597
fatty acid methyl esters (FAME) (fatty acid methyl esters)
analysis 61–2
transesterification and recovery for biodiesel 296, 296–7, 522
fatty acid synthase (FAS) 546
fatty acids
antibacterial activity 674
bioconversion to hydrocarbons 518–21, 520
biosynthetic pathways 545–7, 548
chain length and saturation 546–7
composition (profile) analysis 61–2, 436, 472, 473, 474
content, effect of salinity 376
crosstalk with astaxanthin synthesis 394
oxygen needs in biosynthesis 135–6
in degradation 599
profile in aquaculture feed species 677, 678
very long-chain (VLCFAs), from Botryococcus 372, 373
fed-batch culture system 48, 49
fence-like (‘biofence’) PBR design 233–4, 234
Fenton reaction 117, 396
fermentation
available technological capacity 134–5
early commercial production of microalgae 136–7
media and microalgal metabolic pathways 135–6
successful microalgal products 137–9, 138, 333
fermentors
bubble-column, for microalgal oil production 137, 138
compared with outdoor cultivation systems 135, 445
corrosion risk for marine microalgae 139
for PUFA-enriched mariculture algae 634
ferrodoxin (Fd) 418, 419
fertilization, oceans 694, 695–9, 697
fibromyalgia syndrome 489–90
filamentous algae
morphology 3–6, 7–340–1
use of trichomes in mass cultivation 351, 440
filter feeding, aquatic animals 628, 645, 686–7
filtration
for culture purification 38
harvest efficiency and culture damage 351
methods in cell harvesting 273–4, 276, 287
financial aspects of production see economic considerations
fish
algal colouring additives 334, 389, 684
carotenoid metabolism 682
dangers to, from harmful algal blooms 582, 586
drug and growth regulator delivery 665
farming and Arthrospira (Spirulina) feed 687–9
oils, omega-3 fatty acid content 517, 518, 654, 676
production estimates, with ocean fertilization 695–6
trophic level 621, 623
fisheries
hatchery production, marine finfish 622, 636–7
use of microalgae for rotifer feed 620, 621–22
world production trends 616, 616, 618
fishmeal: production, demand, and economic value 653–4, 654
flagellates
astaxanthin synthesis in motile stages 399
flagella, ultrastructure and motion 10–11
loss of flagella, for transgenic mitigation 661–62
morphological diversity 4, 6
flashing light regimes 213, 213–15, 216, 222

Index
flat panel airlift (FPA) PBR design 235, 236
flat plate bioreactors compared with tubular design 294, 333
greenhouse gases 694, 701
fluorescence of chlorophyll, for monitoring photosynthesis 31–2, 32, 33
fluorescent lamps, for culture collections 83–4
growth parameters
forecasts of food scarcity 462, 624, 693, 694
four-steps absorption photosynthetic model 211, 211–12, 216–17
good manufacturing practices (GMPs) 655
four-steps absorption photosynthetic model 211, 211–12, 216–17
freezing-drying (lyophilization) 280–1, 467, 634, 686
freshwater microalgae
diversity of types in culture collections 81
freezing-drying (lyophilization) 280–1, 467, 634, 686
fluorescence of chlorophyll, for monitoring photosynthesis 31–2, 32, 33
fluorescent lamps, for culture collections 83–4
folate, high-production strains, isolation from oligotrophic pools 71
freezing-drying (lyophilization) 280–1, 467, 634, 686
flotation, for algal separation 271–3
fungal, parasitic contaminants 201, 399–400, 659
gas chromatography (GC) analysis 61–2
fatty acid analysis 53–4, 58
flotation, for algal separation 271–3
flocculation
auto-flocculation, pH dependence 271, 272
definition and theoretical principles 268–9
energy advantage for algal harvesting 570–1
methods and uses in Chlorella mass culture 333
using bioflocculants 270
using metal salts and polyelectrolytes 269–70, 270, 271
flocculation, for algal separation 271–3
flow cytometry (FCM) 39–40, 74, 160, 540
glucosamine 556–7
GFP (green fluorescent protein) 394, 569–70
Golgi bodies 10, 408–9
good manufacturing practices (GMPs) 352–3, 495
GRAS (Generally Recognised As Safe) status 159, 353, 495, 532
GPM (green photic volume) 176
GMP (good manufacturing practices) 655
GMPs (good manufacturing practices) 655
GPs (glycerol-3-phosphate acyltransferase) 547–9
GPR (glycerol-3-phosphate acyltransferase) 547–9
GPR (glycerol-3-phosphate acyltransferase) 547–9
GPAT (glycerol-3-phosphate acyltransferase) 547–9
Gravitational separation methods 271–3
GRAS (Generally Recognised As Safe) status 159, 353, 495, 532
Green Wall Panel (GWP) reactors 237–8, 238
green water aquaculture
benefits 635–6, 674
in fish rearing 622, 645
inorganic substitutes for algae 636
principles and world distribution 616, 617–18
Shrimp hatcheries 620
greenhouse gases 694, 701
Growth Hormone, transgenic 665
growth phases, in batch culture 43–5, 151
Growth parameters
biomass determination 40–2
cell count methods 39–40
in continuous flow cultures 45–7, 46
Turbulence 183–5
turbulence 125, 180
Growth in Continuous Flow Cultures 45–7, 46
Green algae 13, 14
Growth in Continuous Flow Cultures 45–7, 46
Green algae 13, 14
growth parameters
green algae 13, 14
Growth in Continuous Flow Cultures 45–7, 46
Green algae 13, 14
Growth in Continuous Flow Cultures 45–7, 46
Green algae 13, 14
Growth phosphor 490
Growth parameters
biomass determination 40–2
cell count methods 39–40
in continuous flow cultures 45–7, 46
growth parameters
biomass determination 40–2
cell count methods 39–40
in continuous flow cultures 45–7, 46
growth parameters
biomass determination 40–2
cell count methods 39–40
in continuous flow cultures 45–7, 46
growth parameters
biomass determination 40–2
cell count methods 39–40
in continuous flow cultures 45–7, 46
growth parameters
biomass determination 40–2
cell count methods 39–40
in continuous flow cultures 45–7, 46
Index

