CONTENTS

About the Volume Editor xiii
Preface to Series xv
Introduction xvii
Contributors xxi

1. A Brief History of Carbon Radicals 1
 Malcolm D. E. Forbes

2. Intermolecular Radical Additions to Alkynes: Cascade-Type Radical Cyclizations 9
 Uta Wille

2.1 Introduction 9
2.2 Cascade Reactions Involving Radicals of Second Row Elements 11
 2.2.1 Cascade Reactions Initiated by Addition of C-Centered Radicals to Alkynes 11
 2.2.2 Cascade Reactions Initiated by Addition of O-Centered Radicals to Alkynes (Self-Terminating Radical Oxygenations) 16
 2.2.3 Cascade Reactions Initiated by Addition of N-Centered Radicals to Alkynes 24
2.3 Cascade Reactions Initiated by Addition of Higher Main Group (VI)-Centered Radicals to Alkynes 27
 2.3.1 Cascade Reactions Initiated by Addition of Sn-Centered Radicals to Alkynes 27
2.4 Cascade Reactions Initiated by Addition of Higher Main Group (VI)-Centered Radicals to Alkynes 30
 2.4.1 Cascade Reactions Initiated by Addition of S-Centered Radicals to Alkynes 30
 2.4.2 Cascade Reactions Initiated by Addition of Se-Centered Radicals to Alkynes 36
2.5 Cascade Reactions Initiated by Addition of Higher Main Group (V)-Centered Radicals to Alkynes 37
 2.5.1 Cascade Reactions Initiated by Addition of P-Centered Radicals to Alkynes 37

3. Radical Cation Fragmentation Reactions in Organic Synthesis 43
 Alexander J. Poniatowski and Paul E. Floreancig
 3.1 Introduction 43
 3.1.1 Oxidative Carbon–Carbon Bond Cleavage 44
 3.1.2 Thermodynamic and Kinetic Considerations 46
 3.1.3 Reactive Intermediate Lifetime 49
 3.2 Electron Transfer-Initiated Cyclization Reactions 49
 3.2.1 Rate Enhancement and Mechanistic Studies 50
 3.2.2 Development of a Catalytic Aerobic Protocol 50
 3.2.3 Oxidative Cascade Reactions 52
 3.3 Oxidative Acyliminium Ion Formation 52
 3.4 Carbon–Carbon Bond Formation 54
 3.4.1 Chemoselectivity and Reactivity 54
 3.4.2 Reaction Scope 55
 3.5 Summary and Outlook 58

4. Selectivity in Radical Cation Cycloadditions 61
 Christo S. Sevov and Olaf Wiest
 4.1 Introduction 61
 4.2 Mechanism and the Origin of the Rate Acceleration 62
 4.3 Selectivity in Radical Cation Cycloadditions 63
 4.4 Chemoselectivity 64
 4.4.1 Effect of Dienophile Substituents on Chemoselectivity 64
 4.4.2 Effect of Sensitizers and Solvents on Chemoselectivity 66
 4.4.3 Effect of Concentrations on Chemoselectivity 67
 4.4.4 Effect of Electron-Rich Dienophiles on Chemoselectivity 67
 4.5 Regioselectivity 68
 4.6 Periselectivity 69
 4.6.1 Effects of Solvent and Concentration on Periselectivity 70
 4.6.2 Effect of Diene/Dienophile Redox Potentials on Periselectivity 71
 4.6.3 Substituent and Steric Effects on Periselectivity 72
 4.6.4 Quantifying Periselectivity Through Ion Pair Association 74
4.7 Endo/Exo Selectivity

4.7.1 Effects of Secondary Orbital Interaction and Solvents on Endo/Exo Selectivity 75
4.7.2 Effect of Sensitizer on Endo/Exo Selectivity 77
4.7.3 Ion Pairs and Endo/Exo Selectivities 77

4.8 Conclusions 79

5. The Stability of Carbon-Centered Radicals 83

Michelle L. Coote, Ching Yeh Lin, and Hendrik Zipse

5.1 Introduction 83
5.1.1 The Consequences of Different Stability Definitions: How Stable Are Ethyl and Fluoromethyl Radicals? 85

5.2 Theoretical Methods 86
5.2.1 Testing the Performance of Different Theoretical Approaches: How Stable Are Allyl and Benzyl Radicals? 87
5.2.2 The Application of IMOMO Schemes: How Stable Are Benzyl and Diphenylmethyl Radicals? 89

5.3 RSE Values for Carbon-Centered Radicals 91
5.4 Use of RSE Values in Practical Applications 91
5.4.1 Susceptibility to Hydrogen Atom Abstraction 91
5.4.2 Assessment of Radical Stability in Other Types of Reactions 100