Haematococcus pluvialis (Continued)
- genetic improvement prospects 394
- mass cultivation 396–9
- morphology and reproduction 389, 389–90
- optimum growth and productivity conditions 396, 683
- stress response
 - physiology of protective mechanism 395, 395
 - pigment and structural changes 396, 390–1
- haemolytic poisoning 587
- half-saturation constants (nutrient uptake) 129–30
- ‘Hanging Gardens’ vertical PBR design 236
- Hansen solubility parameters 285–6
- haptothymes 15
- harmful algal blooms (HAB)
 - algal species involved 584, 585–6, 672
 - increase in frequency 582, 582–3
 - prediction and control 589–90
 - harvesting
 - cell aggregation by coagulation/flocculation 268–71
 - 270, 271, 272
 - centrifugal recovery 274–6
 - 287
 - draining of PBRs 452, 453
 - efficiency 351, 600
 - gravitational separation 271–3
 - method selection criteria 277–8, 301, 350–1, 656
 - non-chemical aggregation methods 276–7
 - pressure/vacuum filtration 273–4
 - 276, 287
 - regime, effect on cell density and productivity 199, 199
 - technical challenges 70, 267–8, 364
 - haslenes 521
 - hatcheries (farmed aquatic animals)
 - algal culturing technologies 630–32
 - 630–33, 646
 - marine finfish production 618, 622, 636–7
 - types, requirements for microalgae 616–17
 - headspace volume
 - effect on hydrogen photoproduction 424–6
 - in hybrid PBRs 242, 243, 244
- health
 - benefits of β-carotene 364–5
 - claimed benefits of Spirulina 353, 354, 475, 489, 490
 - effects of chlorophyll consumption 477–8, 505–6
 - hazards, algal toxins 482–3
 - pathogen destruction in waste stabilization ponds 596–7, 598
- regulations for product quality and safety 353, 664
- safety of operators in toxic algae culture 249
- toxicological studies on algae as food 485–6
- uses of antioxidants 388
- heat tolerance 660–61
- heavy metals
 - collection of algal strains for bioremediation 73, 75, 606
 - concentrations in algae 483, 483
 - definition 602
 - detoxification methods 605–7
 - microalgal resistance mechanisms 604, 604–5
 - helical photobioreactors (biocoils) 234, 632
 - herbicide resistance, transgenic 658–9
 - heterokont algae, major clades 14–15
 - heterologous elements in genetic manipulation 147–8, 155, 156, 524
 - heterotrophic production
 - advantages and commercial success 134, 257, 445, 686
 - heterotrophic–phototrophic sequential culture 119
 - potential new commercial products 139–43
 - see also fermentation
 - heterotrophy
 - capacity for, in microalgae 135–6, 136, 346, 399
 - collection of heterotrophic microalgae 72
 - definition and types 123–4, 124
 - HIV infection 491–2, 508
 - homogenizers, for cell disruption 282–3
 - homologous recombination 151–2, 153, 540
 - HPLC (high-performance liquid chromatography), lipids analysis 60–1
 - human nutrition see food
 - hybrid photobioreactor design systems 241–4, 243, 253, 256
 - hydrocarbons
 - biosynthetic pathways 519–21
 - in Botryococcus braunii 372–4, 373, 374, 521
 - end uses and algal sources 369, 370, 522–3
 - 523
 - 523
 - removal from waste in oxidation ponds 599
 - hydrogen production
 - algal metabolic processes 418–20
 - efficiency
 - and economic feasibility 428
 - net energy ratio assessment 427
 - theoretical, energy capture and losses 420, 420–1
 - as energy resource, alternative options 417–18
 - PBR design 231, 423–7, 425
 - sulfur-starvation protocol 422, 423
 - hydrogenase enzymes 419–20
- identification techniques 87–8
- IGV Biotech/GmbH
 - basic design of photobioreactor systems 448, 452, 452–3
 - case studies of industrial facilities 453–5, 454, 455, 456
- recent innovations in design 456–9, 457, 458
- scale of designed products 448, 451, 451, 453
 - technological development and patents timeline 449–50
- illuminated surface productivity (ISP) 255, 313
- illumination
 - laboratory and industrial scale sources 452
 - light concentration and distribution devices 249–51, 250
 - light-emitting diode (LED) sources 251
 - optical fibres 447–8
 - sources and regimes for culture collections 83–4
 - two-side, in flat-plate bioreactors 208, 215–16, 217–18, 218
- immobilized cultures for aqueous heavy metal removal 73, 606
- support materials 48–9
- ImmuLina 492
- immunomodulatory algal products 489, 510, 510–11
- implied warranty for fitness (products) 496
- inclined (cascade) system cultivation 228, 228–9, 333
- inducible gene control elements 148–9
- infant formula, DHA as supplement 137–8
- influenza, algal antiviral agents 508, 508
- inhibition of growth, in ultra-high-density cultures 182, 183–5, 184
- introns, effects on gene expression 155
- ion channel modulatory activity 508–10
- injectable 148–9
- iron
 - biochemical effects of deficiency and excess 117
 - ocean fertilization 694, 696
 - irradiance
 - average intensity calculation, in bioreactors 189–90
 - effect on photosynthetic rate 22, 22, 91, 91–4
 - energy available for hydrogen production 420, 420–1
 - measurement and units 23
penetration depth 176, 177
solar, typical levels 33–4, 190
isolation
of biochemical product from biomass
284–6, 288–92
of microalgae from natural sources 37–8, 70–2
isopentenyl pyrophosphate (IPP) 372–3, 374, 391
Jerez (Spain) industrial facility 455, 455
Kennedy pathway 547–50, 548, 558
Kjeldahl analysis method 51–2
Klötze, ÖPA industrial facility, (Germany) 454
lactoferricin 659
lag phase (growth) 43
land requirements (for production plant) 322, 363, 383–4
LED lighting for photobioreactors 251
legislative provisions
dumping of pollutants at sea 699
equipment standards 452–3
food additives 479, 495
life cycle assessment (LCA) 382, 427, 567, 573–4
light
colour, effect on Botryococcus braunii 376, 377
photons flux density (PFD) 94, 171–2
properties and measurement 22–3, 23
thermal dissipation mechanisms 30–1, 96–7
see also illumination
light acclimation
carbonyl and lipid accumulation 115
changes in pigmentation 30, 94–6, 115 in continuous and flashing light 221–2
failure, in low-density cultures 174–5, 175
inactivation of PS II 30–1, 97–9
in turbulent mass cultures 189
understanding of photoprotective mechanisms 96–7, 106, 361, 567
light reactions (of photosynthesis) 22, 22, 25–9
light–dark (LD) cycles
frequency
and culture turbulence 180–1
related to cell density and productivity 208–9
with long and short optical paths 182, 188, 188–9
resulting from mutual shading 173
timescale related to cell motion 187–8, 206–7, 215–16, 218–20
light–dark (LD) cycles
frequency
and culture turbulence 180–1
related to cell density and productivity 208–9
with long and short optical paths 182, 188, 188–9
resulting from mutual shading 173
timescale related to cell motion 187–8, 206–7, 215–16, 218–20
limiting factors
light, diurnal patterns in outdoor cultures 192–3
in mass culture technology 99, 660
nutrients in ocean food webs 693
physiological definition 90, 92
resource competition 130
for specific applications 127
linear growth phase 44, 44
lipases, in algal oil conversions 558
lipid bodies
and astaxanthin accumulation 390
biogenesis 553–5, 555
composition and structure 552, 552–3, 553, 554
functions, in eukaryotes 555–7
lipids
accumulation in stress conditions 569
agal sources, quantities and uses 471–5, 517–22, 676–80
biosynthetic pathways 545, 547–52, 548
diversity in algae 12, 53
effects of light intensity 115
extraction form dry, wet, and paste biomass 289–90
fluorescence-based imaging and determination 62–4
organic solvent extraction 284–5, 286, 288–9
separation and quantification of different types 55–61, 62
total lipids analysis, gravimetric methods 53–5, 57
liquid–liquid product extraction 284–6
long optical paths 188
Lowry protein assay method 52
LPAT (lysophosphatidic acid acyltransferase) 549
lumens (lm), definition 23
luminostat operation 567
lutein
factors affecting content in algae 684–5
production in serpentine tubular PBR 231
sources 480, 682
lux (lm m$^{-2}$), definition 23
luxury uptake (nutrients) 127, 128
lycopene 392, 393, 507
lyophilization (freeze-drying) 280–1, 467, 634, 686
lysine 662–3
MAAs (mycosporine-like amino acids) 438, 508
macronutrient fertilization 694, 695, 696
magnetic separation of algal cells 277
maintenance coefficient 43
maintenance of cultures
active cultures, growth conditions 39, 82–4
cryopreservation 86–7
nutritional status monitoring 199–200, 350
online productivity monitoring 197–9, 199
record-keeping and quality control 86, 349
requirements for high-density culture 182–5
strain purity maintenance 84–6, 200–1
usefulness of extremophilic strains 71–2, 200, 362
manifold photobioreactors 233–4, 234, 252
Manila clams (Ruditapes philippinarum) 640, 686
marine waters
acidification 694, 700
changing nutrient ratios 584
collection and screening of algae 71, 74–5
fertilization/nourishment 694, 695–9, 697
location for floating photobioreactors 244–6, 624–5, 625
ocean carbon cycle 693–4
markers, genetic
antibiotic/herbicide resistance selection 149, 409, 657
for identification 88, 434–6
range, in algae 537, 539, 540
mass culture
downstream processing of algae 278–84, 634–5
effects of cell density 173–7, 174
harvesting 267–8
mixing/stirring requirements 177–80, 178, 179
multistage cultivation strategies 119, 125, 192–5
outsourcing by aquaculture hatcheries 631–2, 634, 646
performance monitoring 197–201
process control parameters 446, 446
resource and production variables 311, 318
theoretical and realistic photosynthetic efficiency 33–4, 194–7
mass spectrometry (MS)
lipids analysis 58–61, 59
role in new product discovery 513–14, 514
maturation ponds (waste treatment) 597
mechanical cell disruption methods 282–4
media (for microalgal cultures) 72, 73, 282–4
mechanical cell disruption methods 282–4
for Botryococcus braunii 374–5, 375, 376–7, 379
daily replacement for high-density culture 182–5, 183
fermentation (heterotrophic) 135–6
for Haematococcus pluvialis 396, 397
nutrient requirements 124–5, 126, 128
Index