5.5 Conclusions 102

Vincenzo Barone, Malgorzata Biczysko, and Paola Cimino

6.1 Introduction 105
6.2 EPR Spectroscopy 107
6.2.1 Theoretical Background 107
6.2.2 Environmental Effects 108
6.2.3 Vibrational Effects 108
6.2.4 Dynamical Effects 109

6.3 Calculation of EPR Parameters 110
6.3.1 Geometric Parameters 112
6.3.2 EPR Parameters 113
6.3.3 Case Studies: Glycine and Glycyl Radicals 117
6.3.3.1 Glycine Radical 117
6.3.3.2 Glycyl Radical 119

6.3.4 Case Studies: Vibrationally Averaged Properties of Vinyl and Methyl Radicals 120

6.4 Vibrational Properties Beyond the Harmonic Approximation 122
6.4.1 Case Studies: Anharmonic Frequencies of Phenyl and Naphthyl Cation Radicals 122
6.4.2 Case Studies: Gas and Matrix Isolated IR Spectra of the Vinyl Radical 125
6.5 Electronic Properties: Vertical Excitation Energies, Structure, and Frequencies in Excited Electronic States 126
 6.5.1 Theoretical Background 126
 6.5.2 Case Studies: Vertical Excitation Energies of the Vinyl Radical 126
 6.5.3 Case Studies: Structures and Frequencies of the Vinyl Radical in First Three Doublet Excited Electronic States 129
6.6 Vibronic Spectra 129
 6.6.1 Theoretical Background 132
6.7 Concluding Remarks 137

7. Unusual Structures of Radical Ions in Carbon Skeletons: Nonstandard Chemical Bonding by Restricting Geometries 141
 Georg Gescheidt
 7.1 Introduction 141
 7.2 The Tools 142
 7.2.1 Cyclovoltammetry 143
 7.2.2 EPR Parameters: Experimental and Calculated 143
 7.3 Pagodane and Its Derivatives 144
 7.4 Different Stages of Cycloaddition/Cycloreversion Reactions Within Confined Environments 151
 7.5 Extending the “Cage Concept” 152
 7.6 Summary 154

8. Magnetic Field Effects on Radical Pairs in Homogeneous Solution 157
 Jonathan R. Woodward
 8.1 Introduction 157
 8.2 The Spin-Correlated Radical Pair 158
 8.2.1 Radical Pair Interactions 159
 8.2.2 Intraradical Interactions 159
 8.2.3 Interradical Interactions 160
 8.3 Application of a Magnetic Field 162
 8.3.1 The Zeeman Effect 162
 8.4 Spin-State Mixing 163
 8.4.1 Coherent Spin-State Mixing 163
 8.4.2 The Life Cycle of a Radical Pair 165
 8.4.3 Incoherent Spin-State Mixing 167
8.5 The Magnetic Field Dependence of Radical Pair Reactions
 8.5.1 "Normal" Magnetic Fields 167
 8.5.2 Weak Magnetic Fields 169
 8.5.3 Strong Magnetic Fields 171
8.6 Theoretical Approaches
 8.6.1 General Approaches 172
 8.6.2 Modeling Diffusion 173
 8.6.3 The Semiclassical Approach 173
 8.6.4 The Stochastic Liouville Equation 174
 8.6.5 Monte Carlo Approaches 174
8.7 Experimental Approaches
 8.7.1 Fluorescence Detection 174
 8.7.2 Optical Absorption Detection 176
 8.7.3 Rapid Field Switching 176
8.8 The Life Cycle of Radical Pairs in Homogeneous Solution
 8.8.1 Differentiating G-Pairs and F-Pairs 177
8.9 Summary 180

9. Chemical Transformations Within the Paramagnetic World Investigated by Photo-CIDNP 185
 Martin Goez
 9.1 Introduction 185
 9.2 CIDNP Theory 186
 9.3 Experimental Methods 190
 9.4 Radical—Radical Transformations During Diffusive Excursions 191
 9.5 Radical—Radical Transformations at Reencounters 196
 9.6 Interconversions of Biradicals 199
 9.7 Conclusions 203

10. Spin Relaxation in Ru-Chromophore-Linked Azine/Diquat Radical Pairs 205
 Matthew T. Rawls, Ilya Kuprov, C. Michael Elliott, and Ulrich E. Steiner
 10.1 Introduction 205
 10.2 EPR for the Isolated Ions 209
 10.3 Calculation Methods for EPR of the Isolated Ions 211
 10.3.1 Calculation of g Tensor Components 212
 10.3.2 Calculation of Hyperfine Coupling Constants 213
 10.3.2.1 Ab Initio Hyperfine Coupling Constants: General Notes 213
 10.3.2.2 Theoretical Values of Isotropic and Anisotropic Hyperfine Coupling Constants 214
 10.4 Implications for Spin-Relaxation in Linked Radical Pairs 216
11. Reaction Dynamics of Carbon-Centered Radicals in Extreme Environments Studied by the Crossed Molecular Beam Technique 221
Ralf I. Kaiser