time determination, hydrogen production 424, 425, 426
using wave motion 624, 656
mixinotrophic growth
in Arthrospira (Spirulina) 346
in Botryococcus braunii 378–9
carbon supply and pH control 126
contamination risks 333, 379
definition 124
in Haematococcus pluvialis 399
modular reactor systems 119, 251, 448
moisture content 41
molluscs
food sources for larvae and adults 618, 619, 639–41, 685
world production trends 617, 618, 618, 619
monoclonal antibodies 533
monounsaturated fatty acids (MUFAs) 517–18
morphology
Arthrospira (Spirulina) 340–1, 341
Chlorella spp. 330
colonial forms in Nostoc 433, 434, 435, 436
diversity in microalgae 3–8, 4, 5–6, 7
Dunaliella salina 359–60, 360
Haematococcus pluvialis 389, 389–90
mRNA, expression control elements 147–9, 148
mud crabs (Scylla spp.) 637
mutagenesis
insertional, for gene characterization 151
modification of Dunaliella for new products 364
for mutants with increased lipid production 524, 569
for promotion of homologous recombination 152
random, induced by UV/chemical treatment 160
MUTL (mesh ultra-thin layer) bioreactor design 456–7, 458, 459, 459
Nannochloropsis
commercially produced for aquaculture 633, 633, 635
N. gaditana, in microalgal-to-biodiesel process 293–6
Natural Products Association, US (NPA) 495
net energy ratio (NER) 427
net present value (NPV) 317, 318, 383, 383
net protein utilization (NPU) 468, 469
neurotoxic shellfish poisoning (NSP) 586
Neustadt-Glewe (Germany) industrial facility 454
neutral lipids 552
NHTR (Near-Horizontal Tubular Reactor) design 233, 241
Nile Red (stain) 63, 63–4
nitrates reductase (NR) control elements 147, 148
nitrogen
increase, in worldwide aquatic systems 584
non-protein, in microalgae 51–2
nutrient status, effects on algal biochemistry 116–17, 126–7
Botryococcus braunii 377–8
Chlorella spp. 331
lipid content 473, 547, 569
ocean surface distribution, global 693, 693, 696
supply sources for microalgal culture 127, 135, 345
for ocean fertilization 697
suppression of nitrate use (transgenic mitigation) 661
uptake kinetics 128–30
nitrogen fixation (cyanobacteria) 72, 127, 693
nitrile oxide 701
nomenclature
Arthrospira (Spirulina) taxonomic status 339–40, 463
symbols and units 303
non-photochemical quenching (NPQ) 32, 33, 94, 96
nonbiogenic toxins 482, 483
Nostoc
growth and physiology 438–9
life cycle and colonial forms 434, 435, 436
mass cultivation 439–41, 440
nutritional and pharmaceutical value 436–8, 437, 492
species identification with molecular markers 434–6
traditional food use 433–4
NRPS (nonribosomal peptide synthetase) pathways 515, 516
nuclei, morphology and mitosis 10
nucleic acids, toxicity 482
nutrients
in culture medium recipes 124–5, 126, 128
effect on toxicity of algae 576
effects of supply on microalgal composition 116–17, 523
imbalance and growth inhibition at high cell density 184–5
injection systems, for ocean fertilization 697–8
load, and eutrophication 581
monitoring in continuous cultures 199–200
natural resources availability 568–9
optimum ratios 130–1, 131
Index

photobioreactors (PBRs) (Continued)
construction materials 427, 447, 568
definition, and category classifications 229
designed for light dilution 104
improved mixing rate 180–1
vertical arrangement 195, 426, 567

designs for mass cultivation
axenic and sensitive cultures 247–9
flat, rigid panel and flexible film 234–41
floating systems 244–6, 245, 624–5
vertical systems 241–4, 243
for substrate-attached organisms 246–7
tubular 230–4, 232, 234, 448
vertical columns and sleeves 229–30
illumination systems 249–51, 250, 447–8
integrated, for multiple phase cultivation 119, 251, 364, 398
laboratory-scale apparatus 422–3, 448
productivity and efficiency assessment 195–7, 197, 255
risks of inadequate mixing 180
supplied to aquaculture hatcheries 632, 632

cell concentration
photosynthetic units (PSU) 95, 95–6
photosynthetically active radiation (PAR) 23, 23, 171–2
photosystems I and II adaptations to salt stress 104–6
measurement of PS II quantum yield 93–4
models of photon absorption and recovery 209–12
PS II inactivation (in light acclimation) 30–1, 97–9
reaction centres 25–8, 26, 28
phycobilins/phycobiliproteins
bioactive properties 438, 482, 492, 493
chemical structure 24, 25, 507
as fluorescent markers 482, 507
types and sources 481–2
phycobilisomes
degradation in nitrogen deficiency 116
response to light conditions 96
structure and composition 26

Arthrospira (Spirulina) 343–6
nutrition 17
osmotic regulation 10, 104–6, 118
responses to environmental stress 90–1, 107, 395–6
storage of photosynthetic products 9–10
use of genetic manipulation in research on 160

see also light acclimation; photosynthesis
phytases 664
Phytobag reactor design 240, 241
phytoene synthase (PSY) 391–2
phytoplankton
competition in growth media 200
oceanic abundance 13, 16–17, 615–16, 693
population responses to nutrient addition 701

response to eutrophication 582
picobiliphytes 16
pigments
bioactive properties and uses 477–82, 505–7
effects of oxidative stress 391
effects of temperature increase 116
quantity measurement 25
types and roles in algae 23–5, 24, 26
pig’s algae as feed for 488
pipeline injection of ammonia (oceans) 697–8
PKS (polyketide synthase) pathways 136, 515, 516, 518
plastoquinone 27–8, 96, 361
poisoning incidents, from harmful algal blooms 582–583

see also toxins

pollution
bioremediation methods 605–7
dumping at sea 699
excess nutrient inputs 582, 645
microalgal biosensors 603
organic load of wastewater 597
toxic micropollutants 600, 602–3
polyelectrolytes 269–70, 270, 271
polyglucan granules 342
polyhedral bodies (carboxysomes) 342
polyhydroxyalkanoates (PHAs) 524, 524–5
polyolactic acid (PLA) 524, 524
polys, osmotic functions 118
polyphosphate granules, as storage bodies 117, 127
polyunsaturated fatty acids (PUFAs) from algae, quantities and uses 471, 473, 475, 517–18
chemical structure 517
effects of light intensity 115
enhancement in feed algae 663–4, 676–7
purification methods 293
world supply and demand 623–4
polyurethane foams (agal solid supports) 49