11.1 Introduction 221
11.2 The Crossed Molecular Beam Method 223
11.3 Experimental Setup 224
 11.3.1 The Crossed Beam Machine 224
 11.3.2 Supersonic Beam Sources 227
 11.3.2.1 Ablation Source 227
 11.3.2.2 Pyrolytic Source 228
 11.3.2.3 Photolytic Source 228
11.4 Crossed Beam Studies 229
 11.4.1 Reactions of Phenyl Radicals 229
 11.4.2 Reactions of CN and C\textsubscript{2}H Radicals 236
 11.4.3 Reactions of Carbon Atoms, Dicarbon Molecules, and Tricarbon Molecules 237
11.5 Conclusions 240

12. Laser Flash Photolysis of Photoinitiators: ESR, Optical, and IR Spectroscopy Detection of Transients 249
Igor V. Khudyakov and Nicholas J. Turro

12.1 Introduction 249
12.2 Photodissociation of Initiators 250
 12.2.1 Quantum Yields of Free Radicals in Nonviscous Solutions 250
 12.2.2 Cage Effect Under Photodissociation 252
 12.2.3 The Magnetic Field Effect on Photodissociation 253
12.3 TR ESR Detection of Transients 254
 12.3.1 CIDEP Under Photodissociation of Initiators 254
 12.3.2 Addition of Free Radicals to the Double Bonds of Monomers 260
 12.3.3 Electron Spin Polarization Transfer from Radicals of Photoinitiators to Stable Nitroxyl Polyradicals 268
12.4 Optical Detection of Transients 270
 12.4.1 UV-vis Spectra of Representative Radicals 270
 12.4.2 Representative Kinetic Data on Reactions of Photoinitiator Free Radicals 270
12.5 IR Detection of Free Radicals and Monitoring Their Reactions 274
12.6 Concluding Remarks 274

13. Dynamics of Radical Pair Processes in Bulk Polymers 281
Carlos A. Chesta and Richard G. Weiss

13.1 Introduction 281
 13.1.1 General Considerations 281
13.1.2 Escape Probability of an Isolated, Intimate Radical Pair in Liquids and Bulk Polymers 283

13.2 Singlet-State Radical Pairs from Irradiation of Aryl Esters and Alkyl Aryl Ethers 286
13.2.1 General Mechanistic Considerations From Solution and Gas-Phase Studies 286
13.2.1.1 Photo-Fries Reactions of Aryl Esters 287
13.2.1.2 Photo-Claisen Reactions of Alkyl Aryl Ethers 289

13.3 Photo-Reactions of Aryl Esters in Polymer Matrices. Kinetic Information from Constant Intensity Irradiations 289
13.3.1 Relative Rate Information from Irradiation of Aryl Esters in Which Acyl Radicals Do Not Decarbonylate Rapidly 290
13.3.2 Absolute and Relative Rate Information from Constant Intensity Irradiation of Aryl Esters in Which Acyl Radicals Do Decarbonylate Rapidly 293

13.4 Rate Information from Constant Intensity Irradiation of Alkyl Aryl Ethers 297
13.4.1 Rate Information from an Optically Active Ether 299
13.4.1.1 Results from Irradiation in \(n \)-Alkane Solutions 299
13.4.1.2 Results from Irradiation in Polyethylene Films 304

13.5 Comparison of Calculated Rates to Other Methods for Polyethylene Films 306

13.6 Triplet-State Radical Pairs 308
13.6.1 Triplet-State Radical Pairs from the Photoreduction of Benzophenone by Hydrogen Donors 308
13.6.2 Triplet-State Radical Pairs from Norrish Type I Processes 311

13.7 Concluding Remarks 318

14. Acrylic Polymer Radicals: Structural Characterization and Dynamics 325
Malcolm D. E. Forbes and Natalia V. Lebedeva

14.1 Introduction 325
14.2 The Photodegradation Mechanism 326
14.3 Polymer Structures 327
14.4 The Time-Resolved EPR Experiment 329
14.5 Tacticity and Temperature Dependence of Acrylate Radicals 332
14.6 Structural Dependence 334
14.6.1 \(d_1 \)-Poly(methyl methacrylate), \(d_2 \)-PMMA 335
14.6.2 Poly(ethyl methacrylate), PEMA 337
14.6.3 Poly(ethyl cyanoacrylate), PECA 337
14.6.4 Poly(ethyl acrylate), PEA 337
14.6.5 Poly(fluorooctyl methacrylate), PFOMA 338
14.6.6 Polyacrylic Acid, PAA 339
14.6.7 Polymethacrylic Acid, PMAA 340
14.7 Oxo-Acyl Radicals 340