population density see cell concentration
Porphyridium spp. 406–12
poultry, algae as feed 486–7
pregnancy, effects of algal dietary supplements 490
preservation see maintenance of cultures
preserved algae, for aquaculture feed 634, 685–7
pressurized liquid extraction 290
primary production, in aquatic food chain 616, 693–4, 695
probiotic algae 622, 636, 654, 687
process control systems 446, 448, 452
process flow diagrams (PFD) 312, 312, 380
productivity
consequences of photoinhibition 98, 98–104, 193
enhancement, future technological prospects 34, 226, 5557–558
improvement needed for commercial success 70, 566
oceans, stoichiometry 694–5
optimal cell density and light intensity 175, 175–6
reactor efficiency assessment 195–7, 255–6
theoretical limits, microalgal biomass 32–4
see also biomass
profit, definition and calculation 311, 316, 317
prokaryotes
evolutionary origins 12–13
structure and biochemistry 13, 14
see also bacteria; cyanobacteria
promoters, transgenic expression 536–7, 538, 656–7
protein efficiency ratio (PER) 465–7, 466
proteins
algal resources 12, 407–8, 674–6
amino acid composition 468–71, 470, 663, 676
associated with photosynthetic pigments 26–9, 28
iron-stress-induced 117
metal-binding, in detoxification 604
nutritional value parameters 463–8, 466, 469
produced by genetic manipulation 156–9, 157–8, 409–10, 532–40
quantitative measurement 51–3, 53, 465
structural, in lipid bodies 553
therapeutic, delivery systems to fish 665
ProviAPT plastic bag PBR design 239, 240
psuedopterosins 521–2
purification techniques
axenic cultures 38
for extracted products 292–3
field samples 84–5, 440
pyrenoids 330
quality control
of products, regulatory measures 352–3, 493–6, 494
protocols for culture collections 86
quantum yield (of photosynthesis) 92, 93–4, 99, 420, 420–1
quorum sensing 658, 660
quota flexibility (nutrients) 129, 129–30
rabbits, algae as feed 488
raceway ponds
cost-effectiveness 256–7, 294–6, 295
coupled dual-cultivation systems with PBRs 251
covered hybrid systems 241, 244
open systems 227–8, 348–9
rate equations and constants, photosynthesis 210–12, 221
reactive oxygen species (ROS)
effects on PS II damage and repair 97, 101–2
poisoning hazards 587, 603–4
related to oxidative stress 117, 395, 395
reactor volume efficiency 195–7, 197
recombinant proteins
codon usage 154–5, 536–7, 537
expression promoters 536–7, 538
mammalian/bacterial platforms, and algal 532–3
products and sources 533, 534–5
potential of red microalgae 412
production from Chlorella 335–6
record-keeping, culture collections 86

recovery of algal cells see harvesting
red algae 13, 14, 406–7
‘red tides’ see algal blooms
Redfield C:N:P ratio 131, 584, 694–5
refugee proteins 556
regulations
food/dietary supplement quality and safety 353, 482, 493–6
transgenic approval, costs 655, 665
on uses of gray water 657–8
relative energy difference (RED), solvent extraction 286
reporter proteins 540
reservoirs, wastewater treatment 599
resistant starch 50
resolution (chromatography) 292–3
retinol (vitamin A) 364, 485, 490, 506, 681
revenues, estimation 318–19, 320
Reynolds number (turbulent flow) 180, 426
rheology, Porphyridium polysaccharides 408
riboflavin (vitamin B2) 680
risks, ocean nourishment 700–1
Ritschenhausen (Germany) industrial facility 454, 454–5
RNA interference (RNAi) gene knockdown 154
Rotating Algal Biofilm Reactor (RABR) design 246–7
rotifers
mass production methods 643–4
microalgal requirements 622, 632
species used as food for fish-rearing 621, 643
RuBiSCO enzyme 12, 29, 30, 457–8
ruminant animals, algae as feed 487–8
salinity
and antibiotic effectiveness 149
collection of tolerant strains 74, 376
effect on microalgal composition 118, 360–1, 361
salt stress response, photosynthetic 104–6, 344
variation and Dunaliella biomass production 362–3, 363
salmon, methods of flesh pinkening 623
saturating pulse fluorescence 100
saturation irradiance (I0) 92, 93, 172, 343
saxitoxin 584, 588
scale-up to commercial production
anticipated timescale 566
difficulties for Arthospira (Spirulina) culture 349
economic aspects 298, 298, 459, 459
technological development for 226, 451, 571

scallops (Pecten), food requirements 618
Schizochytrium, fermentation processes
biodiesel production 142
DHA and EPA production 138–9, 140, 142
screening
direct and indirect assays 39, 513, 514
high-throughput techniques 75, 77
lipid content, by fluorescence spectroscopy 63–4
for multiple character traits 73–5, 76
for specific properties 70, 71, 72–3
sea bream, feed requirements 622, 637, 686
sea cucumber aquaculture 642–3, 646
seasonal cycles
limiting mass culture production 347, 363
natural algal succession 17
product quality 352–3, 353
sunlight intensity variation 190
in wastewater treatment ponds 600
secondary carotenoids
biosynthetic pathways 393
photoprotective role 115, 395
production in stress conditions 25, 116–17
secondary metabolites, bioactivity 438, 507–12
sedimentation, for cell recovery 271–3, 272
selection markers
antibiotics/herbicide resistance 149, 409, 657
mutant complementation 149, 537
range available in algae 537, 539, 540
visible phenotypic, and fluorescence labelling 160
semi-continuous culture, rotifers 644
sequential collection photosynthetic model 209–10, 218–20
sequestration efficiency 697, 698
serpentine photobioreactors 230–3, 232, 252
settling velocity
in centrifuges, force calculation 275
gravitational 272
sewage, treated, for Botryococcus braunii
cultivation 379
sexual reproduction
capability in microalgae 8, 360, 390
induced, for breeding and selection 159–60
Shandong Province (China), aquaculture 643, 645–7
shelf life of products 351, 634, 686
shellfish see molluscs
shellfish-poisoning toxins 584, 586
ship-based ocean urea injection 698, 699
short optical paths 117, 395
shrimps
hatchery systems, microalgal needs 619–21, 621, 638–9
world production trends 618, 619

Index

718

Sigma starch assay method 50–1
silicon, nutritional requirement 128, 695
Simgae™ hybrid PBR design 242
skin care products, anti-inflammatory 412
sleeve reactors 229, 237, 411, 630
soda lakes, phytoplankton ecology 342–3
software for modelling analysis
- economic 312, 320, 324
- fluid dynamics behaviour 423
- soil
 - biphasic soil–water culture media 83
 - isolation of microalgae from 38, 73
 - solar drying, algal biomass 279, 279–80
 - solubility parameters 285–6
sonication see ultrasound

Soxhlet extraction method (lipids) 54–5, 57–8

sparging 103, 248, 568

species, definition and identification 81–2, 434–6

specific growth rate (μ) 42, 46, 128–30, 129, 172

spirulides 586, 586

Spirulina see Arthrospira

spray drying, algal biomass 278–9, 685

squalenes, biosynthetic pathways 372–4

starch
- conversion to triacylglycerol 551–2, 557
- quantitative measurement 50–1

static cultures 84

stationary growth phase 44, 45, 184

storage of cultures (long-term) 39, 86–7

strains
- characterization by products, Botryococcus 370, 371–2
- collection and isolation strategies 70–7, 76
- identification and authentication 87–8, 340
- improvement using biotechnology 569–71
- maintenance and storage 39, 84–6
- numbering designation in collections 82
- selection criteria, Arthrospira (Spirulina) 349

stress response, definition 90–1

subcritical water extraction 290

sugars
- in Arthrospira trophic regimes 346
- in B. braunii mixotrophic growth 378
- as carbon source for fermentation 135, 136, 142
- in microalgal cell wall polysaccharides 407, 662, 663

sulfated polysaccharides
- biosynthesis in cell wall formation 408–9
- characteristics and natural function 407–8

formation and environmental conditions 408

product properties and applications 408, 411–12, 437–8

from red microalgal mass cultivation 410–11, 411

sulfur deprivation, and hydrogen production 419, 422

suns drying, algal slurry 279

sunlight
- energy and surface intensity 190
- exposure and shading, effect of cell density 174–5, 175
- stabilization pond disinfection 598
- variation in solar angle 193–4
- supercritical fluid extraction 291–2, 293, 400

swimming crabs (Portunus spp.) 637

switchable polarity solvents 291

symbols and units, listed 303

tandem mass spectrometry (MS/MS) 60, 61

techno-economic analysis (TEA)
- conceptual framework and process flow analysis 311–12, 312
- data sources 318–19, 319
- inputs and analysis 319–20, 321
- microagal-to-biodiesel case study 297–301, 299, 302
- model assumptions and units 313, 314–15, 316

oil from Botryococcus braunii case study 380–4, 381, 382, 383

output metrics 316, 317, 318

sample TEA construction, Spirulina biomass 321–4, 323–4

spreadsheet software 312

technological development
- barriers to commercial success 69–70
- control of cell composition 118–19
- current economic viability of PBR designs 257, 459
- ethical and societal issues 699–700
- range of designs and systems, IGV GmbH 446–53, 449–50, 451
- reasons for promising future prospects 354, 656
- scale-up to commercial production 226, 298, 324–5, 451, 5751
- temperature
- effects on lipid extraction 55, 56
- effects on microalgal chemical composition 115–16

effects on nutrient uptake 131

isolation of heat-resistant strains 73–4, 660–61

low, effect on photoinhibition 100–1, 103

low-temperature preservation, algal pastes 634, 685

range for different Botryococcus braunii strains 375–6

requirements for Arthrospira (Spirulina) 344

terpene-based products 521–2

therapeutic products
- algal lipids 473, 475
- algal proteins, scope for metabolic engineering 156–9, 157–8, 335, 533
- animal testing 484–5, 491, 492–3
- antioxidants 388, 437, 478–9
- bioassay screening for 513–14
- growth regulators and vaccines 665
- properties of red microalgal polysaccharides 412
- secondary algal metabolites 508–12
- traditional herbal remedies using algae 436, 489
- thiamine (vitamin B1) 681

thin-layer chromatography (TLC), lipids analysis 55–6, 57

thraustochytrids
- heterotrophic cultivation 134, 142
- for oils production 72, 518

see also Schizochytrium

thylakoids
- arrangement of reaction complexes 25, 26
- effects of low temperature on lipid saturation 115
- in pro- and eukaryotes 8–9, 9, 25, 341
- tilapia farming 687–8
- tilt angle, reactor surface 193–4, 194

timescales
- in photosynthetic process 187, 207, 209–12
- in reactor light regimes (LD cycles) 187–8, 206–7, 215–16
- synchronization under flashing light regimes 213–15, 214, 215, 216

total organic carbon (TOC) 42, 114, 198

toxic algae
- influence of nutrients on toxicity 588
- PBR design for safe cultivation 247–9
- potential for high-density mass cultivation 590

- types of poisoning and damage 583–4

- toxicological studies, animal and human 484–6

- toxins
 - biogenic and nonbiogenic types in algae 482–3
 - haemolysins 587
 - heavy metals 483, 483, 602–4
 - in industrial wastewater 598, 605–7
produced by cyanobacteria 586–7
shellfish-poisoning neurotoxins 586
toxicity testing, traditional and new algal
foods 437, 482
trace elements see micronutrients
transesterification
enzyme-based techniques 558
operational costs 300–1, 300–1, 302
process, in biodiesel production 296, 296–7
turbulence
bubble-induced, empirical description 221
effect on motion of cells 187–8
energy input requirement 568
influence on light–dark cycles 180–1
ultrafiltration 273, 274, 274
ultrahigh cell density (UHCD) cultures
182–7, 205–9, 206
ultrasound
cell agglomeration method 277, 277
for microalgal cell disruption 283–4
ultrastructure
Arthrospira (Spirulina) 341–2
biogenesis of lipid bodies 552, 553–5, 556
changes during carotenogenesis 390, 390–1
Chlorella spp. 330
effects of cell density 177
fluorescence imaging techniques 62–3
microalgal cells 8–11, 9
unialgal cultures 85–6, 200, 350
units and symbols
conversion factors 313, 314–15, 316
listed 303
UTEX 2629 strain, taxonomy 373–80
volumetric productivity
V-trough hybrid PBR designs 242
vacuoles, functions in microalgae 10
vertical alveolar panels (VAP) 193, 234–5
vertical column (cylinder) cultivation
229–30, 230, 252, 630
Vertigro film panel reactors 238–9
very long-chain fatty acids (VLCFAs) 372, 373, 547
viability, assessment using TEA 310–11, 312–5
viruses, potential control of 659–60
viscosity
in high-density cultures 221, 268, 410
red microalgal polysaccharides 407, 408
vitamin B12 (cobalamin), bioavailability 475–7, 632
vitamins
microalgal content 475–7, 476, 680–81, 681
requirements of Botryococcus braunii 375
volume
consideration in choice of harvesting
method 277
of containers for culture collections 84
volumetric productivity
for evaluation of mass culture performance 255, 313
with long optical path 188
parameters affecting 197, 216–17, 217
related to culture density 207–8, 212
wastewater treatment
with Botryococcus cultivation, cost
benefits 379
collection/isolation of algal strains 72–3
heavy metal sequestration 606
industrial wastewater 598–9
potential of Chlorella 335
regulatory barriers to use for algaculture 657–8
stabilization ponds 596, 596–8, 597
water
algal moisture content measurement 41, 463
aqueous extraction processing 290
as base substrate for cultures 82–3, 128
concentration of algae from samples 38
fresh, world supply and demand 569, 574
recirculation for biofiltering, mariculture 645
use in solvent extraction of lipids 281, 288
wet biomass measurement 40–1
www (‘windy, wavy, and wiped’) PBR
design 231–2, 232, 624
xanthophyll cycle, excess energy dissipation
96, 98
xanthophylls
chemical structure 24, 478
occurrence in algae 25, 681
yessotoxins (YTX) 587
yield
algaculture compared with agriculture 665
areal and volume, in reactors 195–6, 196
fish, correlation with phytoplankton 696
of microalgae in harvesting operations 268
of specific products and biomass 119
extracted by different methods 288–9, 289
substrate to biomass conversion efficiency 42, 346
see also output rate
Z scheme (photosystem electron transport) 25–6, 27, 194–5
zeaxanthin 481
zooplankton
contaminants, control 201, 659
production for aquaculture 643–4, 674